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Rongxiang Luo
Department of Physics, Fuzhou University, Fuzhou 350108, Fujian, China
and Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, Fujian, China

® (Received 30 July 2020; accepted 18 October 2020; published 2 November 2020)

Compared to that for two-dimensional (2D) lattices, our understanding of heat conduction in 2D gases is
still limited. Here we study heat conduction behavior of 2D gas systems with momentum-conserving and
-nonconserving interparticle interactions by using the nonequilibrium and equilibrium molecular dynamics
methods. For the momentum-conserving system, we find that when the dimensionality of the system is changed
from 2D to quasi-one-dimensional (quasi-1D), the heat conductivity « diverges with the system size L ask ~ In L
(the theoretical prediction for 2D systems) for a short L and shows, in the thermodynamic limit, a tendency to
k ~ L'3 like that predicted in 1D fluids. This suggests that the dimensional-crossover effect of heat conduction
exists in 2D systems with conserved momentum. In contrast, for the momentum-nonconserving system, as
L increases, finite heat conductivity independent of L is observed. These findings are in agreement with the
predictions given by hydrodynamic theory and thus further confirm the validity of the theory in 2D gases.
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I. INTRODUCTION

A radical understanding of heat conduction is of primary
importance for constructing microscopic pictures for macro-
scopic irreversible heat transfer and provides a theoretical
basis for thermal energy control and management [1-7]. The-
oretically, the well-known Fourier heat conduction law states

j=—«VT, ()

where j and VT are, respectively, the heat current and the
spatial temperature gradient and « is the heat conductivity,
a finite constant independent of the system size. The
transport following this law is usually known as normal
heat conduction, and it has been shown that as long as some
nonlinearity is present in the interaction, heat conduction is
normal in all systems with pinning (on-site potential), and it
is expected in three-dimensional systems [1-3].

At variance with the normal picture, more interesting
anomalous size-dependent heat conductivity has, however,
been observed experimentally in carbon nanotubes and
suspended graphene [8—10] as well as numerically in low-
dimensional Fermi-Pasta-Ulam-Tsingou systems without pin-
ning (cf. [3], and references therein). Theoretically, it was
reported in 2000 that momentum conservation implies anoma-
lous conductivity in one-dimensional (1D) classical lattices
[11], and three years later an interesting connection between
anomalous heat conduction and anomalous diffusion was
established in 1D systems [12]. Actually, the anomalous be-
havior was first theoretically predicted by the hydrodynamics
approach [13] and the mode-coupling theory [1,3]. Both con-
jectured that for general momentum-conserving systems, the
heat conductivity ¥ would diverge with the system size L as
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k ~ LS (with ¢ < 1) in one dimension and in the manner of
k ~InL in two dimensions. Later, in 2006 a similar predic-
tion was achieved in an explicitly solvable model of stochastic
dynamics [14], which further confirms that in low dimensions,
the conservation of momentum is a crucial ingredient for the
anomalous heat conduction.

Since the hydrodynamic description is always used in these
theories, one may expect that the above theoretical conjecture
could apply to both lattice and fluid models. This is indeed the
case for 1D momentum-conserving systems, where the power-
law divergent heat conductivity has been well verified in 1D
lattices [3] and in 1D gas models that represent fluids [13,15—
17]. Nevertheless, for the counterpart two-dimensional (2D)
systems, to the best of our knowledge, at present only the 2D
lattice models have been numerically studied [18-20]. This
then raises the question: Can the ¥ ~ In L law conjectured by
the theories also be observed in 2D momentum-conserving
gases?

In addition, the dimensional-crossover behavior of ther-
mal transport from 2D to 1D is another interesting topic for
low-dimensional systems [3,6]. Indeed, in 2014 the relevant
crossover manner was experimentally observed in suspended
single-layer graphene [10]. In this experimental setup, the
authors fixed the width of samples and studied how the ther-
mal conductivity changes with the samples’ lengths. As the
length increases, naturally, a dimensional-crossover behavior
from 2D to quasi-1D can be expected. Moreover, in 2015
the 2D lattice model of dissociating particles was used to
theoretically explore the dimensional effect [21], and recently,
more detailed dimensional-crossover behaviors were revealed
from the energy and momentum diffusions [22]. All of these
studies greatly enrich our understanding of heat conduction in
2D lattice systems.

In this paper we investigate thermal transport and the rele-
vant dimensional-crossover behavior in 2D gas fluids. Toward
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that end, it might be helpful to consider a 2D gas model
of interacting particles in a rectangular box for simulating a
fluid. The fluid is modeled by particles whose positions and
velocities are treated as continuous variables. Fortunately, the
evolution of the particles can be described by a multiparticle
collision (MPC) dynamics [23] that correctly captures the
hydrodynamic equations [24,25]. In particular, this steady
state of a gas of particles, i.e., the MPC fluid, is known to
behave with the ideal gas equation of state [26]. The MPC
dynamics keeps the total momentum and energy of the system
conserved, which thus helps us test the theoretical conjecture
k ~ InL for 2D momentum-conserving systems. Further, as
the usual measurement in heat conduction, we fix the width
and increase the length of the rectangular box such that the
dimensional-crossover behavior can also be explored. With
the molecular dynamics simulations, we show that the pre-
diction of k¥ ~InL for 2D momentum-conserving systems
can be verified only for a short L, and in the thermody-
namic limit, a tendency to x ~ L'/? for 1D systems can be
observed. Furthermore, in order to stress the momentum-
conserving importance, we also show that when momentum
conservation is broken by stochastic noise, the system exhibits
normal heat conduction behavior. These results confirm that
the dimensional-crossover behavior of heat conduction exists
in low-dimensional momentum-conserving gas systems and
further confirm the validity of hydrodynamic theory in gas
systems.

This work is organized as follows. We start Sec. II by intro-
ducing a 2D gas model and providing the relevant simulation
details. Section III is devoted to studying the L-dependent k
and analyzing the dimensionality-crossover property for the
system with conserved momentum. In Sec. IV, we give dis-
tinct results for systems with broken momentum conservation.
This, as mentioned, is achieved by adding certain stochastic
noises. Finally, some related issues will be discussed with a
brief summary in Sec. V.

II. THE 2D GAS MODEL

We consider a 2D gas system of N interacting particles in
a rectangular box of width W (along the y coordinate) and
length L (along the x coordinate; see Fig. 1 for a schematic
plot). All particles have the same mass m = 1. In the y direc-
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FIG. 1. Schematic plot of the gas model in a rectangular box
of width W and length L evolving with the MPC dynamics. The
cells with dashed-line boundaries represent the partition of space
considered for modeling collisions. The two heat baths with tem-
peratures 7; and Ty are placed on the left- and right-hand sides. The
x coordinate goes along the channel, and y is perpendicular to it. See
text for more details.

tion the particles are subject to periodic boundary conditions.
To study the heat conduction problem, the system is placed
in contact with two heat baths at x = 0 and x = L, through
openings of the same size as the width W of the box. The
left and right heat baths are modeled as ideal gases and are
characterized by two different temperatures, 7; and T, re-
spectively. When a particle hits the boundaries of the system,
it is reflected back with a new velocity (denoted by v, and
vy for its x and y components, respectively) chosen from a
distribution with probability densities [27]

Py = v?
V) = exp| ——— |,
ks, P\ 2k,

) @)
P(v,) = ! exp| — !
2N 2k T, P\ T 20T )

where 7, (t = L, R) is the temperature of the respective heat
bath in dimensionless units and kg is the Boltzmann constant.

As mentioned, the evolution of this 2D gas system is
described by the MPC dynamics. This MPC dynamics was
successfully applied to model the steady shear flows in col-
loids [28], polymers [29], and also the vesicles in shear
flow [30] (see also [31] and references therein for a review).
More recently, it was adopted to study coupled particle and
heat transport [32-34]. The MPC dynamics assumes that the
system evolves in discrete time steps, consisting of free prop-
agation during a time t followed by collision events. During
the free propagation period, a particle keeps its velocity v;
unchanged and updates its position as

ri — I+ TV;. 3)

For each collision event, the system’s volume is partitioned
into identical square cells of size a x a (see Fig. 1), and
then the velocities of all particles found in the same cell are
rotated with respect to their center of mass velocity V¢y by
an angle, @ or —«, randomly chosen with equal probability.
The velocity of a particle in a cell is thus updated as

vi = Veu + RE(vi — Veu), 4

where R** is the 2D rotation operator of the angle. The
time interval between successive collisions 7 and the collision
angle o tune the strength of the interactions and, consequently,
affect the transport of the gas particles. Note that the angle
o = 1 /2 corresponds to the most efficient mixing of the par-
ticle momenta, and such MPC dynamics preserve the total
momentum and energy of the gas system.

In our simulations, each particle is initially given by a
random position uniform distribution and a random velocity
generated from the Maxwellian distribution at an average
temperature T = (Tz + Tg)/2. Then the system is evolved for
a long enough time (>107) to ensure that it has relaxed to the
stationary state. After the system reaches the steady state, we
compute the temperature profile 7 (x), where x is the space
variable. To calculate 7' (x), we divide the space of the system
into N, = % bins of equal size a. The total kinetic energy ob-
served in the ith bin in a unit time is denoted by &;; thus, T (ia)
is defined as T (ia) = (£;/a), where (-) represents the time
average. In addition, the heat current j that crosses the system
is measured, which is equal to the averaged energy exchanged
in the unit time and area between the particles and the heat
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bath. The heat conductivity is finally obtained by assuming
Fourier’s law, as k & jL/(Ty — Tg), where we have checked
that in the linear response regime, the temperature jump be-
tween the heat bath and simulated system is not sensitive to
the choice of L and thus can be neglected (as shown in Fig. 4
below). In the simulations, we set T, = T + AT /2 and T =
T — AT /2 so that the nominal temperature of the system is T
and the main parameters adopted throughout are as follows:
kg=1,T=1,AT =0.2,a=0.1,0 = /2, T = 0.25, and
the averaged particle number density p = N/(WL) = 22.75.
In this work, long enough integration times (>108) are utilized
to ensure the relative errors of all numerical results are smaller
than 0.5%.

III. MOMENTUM CONSERVATION

Now let us turn to the simulation results. First of all, it
is interesting to see the extreme case of no collisions. That
means particles do not interact but propagate ballistically from
one heat bath to the other as they cross the system. Under this
consideration and with the heat baths given by Eq. (2), we can
derive an analytical expression for the heat conductivity:

_3 L‘/§/<L+L> 5)
TN [\ T TR

In Fig. 2 we plot the result for this extremely integrable
system. As can be seen, « diverges linearly with L, which is
indeed verified by our numerical simulation (see the black cir-
cles). In contrast, for the interacting systems with collisions,
we clearly show evidence of the nonballistic, superdiffusive
thermal conduction behavior; that is, « perfectly diverges with
L as k ~ In L for a small range of L. This quite fast conver-
gence to the prediction of the ¥ ~ In L law suggests that the
2D gas system is a more ideal platform than lattices to check
the validity of existing theories [3,14]. This is not strange

2
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FIG. 2. Dependence of the heat conductivity on the system
length, obtained from nonequilibrium simulations with different W.
The symbols are for the numerical results, and the black line is the
analytical result given by Eq. (5). The two curves correspond to the
scalings ~ In L (dashed) and ~L!/? (dot-dashed), respectively.

FIG. 3. The total heat current autocorrelation function for the

2D momentum-conserving gas system. The black dashed line and
the black solid lines indicate the decay with ¢ as ~¢~! and ~¢=%/3,
respectively. Here we fix L = 4096.

since most of the existing theories rely on the hydrodynamic
description, which is for fluids.

For each fixed W, by further increasing L we see that the
dimensionality-crossover effects play a role, and therefore, «
eventually shows a tendency to k ~ L!/3 for large L. This is
consistent with the prediction for 1D momentum-conserving
fluids [13,17] and also recent experimental observations
in 2D materials [10]. This result thus suggests that such
dimensionality-crossover effects would be ubiquitous in 2D
systems and essentially root in the underlying hydrodynamics.

The underlying hydrodynamics over a long time can be
revealed in more detail by studying the time decay of the
total heat current autocorrelation function defined by C(¢) =
(J(0)J (1)), where J = 3EN (v}, +v},)v,; is the total heat
current along the x coordinate. With C(¢) and based on the
celebrated Green-Kubo formula [1], one then obtains the heat
conductivity as

fe

KGK = kaTLZd t,.li—>nclo Vh—>moo é /(; C(t)dt, (6)
where d and V are the dimension and the volume of the
system, respectively. In practice, as only a finite system with
periodic boundary conditions can be dealt with, to calculate
the heat conductivity, the integral is usually truncated up to
t. = L/cs (¢, is the sound speed) [1,35]. This results in the
superdiffusive heat transport k ~ L'~ as long as C(¢) decays
as ~1 7+,

To compute C(¢), we consider isolated systems with pe-
riodic boundary conditions. In the simulations, the initial
condition is randomly assigned with the constraints that the
total momentum is zero and the total energy corresponds to
T = 1. The system is then evolved for a long enough time,
and after the equilibrium state is reached, we use the following
time to gain the time average. The results of C(¢) versus ¢
for different system widths are presented in Fig. 3. As can
be seen, after a rapid decay for a short time (t < 10Y, C(t)
finally decays in a power law C(t) ~ t~%/3, showing a long,
slowly decaying hydrodynamic tail. This result, combined

052104-3



RONGXIANG LUO

PHYSICAL REVIEW E 102, 052104 (2020)

with the Green-Kubo formula, leads to kgx ~ L'/, which is
consistent with ¥ ~ L!/3 in the above result obtained with the
nonequilibrium setting. Finally, we note that the rapid decay
of C(t) for a short time that deviates from the t~! decay is
usually due to a strong kinetic effect [36].

IV. MOMENTUM NONCONSERVATION

The momentum-nonconserving lattice systems are more
common than the counterpart gas systems. For the lattice sys-
tems, one can add the pinning, i.e., the on-site potentials, into
the systems to break the momentum conservation and obtain
the normal heat conduction [37]. The underlying mechanism
of this normal behavior is mainly related to the strong phonon-
lattice interactions. However, in gas systems, one does not
have such a way to destroy the momentum conservation, and
further the mechanism is certainly distinct from the phonon-
lattice interactions. Therefore, the thermal conduction in 2D
momentum-nonconserving gas systems is actually an open
issue.

With this open issue in mind, we now consider a 2D gas
system with a source of stochastic noise. From a physical
point of view, the noise source may model the interactions
of the gas particles with the boundaries of the system or the
inelastic scattering from impurities in the material. Following
[32] to study the robustness of thermoelectric efficiency by
noise, the stochastic noise in our model is added by modifying
the MPC dynamics as follows: After a collision of the particles
in a given cell has already taken place, with a probability p
the velocities of all particles in the cell are reflected, namely,
v; = —v;. For any p > 0, the total momentum is thus no
longer conserved, and we will study how the heat conduction
behavior depends on the strength p of the perturbation.

First of all, we verify that when the system is in contact
with the heat baths, the validity of Fourier’s law determines
the internal temperature profile of the steady state. Indeed, by
assuming Fourier’s law and equating the averaged local heat
current along the system, we can obtain a temperature profile

[15]:

X 32X 7?3

)] )
In Fig. 4 we compare our simulation results with this predic-
tion. It can be seen that a very good agreement occurs for a
relatively large system size. The small deviations for a small
L are usually a result of the boundary (Kapitza) resistance. As
expected, these boundary effects can be neglected by increas-
ing the system size.

Figure 5 shows « versus L for the nonequilibrium
molecular dynamics measurement for different p. Here the
counterpart momentum-conserving system of p = 0is used as
a reference system. In Fig. 5, the momentum-nonconserving
systems of p > 0 is compared to the reference system (the
momentum-conserving system of p = 0), it is clear that a
small enough p = 0.05 can make the system’s « finite for a
relatively large L. Moreover, the finite heat conductivity of
this system can also be well inferred from the decay of the
total heat current autocorrelation function with ¢ (see Fig. 6)
from an equilibrium measurement, where C(¢) undergoes an
exponential decay, and eventually, it begins to oscillate around
zero (the negative values are not shown in the logarithmic

T(x) = [Tf/z(l -

1.10
1.051
&~ 1.00
* L=32
0.95 L =100
o L=512 .
—Eq. (7
0.90 ‘ : :
0.00 0.25 0.50 0.75 1.00

x/L

FIG. 4. Typical temperature profile for the 2D gas system with
p = 0.05 and different L. Here our numerical results are compared
with the analytical expression [see Eq. (7)]. Here and in the following
figures, we fix W = 1.

axis), showing a decay, as expected in the case of normal
heat conduction. These results again somewhat demonstrate
distinctions between lattice and gas systems, as in a lattice
system with a relatively weak strength pinning, usually, it is
hard to observe the true normal heat conduction [38]. How-
ever, despite this difference, our results further confirm that
breaking the momentum conservation would generally lead to
normal heat conduction in 2D systems. Finally, we also note
that the value of finite heat conductivity decreases with an
increase of p, as expected since the stronger the perturbation
p is, the greater the heat resistance is.

V. SUMMARY AND DISCUSSION

In summary, with the advantage of MPC dynamics we have
presented results of heat conduction in 2D gas systems. We

—0— p=0.00
] —0—p=0.05 ~In L
—I0—p=0.10

FIG. 5. The heat conductivity as a function of the system size for
the momentum-nonconserving system with different p values. For
reference the black line is the best logarithmic fit, k ~ In L, and the
three horizontal lines denote the saturation value of « at large L.
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FIG. 6. The total heat current autocorrelation function for L =
1024 with p = 0, 0.05, 0.10, 0.20, showing a decay faster than ~1/z.
The black dashed line, the green solid line, and the black dot-dashed
lines indicate the scalings ~¢~!, ~¢~%/3, and ~e™, respectively.

have shown that in the momentum-conserving gas system,
the heat conductivity diverges in a logarithmic law for small
system sizes as conjectured by the existing theories for 2D
systems but tends to diverge in a power law for large system
sizes such as that predicted in the 1D case. This suggests
that the dimensionality-crossover behavior of heat conduction
in both 2D lattices and 2D materials can also take place

in 2D gas systems. In addition, we have included stochas-
tic noise to study a 2D gas system with broken momentum
conservation and observed the finite thermal conductivity in-
dependent of the system size that follows Fourier’s law. This
observation demonstrates qualitatively the same conclusion
for the lattice and gas systems and further supports the general
well-accepted viewpoint of the important role of momentum
conservation in anomalous heat conduction.

Despite these observations being qualitatively the same,
our results also reveal some distinctions between lattices
and gases. The convergence to the logarithmic law for 2D
gases is quite fast, and this seems unaffected by the width
of the system. This indicates that the gases are more ideal
than lattices for checking the validity of theory. However,
this fast convergence still is not able to avoid the issue
of dimensionality-crossover behavior. To solve this, a disk
gas system similar to that proposed in lattices [20] would
be helpful. Moreover, only a weak violation of momentum
conservation in gases can already induce normal heat con-
duction. This implies that in addition to the mechanism of
phonon-lattice interactions [37] in lattice systems, the inelas-
tic interactions which break the momentum conservation are
crucial for the validity of Fourier’s law in gas systems.
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