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Spatiotemporal spread of perturbations in a driven dissipative Duffing chain:
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Out-of-time-ordered correlators (OTOCs) have been extensively used as a major tool for exploring quantum
chaos, and recently there has been a classical analog. Studies have been limited to closed systems. In this work,
we probe an open classical many-body system, more specifically, a spatially extended driven dissipative chain
of coupled Duffing oscillators using the classical OTOC to investigate the spread and growth (decay) of an
initially localized perturbation in the chain. Correspondingly, we find three distinct types of dynamical behavior:
the sustained chaos, transient chaos, and nonchaotic region, as clearly exhibited by different geometrical
shapes in the OTOC heat map. To quantify such differences, we look at instantaneous speed (IS), finite-time
Lyapunov exponents (FTLEs), and velocity-dependent Lyapunov exponents (VDLEs) extracted from OTOCs.
Introduction of these quantities turns out to be instrumental in diagnosing and demarcating different regimes
of dynamical behavior. To gain control over open nonlinear systems, it is important to look at the variation of
these quantities with respect to parameters. As we tune drive, dissipation, and coupling, FTLEs and IS exhibit
transition between sustained chaos and nonchaotic regimes with intermediate transient chaos regimes and highly
intermittent sustained chaos points. In the limit of zero nonlinearity, we present exact analytical results for the
driven dissipative harmonic system, and we find that our analytical results can very well describe the nonchaotic
regime as well as the late-time behavior in the transient regime of the Duffing chain. We believe that this analysis
is an important step forward towards understanding nonlinear dynamics, chaos, and spatiotemporal spread of
perturbations in many-particle open systems.
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I. INTRODUCTION

Chaotic and regular motion and transition between them
with variation of tunable parameters has always been a central
issue of interest in the context of dynamical systems. The
fact that extreme sensitivity to arbitrarily small perturbations
in initial conditions and system parameters may result in
complex dynamical behavior has led to extensive studies of
chaos in numerous classical [1,2] as well as quantum model
systems [3,4]. Needless to say, chaos, being ubiquitous, has
found applications in various fields starting from atmospheric
sciences [1,5–7], chemical sciences [8–11], biological sci-
ences [12–15], and technological electro-mechanical devices
[16–19].

Chaotic behavior in classical systems is diagnosed with
the aid of the Lyapunov exponent (LE), λ, which character-
izes the rate of separation of initially infinitesimally close
trajectories at large times. Depending on the sign of λ, the
dynamics is classified as chaotic (λ > 0) and nonchaotic or
regular (λ � 0). In addition to this, the phenomenon of chaos
is examined using concepts such as phase-space portraits,
Poincaré sections, bifurcation diagrams, and power spectrum
analysis, to name a few [2,3]. Most of the work along this line
has been restricted to systems involving single [20] or very
few degrees of freedom at best [21].
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In the case of extended systems involving many degrees
of freedom, there have been interesting studies concerning
not only growth of small localized initial separation but also
their spread in space. Examples include propagation of chaos
in reaction-diffusion systems [22,23], coupled-map lattices
[24,25], the Fermi-Pasta-Ulam (FPU) chain [26,27], high-
dimensional coupled symplectic maps [28–30], dilute gases of
identical hard balls [31], Brownian motion and microplasmas
[32], the complex Ginzburg-Landau system, the Gray-Scott
network [33], and coupled phase oscillators [34–36], where
both Lyapunov exponents and spatial propagation of perturba-
tion are discussed in the contexts of computing time delayed
mutual information and redundancy [22], defining both tem-
poral as well as spatial Lyapunov exponents [24], introducing
entropy potential [25], convective Lyapunov spectrum [26],
etc.

Recently, a novel promising method, the out-of-time-
ordered correlator (OTOC), has been put forward to study
spatiotemporal chaos in extended systems [37,38]. This quan-
tity, denoted as D(x, t ), measures the growth (in time) and
spread (in space) of an infinitesimal localized perturbation in
the initial conditions of two copies of the system. Usually the
OTOC is presented in the form of a heat map in space-time
which has light-cone-like structures [37]. Such structures are
described by a ballistic spread and growth of perturbation,
characterized by butterfly speed vb (essentially of the cone)
and the Lyapunov exponent λ.

Although this has generated a lot of interest, the use of
OTOC as a diagnostic in classical extended systems has been
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TABLE I. Characterization of the dynamical regimes of a driven dissipative DC. The corresponding figures are mentioned alongside.

Sustained chaos Nonchaotic regime Transient chaos

OTOC
[D(i, τ )]

Exponential growth and ballistic
spread

Exponential decay and ballistic
spread in Dth → 0 limit

Dynamical crossover: exponential growth
and ballistic spread−→ nongrowing and
nonspreading OTOC

Heat map
structure

Light cone with sharp boundaries
[Fig. 1(a)]

Light cone with nonsharp
boundaries [Fig. 1(b)]

Complex geometric shapes with initial
light-cone formation [Figs. 1(c) and 1(d)]

FTLE λi(τ ≈ 0) < 0 λi(τ ≈ 0) < 0 λi(τ ≈ 0) < 0
[λi(τ )] λi(τ → ∞) = λ > 0 λi(τ → ∞) = λ < 0 λi(τ ) crosses from >0 to <0 at finite τ and

λi(τ → ∞) = λ < 0

Number of nc = 1 (Fig. 3) nc = 0 (Fig. 8) nc = 2 (Fig. 11)
crossings with
λi(τ ) = 0 line (nc)

IS
[vb(τ, Dth )]

Saturates to constant vb > 0,
Independent of Dth (inset Fig. 7)

Well defined only in Dth → 0
limit (inset Fig. 7)

>0 for small τ

= 0 for large τ (inset Fig. 10)

Dth = 1 vb(τ large, 1) = vb > 0 vb(τ large, 1) = 0 vb(τ small, 1) > 0 & vb(τ large, 1) = 0
[Fig. 18, f̄ ∈ (0.25, 1.0)] [Fig. 18, f̄ ∈ (0, 0.25)] (inset Fig. 18)

VDLE [λ(v)]
v � vb λ[1 − ( v

vb
)2] (Fig. 4) λ(v) − λ ≈ 0 (Fig. 9) λ[1 − ( v

vb
)2], small τ (Fig. 13)

λ(v) − λ ≈ 0, large τ (Fig. 15)

v � vb λ[1 − ( v

vb
)

5
2 ] (Fig. 4) (λ(v) − λ) ∼ −(v − vb)

3
2 (Fig. 9) λ[1 − ( v

vb
)

5
2 ], small τ (Fig. 13)

(λ(v) − λ) ∼ −(v − vb)
3
2 , large τ (Fig. 15)

restricted to a very few cases, such as classical Heisenberg
spin chain at infinite temperature [37], thermalized fluid obey-
ing the Galerkin-truncated inviscid Burgers equation [39], and
classical interacting spins on a kagome lattice [40]. It is im-
portant to note that most of these works were on Hamiltonian
systems. Studies in systems lacking a Hamiltonian structure,
especially, in driven-dissipative systems, are essentially un-
explored. In this paper, we address spatiotemporal chaos in
an extended driven dissipative system using a Duffing chain
(DC) as a platform.

The idea of an OTOC originates from the fascinating and
well-developed notion of an out-of-time-ordered commuta-
tor in quantum systems widely used to study scrambling
of information and quantum chaos [41–46]. This measures
the generation (in space-time) of noncommutativity of oth-
erwise initially commuting operators in extended quantum
systems. There have been recent works where out-of-time-
ordered commutators play a prominent role. For example,
it has been used to understand the effect of dissipation in
quantum systems [47,48], to characterize thermal and many-
body localized phases [49–51], to understand localization to
delocalization transition in quasiperiodic systems (e.g., the
Aubry-André model) [52], to study scrambling of informa-
tion in both integrable and nonintegrable models such as the
Sachdev-Ye-Kitaev model [53,54], one-dimensional quantum
Ising spin chain [55], Floquet-Frederickson-Anderson model
[56], disordered XY spin chain [57], and exploring superdiffu-
sive broadening of fronts in long-range power-law interaction
systems [58].

Despite this considerable work on extended quantum sys-
tems, as mentioned earlier, very little has been investigated

in extended classical Hamiltonians, and essentially nothing is
explored in non-Hamiltonian systems. To address this lack
of understanding, in this paper, we study spatiotemporal
chaos in a driven dissipative chain of coupled Duffing chain
(DC) oscillators using OTOC. This is a rich nonlinear sys-
tem which exhibits a plethora of exciting complex dynamical
phenomena. In the context of investigating various intrigu-
ing phenomena like chaos, multivalued amplitude response,
synchronization, and chimera states, to name a few, systems
with single or a few Duffing oscillators have been exten-
sively and successfully used as a platform [20,21,59–74]. In
addition Duffing oscillators can be used in various practical
applications. For example, Duffing oscillator-based encryp-
tion devices have been proposed for secure communication
systems [75,76]. Duffing oscillators can be used in weak sig-
nal detection in various cases like fatigue damage in materials
[77,78] and down-hole acoustic telemetry in oilfield explo-
ration [79]. Such broad applications of Duffing oscillators and
progress in theory [65] as well as in experiments [76] makes
the DC a natural test bed for studying spatiotemporal chaos
in extended driven dissipative classical systems, an area yet
largely unexplored. Below we briefly summarize our main
observations and findings (see also Table I).

(i) We present the OTOC as a remarkable diagnostic for de-
marcating various regimes of dynamical behaviors of a chain
of coupled Duffing oscillators. The space-time heat map plots
of it show distinct patterns for the three dynamical regimes,
called the sustained chaos, transient chaos, and nonchaotic
regimes (see Fig. 1). Although the existence of these three
regimes was known from earlier works [80], a good diagnostic
was missing.
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FIG. 1. OTOC heat maps in different dynamical regimes: Spa-
tiotemporal spread of perturbation in a driven dissipative Duffing
chain (DC) exhibits different dynamical regimes. The OTOC [see
Eq. (5)] for a DC of length N = 1025 shows (a) ballistic spread
and exponential growth forming a light cone in the sustained
chaos regime, (b) short-time ballistic spread and exponential de-
cay creating an initial light cone that vanishes rapidly in the
nonchaotic regime, (c) initial growth and ballistic spread fol-
lowed by exponential decay and nonballistic behavior, and the
initial light cone deforms into a balloon shape in the transient
chaos regime, and (d) similar qualitative behavior as in (c), only
the initial light-cone deforms into a butterfly shape in the tran-
sient chaos regime. Initially (τ = 0) the middle oscillator (i =
0) is perturbed with ε = 10−6. Parameters used for panels (a),
(b), (c), and (d) are, respectively, { f̄ = 0.30, γ̄ = 0.15, κ̄ = 1.0},
{ f̄ = 0.09, γ̄ = 0.01, κ̄ = 2.0}, { f̄ = 0.24, γ̄ = 0.15, κ̄ = 1.0}, and
{ f̄ = 0.13, γ̄ = 0.15, κ̄ = 1.0}.

(ii) Given that the heat map plots can be different from
the conventional light-cone-type maps (see Fig. 1), it necessi-
tates generalizing the notion of concepts such as the butterfly
velocities and the Lyapunov exponents. More precisely, we
introduce the notion of instantaneous butterfly speed (IS)
and use the generalized notion of the finite-time Lyapunov
exponent (FTLE) [27]. These notions proved to be key for
understanding finite-time behavior and transitions between
different dynamical regimes.

(iii) We observe that in the sustained chaos regime, the
growth of the perturbation measured in a frame moving with
speed v is exponential with a Lyapunov exponent λ(v) de-
pendent on v. Such a velocity-dependent Lyapunov exponent,
known as a VDLE [38] or convective LE [26], has been stud-
ied recently [37,38], where it was observed that λ(v) depends
linearly on v for v ∼ vb. In our case also, we observe such
linear dependence. However, interestingly, the detailed form
of the VDLE for a DC has been observed to be different
from what has been reported earlier for chaotic Hamiltonian
systems [37,38,40].

(iv) In the transient chaos regime, the OTOC grows ini-
tially (as a conventional light cone), which is characterized
by FTLEs. After this initial dynamics, there is a simultaneous
decrease in the FTLE at a specific time in all oscillators that
have gained a positive FTLE by this time. This effect is man-
ifested in the corresponding OTOC heat map as emergence
of complex geometrical shapes. We also find that once there
is this decrease, the subsequent features can be quantitatively
explained via analytical results from a driven dissipative har-
monic chain (HC).

(v) The variation of the IS and FTLE with tunable parame-
ters exhibits several interesting features. With the continuous
increase of the driving amplitude, the DC transits from a
nonchaotic to sustained chaos regime. This transition, interest-
ingly, is preceded by the appearance of intermittent transient
chaos windows and sustained chaos points inside the non-
chaotic regime. Deep inside the sustained chaos regime, the
FTLE (that, in the large time limit, saturates to the con-
ventional Lyapunov exponent) increases linearly with driving
amplitude. In the case of tuning the dissipation, stating from
a chaotic regime, the FTLE decreases approximately linearly
with increasing dissipation followed by a highly intermittent
behavior with a mixture of chaotic and periodic windows. In
the context of coupling, our investigation reveals that a chain
of uncoupled Duffing oscillators in the nonchaotic regime can
be made to transit to the chaotic regime only by tuning the
coupling strength. Also, the IS exhibits a power-law increase
(vb ∼ κσ with σ = 0.71) with increasing coupling strength.
Notably, the value of σ for the DC is different from that
of σ = 1/2 in the case of a driven dissipative HC (shown
analytically in Appendix A). This indicates the important role
of nonlinearity in the speed of spatial spread of an initially
localized perturbation.

(vi) For the case of zero nonlinearity, i.e., for a driven
dissipative HC, we present rigorous analytical results for the
OTOC and VDLE (Appendix A). Results for the OTOC are
obtained in terms of the Airy function, and the effect of
openness (dissipation) is elaborated. The behavior of VDLEs
is extracted.

II. MODEL AND TOOLS (OTOC, IS, FTLE)

We consider a driven dissipative ring of N Duffing oscil-
lators, with nearest-neighbor harmonic coupling where every
oscillator is coherently driven by an external periodic force of
frequency � and strength f . The equation of motion for the
ith oscillator with position xi(t ) at time t is given by

ẍi = k0xi − αx3
i − γ ẋi + κ (xi+i + xi−1 − 2xi ) + f cos(�t ),

(1)

where α, γ , κ, k0 are nonlinearity, damping, harmonic cou-
pling constant, and spring constant, respectively. We need
α > 0 to ensure that the on-site potential is confining. Also
note that γ > 0 to make sure that the system does not heat up.
We restrict ourselves to k0 > 0 to make the on-site potential
double-well in nature. For this model, we aim to study the
possibility of chaotic, transient, and regular motions of this
spatially extended chain of Duffing oscillators in the parame-
ter space constituted by { f , γ , κ, α,�, k0} using the OTOC as
a tool.
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To start, it is important to note that using proper scaling
it is possible to reduce the number of independent scaling
parameters. We define the new variables

yi = √
α xi, τ =

√
k0 t, (2)

so that Eq. (1) gets transformed into

ÿi = yi − y3
i − γ̄ ẏi + κ̄ (yi+1 + yi−1 − 2yi ) + f̄ cos(�̄τ ), (3)

where

γ̄ = γ√
k0

, κ̄ = κ

k0
, f̄ = f

k0

√
α, �̄ = �√

k0
. (4)

In order to explore different dynamical behaviors of the ex-
tended DC we study the OTOC in this rich parameter space.

To measure the OTOC, we start with two identical copies
(I and II) of the same DC with the only difference being an
infinitesimal difference ε in the initial conditions at a chosen
oscillator (say, the middle one). We now let the two copies
evolve independently according to Eq. (3) and observe the
initial difference spread and growth in space-time, which can
be captured by the OTOC [D(i, τ )] defined as

D(i, τ ) =
∣∣yI

i (τ ) − yII
i (τ )

∣∣∣∣yI
middle(0) − yII

middle(0)
∣∣ =

∣∣yI
i (τ ) − yII

i (τ )
∣∣

|ε| , (5)

This quantity measures the ratio of the deviation between the
two copies for the ith oscillators at time τ to the deviation
ε for the middle oscillator at τ = 0. The OTOC can also be
measured for momentum degrees of freedom.

To diagnose chaos in quantum mechanical systems, a
widely used tool is the out-of-time-ordered commutator
[41–46], which is mathematically defined as 〈[Âx(τ ), B̂0(0)]

2〉
where 〈· · · 〉 is taken in a given quantum state. This quantity
measures the effect of an operator B̂0(0) on another operator
Âx(τ ) at some later time τ where the operators are localized
initially around 0 and x, respectively. Since the commuta-
tor [Âx(τ ), B̂0(0)]

2
contains terms like Âx(τ )B̂0(0)Âx(τ )B̂0(0)

which are not time ordered, it is called an out-of-time-ordered
commutator. For studying chaos in classical systems with
a similar approach, a natural quantity would be the corre-
sponding Poisson bracket, i.e., replacing 1

ih̄ [Âx(τ ), B̂0(0)] by
{Ax(τ ), B0(0)}. Considering the observables A and B to be
the position yi(τ ) of the ith oscillator and momenta p j (0) of
the initially perturbed jth (middle) oscillator, respectively, this
Poisson bracket provides {yi(τ ), p j (0)} = ∂yi (τ )

∂y j (0) ≈ δyi (τ )
δy j (0) . Our

OTOC defined in Eq. (5) is then expressed in terms of the

Poisson bracket as D(i, τ ) =
√

({yi(τ ), p j (0)})2 = | ∂yi (τ )
∂y j (0) | ≈

| yI
i (τ )−yII

i (τ )
yI

j (0)−yII
j (0) |.

Naturally, D(i, τ ) captures information of both the tempo-
ral growth (or decay) and spatial spread of the initial deviation.
To extract this information, we define IS vb(τ, Dth ) and FTLE
λi(τ ) from the OTOC D(i, t ) as

vb(τ, Dth ) =
∑N

i=1 �[D(i, τ ) − Dth]

τ
, (6)

λi(τ ) = ln D(i, τ )

τ
, (7)

where �(x) is a step function. The IS vb(τ, Dth ) in the above
equation measures the number of oscillators (per unit time)
that have gained deviations greater than or equal to εDth. On

the other hand, FTLE λi(τ ) describes how the deviation at a
particular oscillator grows or decays with time. However, it
should be emphasized that the FTLEs defined in Eq. (7) are
somewhat different from the Lyapunov exponents defined and
computed conventionally [81]. In the conventional approach,
the exponents are determined from the eigenvalues of the
Jacobian matrix obtained from the linearized approximations
of the dynamical equations of the system, which characterize
the exponential growths (or decays) of infinitesimal deviations
in the initial condition [81] along the directions of the eigen-
vectors, whereas in our case, the FTLE measures the growth
(or decay) of the initial perturbation in the original dynami-
cal variables δyi(τ ) = |yI

i (τ ) − yII
i (τ )| themselves. Since the

variables δyi can be written as a linear combination of the
eigenvectors of the Jacobian, it is evident that the conventional
Lyapunov exponents and the FTLEs are related. In fact, at
large times all the FTLEs would converge to the maximum
Lyapunov exponent computed in the conventional way.

As mentioned earlier, the extended DC exhibits three dif-
ferent types of dynamical behavior: sustained chaos, transient
chaos, and nonchaotic behavior. It is exciting to see how IS
and the FTLE can characterize and distinguish between all
these dynamical regimes. In the case of sustained chaos, one
would expect that, in the long τ limit, λi(τ ) will eventually
saturate to some positive constant λ independent of i. Based
on recent works on Hamiltonian systems [37,40], the IS is also
expected to approach a constant value (time independent), vb,
which is known as the butterfly speed. On the other hand, in
the nonchaotic (regular) regimes it is expected that λi(τ ) �
0 ∀τ, i and saturates to λ � 0 for large τ . However, the notion
of butterfly speed for the nonchaotic regime, strictly speaking,
ceases to exist. Nonetheless, one can define a spreading speed
in the Dth → 0 limit. The transient regime exhibits intricate
interplay between nonlinearity, dissipation, and drive. This
regime shows a crossover from chaotic dynamics to regular
dynamics. This crossover is characterized by a change in sign
of the FTLE from positive to negative.

To explore these features, in the next section, we numeri-
cally compute IS and the FTLE from the OTOC and analyze
in detail how they can describe the three different dynamical
regimes in the DC.

III. NUMERICAL RESULTS

In this section we numerically compute the OTOC defined
in Eq. (5) in the ε → 0 limit. In this limit, one can in fact write
an evolution equation for δyi(τ ) = yI

i (τ ) − yII
i (τ ), which to

leading order in ε is given by

d2δyi

dτ 2
= (

1 − 3y2
i

)
δyi − γ̄

dδyi

dτ
+ κ̄ (δyi+i + δyi−1 − 2δyi ),

(8)

where yi(τ ) present in the first term is obtained by solving
Eq. (3). This term makes this equation a linear ODE with
time-dependent coefficient, and this is the central cause of
possible spread and growth of the OTOC. To integrate Eqs. (3)
and (8) numerically, we use the fourth-order Runge-Kutta
(RK4) algorithm with time step τ = 0.001 and with initial
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FIG. 2. Light-cone boundaries and IS for different Dth in the
sustained chaos regime: The main plot shows the boundaries of the
OTOC light cone for different values of threshold (Dth) lie very close,
implying the ballistic spread is independent of Dth. In the inset plot,
the slopes [vb(τ, Dth )] of these boundaries computed from Eq. (6)
are indeed observed to be independent of the value of Dth, and they
saturate to a constant butterfly speed vb = 0.7. Parameters used are
{ f̄ = 0.30, γ̄ = 0.15, κ̄ = 1.0}.

conditions

yi(0) = y0, ẏi(0) = 0,
(9)

δyi(0) = ε δi,0, δẏi(0) = 0,

for i = −�(N − 1)/2�, . . . , ts − 1, 0, 1, . . . , �(N − 1)/2�
where y0 is a constant and δi, j is the usual Kronecker δ

function. Here �..� is the floor function. Note that the deviation
δyi(0) is nonzero only at the middle site, which can be thought
of as an initial perturbation. For all numerical simulations,
we chose ε = 10−6 and �̄ = 1. The space constituted by the
other three parameters { f̄ , γ̄ , κ̄} are explored extensively to
investigate the three different dynamical regimes.

A. Sustained chaos regime

In this case, we carefully choose the parameter values to
be { f̄ = 0.30, γ̄ = 0.15, κ̄ = 1.0} with y0 = 0.3 to observe
the sustained chaos regime in a DC of length N = 1025. In
Fig. 1(a) we present the heat map of D(i, τ ), which exhibits
a light-cone-like structure implying ballistic propagation of
perturbation along the chain. The speed of the propagation
can, in principle, be obtained from the slope of the bound-
ary between the dark and bright regions of the heat map.
Instead of using this method, we employ a more accurate
method of determining the boundary line. At a given τ we
find the farthest oscillator i from the middle in either direc-
tion such that D( j, τ ) < Dth for | j − (N + 1)/2| > |i − (N +
1)/2|. We plot such boundaries for different Dth in Fig. 2,
and we observe that the slopes of these boundary lines are
independent of Dth. An equivalent way of extracting this speed
is by computing the IS defined in Eq. (6), and this is plotted in
the inset of Fig. 2, where we see that it saturates to vb = 0.7.

FIG. 3. FTLE vs time in the sustained chaos regime: the FTLE
[computed from Eq. (7)] for different oscillators (i) saturates to the
same constant value, the conventional Lyapunov exponent λi(τ ) =
λ = 0.18 identifying the exponential growth of the OTOC. Parame-
ters used are { f̄ = 0.30, γ̄ = 0.15, κ̄ = 1.0}.

To measure the rate of growth of the perturbation, in Fig. 3
we plot FTLE λi(τ ) for different values of i. We observe
that in the large τ limit the FTLEs for all the oscillators
reach the conventional Lyapunov exponent λ, which, for the
parameter set { f̄ = 0.30, γ̄ = 0.15, κ̄ = 1.0}, has the value
λ = 0.18. This implies that the initial perturbation localized at
the middle point grows exponentially with time and spreads to
all the oscillators, making the whole DC chaotic. The fact that
the FTLEs for all the oscillators reach λ > 0 and stay there
ensures that the DC sustains its chaotic behavior indefinitely.

The facts that the OTOC grows exponentially and spreads
ballistically suggest that the OTOC has the following scaling
form:

lim
τ→∞

ln D(i, τ )

τ
= lim

τ→∞ λi(τ ) = λ(i/τ ) = λ(v), (10)

which we verify numerically in Fig. 4 via excellent data
collapse. Existence of such a scaling function implies that
the perturbation observed in a frame moving with a ve-
locity v = i/τ also grows or decays exponentially with a
velocity-dependent Lyapunov exponent (VDLE) λ(v). Con-
cepts similar to the VDLE have been introduced earlier in
the context of finite group velocity (Lieb-Robinson bound)
in quantum spin systems with finite range interactions [82].
These velocity-dependent exponents, also known as the con-
vective Lyapunov spectrum [26], have been reported in studies
of coupled map lattices [83,84], complex Ginzburg-Landau
equation [85], FPU chain [26], classical Heisenberg spin chain
[37], interacting spins on kagome lattice [40], etc.

Interestingly, a universal framework for describing expo-
nential growth or decay of OTOCs in classical, semiclassical,
and large-N systems in terms of the VDLE has recently
been discussed in Ref. [38], and possible functional forms
of λ(v) for v ∼ vb have been proposed. In particular, for
chaotic classical systems, it has been analyzed that λ(v) con-
tinuously approaches zero both from inside and outside the
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FIG. 4. VDLE near v ≈ vb in sustained chaos regime: the VDLE
[see Eq. (10)] exhibits a linear dependence λ(v) ∼ (v − vb) near
v ≈ vb. However, for v � vb and v � vb, λ(v) falls off with different
exponents, λ(v) = λ[1 − ( v

vb
)ν] with ν = 2 and ν = 5

2 , respectively.
To show the existence of these two different exponents more promi-
nently, in the inset we present a magnified version of the main plot in
0.5 � v � 0.85. Here vb = 0.69 and λ = 0.18. Parameters used are
{ f̄ = 0.30, γ̄ = 0.15, κ̄ = 1.0}.

light cones as λ(v) ∼ |v − vb|. Such linear behavior has been
verified for Hamiltonian systems [37], e.g., in a classical
Heisenberg chain [37] where it has been observed that λ(v) =
λ[1 − (v/vb)2]. All these results and discussions are mostly
restricted to Hamiltonian systems. Therefore one ponders as
to how the VDLE λ(v) would behave for driven dissipative
systems.

Motivated by the observations λ(v) = λ[1 − (v/vb)2] for
v ≈ vb in classical spin chains [37,40], one could ask if the
same relation also holds for other models. In particular, the
situation for a driven dissipative system is even more elusive.
Nonetheless, we use this form of λ(v) for the DC and obtain
the following exponents (see Fig. 4):

λ(v) =
{
λ[1 − (v/vb)2], for v � vb

λ[1 − (v/vb)5/2], for v � vb
. (11)

So, as seen in the context of Hamiltonian systems [37,38],
the function λ(v) in our case goes to zero linearly as v ap-
proaches vb. This is evident from the Taylor series expansion,
i.e., λ[1 − ( v

vb
)ν] ≈ λν(1 − v

vb
) where ν = 2 for v < vb and

ν = 5/2 for v > vb. These differences in the slopes are promi-
nent from both Figs. 5(a) and 5(b) (for τ = 900 and τ = 1200,
respectively), where we have plotted |log(1 − λ(v)

λ
)| as a func-

tion of |log( v
vb

)| near v = vb. The slopes for these plots yield
ν ≈ 2.5 for v > vb whereas ν ≈ 2 for v < vb. It is natural to
ask if the VDLE for the DC has some single functional form
that holds for both v < vb and v > vb. In this regard we find

λ(v) = λ[1 − β(v/vb)2 − δ(v/vb)4 − (1 − β − δ)(v/vb)6],

β = 1.2, δ = −0.5, (12)

FIG. 5. Different VDLE exponents for v < vb and v > vb seen
clearly in a log-log scale: The slopes are 2 and 5/2 for v < vb and
v > vb, respectively, as seen in the fitting in Fig. 4. Parameters used
are { f̄ = 0.30, γ̄ = 0.15, κ̄ = 1.0}.

which is clearly depicted in Fig. 6. Note that the coefficient
in the last term of Eq. (12) is fixed because of the constraint
λ(v = vb) = 0. One might ask if the different exponent values
observed in case of the DC in comparison to the Hamiltonian
system in Ref. [37] is arising due to the presence of drive
and dissipation. To answer this, in the inset of Fig. 6, we
present the behavior of λ(v) for f̄ = 0 and γ̄ = 0. We observe
that it still deviates from the behavior of VDLE in the case
of the Heisenberg spin chain in Ref. [37] and has the func-
tional form λ(v) = λ[1 − β(v/vb)2 − (1 − β )(v/vb)4] with
β = 0.613.

The facts that (i) the VDLE can behave differently for dif-
ferent Hamiltonian systems and (ii) the introduction of drive
and dissipation has further significant impact on the behavior

FIG. 6. VDLE vs v in sustained chaos regime fitted for a wider
region of v: For any value of v (not necessarily in the neighbor-
hood of vb), the VDLE for the DC follows the functional form
λ(v) = λ[1 − β(v/vb)2 − δ(v/vb)4 − (1 − β − δ)(v/vb)6] with β =
1.2 and δ = −0.5. In the inset, the corresponding Hamiltonian coun-
terpart with f̄ = 0 and γ̄ = 0 is plotted, and we observe that the
VDLE in this case has a different expression given by λ(v) =
λ[1 − β(v/vb)2 − (1 − β )(v/vb)4] with β = 0.613. Parameters used
are { f̄ = 0.30, γ̄ = 0.15, κ̄ = 1.0}.
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FIG. 7. Light-cone boundaries and IS for different Dth in non-
chaotic regime: The main plot shows the boundaries of the OTOC
here strongly depend on Dth, and the smaller the Dth value, the
larger is the light-cone boundary. In the inset, we observe that the
slopes (IS) of the corresponding boundaries, computed from Eq. (6),
have well-defined values only in the Dth → 0 limit. In particular
vb(τ ) = 0.93 for Dth = 10−6, whereas vb(τ ) ≈ 0 for Dth = 1. Param-
eters used are { f̄ = 0.09, γ̄ = 0.01, κ̄ = 2.0}.

of λ(v) are interesting observations and require further explo-
ration.

B. Nonchaotic regime

The DC possess a nonchaotic regime characterized by a
nongrowing OTOC. In Fig. 1(b) we give the OTOC heat map
for { f̄ = 0.09, γ̄ = 0.01, κ̄ = 2} in a DC of length N = 1025.
In this map we find there is a light-cone-like structure, but
importantly the boundary separating the regions inside and
outside the cone ceases to exist at larger times. Therefore in
this regime, strictly speaking the propagation speed defined
in Eq. (6) is defined only in the Dth → 0 limit. This is seen
in Fig. 7, where we plot the boundary measured with different
values of Dth, and we find that smaller the threshold, the larger
the length of the boundary (implying that further oscillators
feel a smaller amount of perturbation). Hence the slope of
the boundary gets a well-defined value for propagation speed
as Dth → 0. The same value is also obtained from direct
computation of the propagation speed from Eq. (6) for a very
small Dth as presented in the inset plot of Fig. 7. Note that
the velocity obtained from the slope and from Eq. (6) may be
different for finite Dth, but they match in the limit Dth → 0.

In Fig. 8 we plot λi(τ ) versus τ for different oscillators, and
we observe that they all saturate to a negative value, because
dissipation dominates in this regime. Mathematically, λi(τ →
∞) = λ < 0 ∀i.

Motivated by our findings regarding the VDLE in the sus-
tained chaos case, we, in this case, explore how λ(v) scales
with respect to τ and behaves as function of v = i/τ . To in-
vestigate this, we present the corresponding numerical results
in Fig. 9, where we plot λ(v) [as defined in Eq. (10)] as a

FIG. 8. FTLE vs time in nonchaotic regime: the FTLE [com-
puted from Eq. (7)] for different oscillators (i) saturates to the same
negative constant, the conventional Lyapunov exponent λi(τ ) = λ =
−0.01 identifying the exponential decay of the OTOC. Parameters
used are { f̄ = 0.09, γ̄ = 0.01, κ̄ = 2.0}.

function of v. There, along with excellent data collapse at a
different time, we observe that

λ(v) =
{
λ, for v < vb

λ − (v − vb)
3
2 , for v > vb

, (13)

where λ0 = λ.
At this point it is worth noting that same behavior

for the VDLE has been recently reported in Ref. [38]
for nonchaotic noninteracting Hamiltonian systems. In the
nonchaotic regime, the dynamics in our problem becomes
essentially a linear HC (noninteracting) because the particles

FIG. 9. VDLE in nonchaotic regime and comparison to analytical
results from harmonic approximation: λ(v) is always negative in the
nonchaotic case. It is almost constant (λ(v) = −0.01) inside the cone
(v � vb = 0.886) and falls as (λ(v) − λ) ∼ −(v − vb)3/2 outside the
cone (v � vb). Parameters used are { f̄ = 0.09, γ̄ = 0.01, κ̄ = 2.0}.
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execute small oscillations around the minima of the double-
well potential, i.e., y2

i ≈ 1. As a result the equation for the
perturbation δyi in Eq. (8) becomes

d2δyi

dτ 2
= −k0δyi − γ̄

dδyi

dτ
+ κ̄ (δyi−1 + δyi+1 − 2δyi ), (14)

with k0 = 2, where we have neglected the cubic term due to
its smallness. In what follows, we demonstrate analytically
that above equations of motion of a chain of coupled HC
oscillators exhibit the behavior in Eq. (13) even in presence
of dissipation for arbitrary k0 > 0. It is also to be noted that
although the original particle dynamics in Eq. (3) is subjected
to both drive and dissipation, the dynamics of the perturbation
becomes insensitive to the drive because y2

i ≈ 1 at all times.
Writing the general solutions for δyi in Eq. (14) exactly and

using them in Eq. (5), we obtain the following expression for
the OTOC in a HC (see Appendix A for details):

D(i, τ ) = e−γ̄ τ/2

N

N∑
j=1

[
cos

(
2π i j

N
−  jτ

)

+ γ̄

2 j
sin

(
2π i j

N
−  jτ

)]
, (15)

where  j =
√

4κ̄ sin2( π j
N ) + k0 − ( γ̄

2 )
2
. For a spatially ex-

tended large system, in the limit N → ∞, one can take the
continuum limit of Eq. (15) by letting π j

N = q so that

D(i = vτ, τ ) = e− γ̄ τ

2

π
×
∫ π

0
dq

{
cos

[
2τ

(
qv − 1

2
q

)]
− γ̄

2q
sin

[
2τ

(
qv − 1

2
q

)]}
,

where q = √
2κ̄

√
1 + η − cos(2q) with η = k0−(γ̄ /2)2

2κ̄
. A

saddle point approximation of the integrand yields (see again
Appendix A for details)

D(vτ, τ ) =

⎧⎪⎨⎪⎩
2e− γ̄ τ

2 g(q∗ )
(4vbτ )1/3 Ai(z), for v � vb

2e− γ̄ τ
2 g(q∗ )

(4vbτ )1/3 Ai(−z), for v � vb

with z = 2
1
3 |vb − v|τ 2

3

v
1
3
b

> 0, (16)

where Ai(z) is the Airy function. Here vb =√
κ̄

√
1 + η −

√
(1 + η)2 − 1 and g(q∗, τ ) =

cos[2τ (vq∗ − 1
2q∗ )] − γ̄

2q∗ sin[2τ (vq∗ − 1
2q∗ )] with

q∗ given by the solution of cos(2q∗) = (1 + η) −√
(1 + η)2 − 1.
In the limit τ → ∞, using the large z asymptotic of Airy

functions, we have

D(vτ, τ ) =

⎧⎪⎨⎪⎩
ĝ(q∗,τ )

2
√

τ
e
− γ̄

2 τ− 2
5
2

3√
vb

τ (v−vb)
3
2
, v > vb

e− γ̄ τ
2 ĝ(q∗,τ )√

τ
sin
[

π
4 + 2

5
2 τ

3
√

vb
(v − vb)

3
2

]
, v < vb

,

(17)

where ĝ(q∗, τ ) = g(q∗,τ )

2− 3
4
√

π (v−vb)
1
4 v

1
4

b

. Notably in Eq. (17), apart

from the explicit exponential dependence of the OTOC on
dissipation (as e−γ̄ τ/2), D(vτ, τ ) depends on γ through vb(γ̄ )
and q∗(γ̄ ) in a nontrivial way. We find that the greater the
dissipation (γ ), the greater is the butterfly velocity. This might
seem counterintuitive at first. Note that this measures how
far a perturbation (however small it may be) can reach rather
than the magnitude of the perturbation. In fact, the magnitude
of the perturbation reached is suppressed exponentially with
time. From Eq. (17), it is easy to see that the VDLE λ(v)
defined in Eq. (10) is given by Eq. (13).

It is quite intriguing that, although the DC is a non-
Hamiltonian nonlinear system, the VDLE for the DC, in the
nonchaotic regime, exhibits same exponents as reported for
noninteracting integrable Hamiltonian systems [38].

C. Transient chaos regime

In Secs. III A and III B we have observed that the DC can
exhibit sustained chaos or nonchaotic behavior depending on
the choices of parameter values { f̄ , γ̄ , κ̄}. The sustained chaos
scenario is described by the OTOC growing exponentially
and spreading ballistically. On the other hand, the nonchaotic
regime is characterized by the OTOC always decaying ex-
ponentially and spreading ballistically at short time. In the
sustained chaos regime, the FTLE starting from a negative
value grows and finally saturates to a positive constant value,
whereas in the nonchaotic regime the FTLE always remains
negative.

In this section we demonstrate that by choosing the param-
eters carefully, one can observe a dynamical crossover from
an exponentially growing and spreading OTOC (similar to
sustained chaos) regime to a nongrowing and nonspreading
OTOC (similar to nonchaotic) regime as time progresses.
This interesting temporal crossover stems from the crucial
presence of both drive and dissipation and is manifested by
unconventional heat maps of the OTOC as shown in Figs. 1(c)
and 1(d). The existence of such a transient regime is far from
obvious and has not been reported in generic Hamiltonian
systems. In the context of the DC (non-Hamiltonian), hints
about the existence of such regimes have been reported in
Ref. [80] based on the observations of trajectories of the
oscillators. Using diagnostics based on the OTOC and FTLE,
our study reveals that this transient regime can be well char-
acterized and contains in it a zoo of features as described
below.

By optimum choice of parameters one can ensure being in
the transient chaos regime. As a sample example, we choose
{ f̄ = 0.24, γ̄ = 0.15, κ̄ = 1.0} with y0 = 0.3 in the DC
of length N = 1025. The heat map corresponding to these
parameters in Fig. 1(c) shows that there is an initial time
window (0 � τ < τ ∗) in which the DC shares similarities
with that of a chaotic system, characterized by light-cone-like
structure with sharp boundaries with a certain slope. There is
a sudden behavioral change at τ = τ ∗ after which the slope
starts being time dependent, thereby creating a sharp corner
at τ = τ ∗. This heat map continues to spread, however, with
a time-dependent speed till some time τ̃ after which it stops
spreading further. This rich behavior naturally demands a
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FIG. 10. Light-cone boundaries and IS for different Dth in tran-
sient chaos regime: The main plot shows the boundaries of the OTOC
for different values of Dth. Initially up to τ ≈ 204, the ballistic spread
forms light cones, and the boundaries are almost independent of Dth.
This is followed by a sudden change (marked by the dotted line) in
the slopes of the boundaries marking the transit from a light cone
to balloon-shaped OTOC. The boundaries of these late-time balloon
shapes are significantly different for different Dth. The inset plots of
the IS (slope of the boundaries), computed from Eq. (6), show the ex-
istence of a constant speed (marked by the dotted line) up to τ ≈ 204
after which a change in slope occurs indicating nonballistic behavior
of the OTOC. Parameters used are { f̄ = 0.24, γ̄ = 0.15, κ̄ = 1.0}.

careful analysis of the boundary of the heat map. In Fig. 10 we
plot this boundary for different Dth values. Within the light-
cone-like structure (τ < τ ∗), boundaries seem to converge for
Dth → 0. However, for τ > τ ∗, the boundaries depend on Dth,
although their qualitative features remain same (see Fig. 10).
It is interesting to note that while τ̃ is dependent on Dth, τ ∗ is
not. The existence and meaning of τ̃ (Dth ) can be understood
best from the study of FTLEs which we provide in the next
paragraph. It is worth mentioning that these boundary features
can be equivalently demonstrated by plotting IS versus τ for
different Dth obtained from Eq. (6) as shown in the inset
of Fig 10. Note that the IS starts decreasing with time after
τ = τ ∗.

To investigate the reason behind this sudden change in the
slope as well as IS, we plot FTLEs for different i as a function
of τ in Fig. 11 for Dth = 1. We observe that for τ < τ ∗,
the FTLE for all the oscillators starts increasing with time.
Oscillators which are within the light cone achieve positive
values for the FTLE by this time. Remarkably, at τ = τ ∗, the
FTLE of all these oscillators simultaneously starts decreasing.
This is manifested by the sharp corner at τ = τ ∗ of the heat
map [see Fig. 1(c)]. Consequently, after this time the rate of
spreading of the heat map starts decreasing, and at τ = τ̃ (Dth )
it stops spreading as mentioned earlier. For a chosen Dth there
exists an oscillator ĩ(Dth ) whose FTLE barely touches zero
from below at time τ̃ (Dth ) and remains negative after τ̃ (Dth )

FIG. 11. FTLE vs time in transient chaos regime: Initially the
FTLE λi(τ ) < 0 ∀i. With time, the FTLEs for some oscillators (e.g.,
i = 0, 50, 100) become positive (indicating chaos), whereas λi(τ )
for i = 225, 250, etc., always remain negative (strictly nonchaotic).
But the increase in λi(τ ) for many chaotic oscillators (from i = 0
to i = 100 in this figure) stops near τ ≈ 204 and suffers a sudden
simultaneous decrease (marked by the dotted line); this is the same
point at which a change of slope in the light cone and IS is observed
in Fig. 10. Finally, λi(τ ) for all the oscillators (both transiently
chaotic and nonchaotic) saturate to the negative constant λ = −0.06
indicating long-time nonchaotic behavior. Inset: we show the FTLE
for the last oscillator (ĩ) that obtains a positive value. Oscillators
further than that (i.e., i > ĩ) never obtain a positive FTLE. Parameters
used are { f̄ = 0.24, γ̄ = 0.15, κ̄ = 1.0}.

as shown in the inset of Fig. 11 for Dth = 1 where |ĩ(1)| =
200. The oscillators with index |i| > |ĩ(Dth )| never achieve a
positive FTLE, suggesting that these oscillators never gain the
initial perturbation given at the middle (0th) oscillator.

Once we cross the timescale τ̃ the system starts behaving
like a nonchaotic regime, which can be effectively described
by a driven dissipative HC. To demonstrate this we compute
the OTOC on a driven dissipative HC starting with initial
condition {yi(0), ẏi(0)} taken from the position and velocity
configurations of the original nonlinear DC at a time τ > τ̃ .
In Fig. 12 we observe good agreement between the OTOC
of the original system with that obtained from the effective
driven dissipative harmonic system.

More precisely, we compute the OTOC using follow-
ing two dynamics: (1) original evolution given in Eq. (3)
corresponding to on-site double-well potential V (xi ) =
(− x2

i
2 + x4

i
4 ) ∀i and (2) evolution obtained by performing har-

monic approximation of the double-well potential for each
oscillator around one of the wells in which the oscillator is
at some large time τ , in the original dynamics. If {yi(τ )} are
the positions of the oscillators in the dynamics (i) at time τ ,
then in the dynamics (ii) we approximate the double potential
by Ṽ (yi ) ≈ − 1

2 + (yi − δi )2 where δi = 1 if yi(τ ) falls in the
well on the positive side and −1 otherwise. The heat maps
corresponding to these two dynamics are shown in Figs. 12(a)
and 12(b) from τ = 600 to τ = 800. We observe that these
two plots resemble each other quite closely, implying that
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FIG. 12. Comparison of OTOC heat maps in the transient chaos
regime obtained from (a) the original dynamics in Eq. (3) with on-site
double-well potential and (b) the dynamics in Eq. (14) with harmonic
approximation of the double-well potential. Parameters used are
{ f̄ = 0.24, γ̄ = 0.15, κ̄ = 1.0}.

after a large time the oscillators enter from the transiently
chaotic to nonchaotic region where the DC effectively behaves
like a driven dissipative HC.

Until now we have observed that in this case, the DC
dynamics crosses over from a chaotic regime to a nonchaotic
regime through a transient regime as demonstrated in the
evolution of the FTLE and heat map plot.

We now investigate how this crossover gets manifested
through the VDLE. Following the same procedure as done in
the previous two sections, we compute the VDLE in the two
regimes τ < τ ∗ and τ > τ̃ .

In Fig. 13 we have plotted λ(v) versus v for τ � τ ∗. For
reasons already discussed in Sec. III A for the sustained chaos
case, we first try to fit the function λ[1 − ( v

vb
)ν] to the VDLE

curve in Fig. 13. It is observed that the data around v � vb fit

FIG. 13. VDLE vs v for τ < τ ∗ in the transient chaos regime: At
comparatively short time (τ ≈ 204) up to which the light cone exists
(marked by the dotted lines in Fig. 10 and Fig. 11), the DC behaves
chaotically and the VDLE falls as λ(v) = λ(1 − ( v

vb
)ν ) with ν = 2

and ν = 5
2 for v � vb and v � vb, respectively. This is similar to the

λ(v) behavior in the sustained chaos regime as observed in Fig. 4.
Parameters used are { f̄ = 0.24, γ̄ = 0.15, κ̄ = 1.0}.

FIG. 14. VDLE vs v for τ < τ ∗ in the transient chaos regime fitted
over a wider range: At comparatively short time (τ ≈ 204) up to
which the light cone exists (marked by the dotted lines in Fig. 10 and
Fig. 11), the DC behaves chaotically and the VDLE falls in the same
way λ(v) = λ[1 − β(v/vb)2 − δ(v/vb)4 − (1 − β − δ)(v/vb)6] with
β = 1.10 and δ = −0.33 for both inside and outside the light
cone near v ≈ vb. This is similar to the λ(v) behavior in the sus-
tained chaos regime as observed in Fig. 6. Parameters used are
{ f̄ = 0.24, γ̄ = 0.15, κ̄ = 1.0}.

well with the following exponents as follows:

λ(v) =
{
λ[1 − (v/vb)2], for v � vb

λ[1 − (v/vb)5/2], for v � vb
. (18)

A subsequent search for a single functional form of the VDLE
that holds for both v < vb and v > vb reveals that

λ(v) = λ[1 − β(v/vb)2 − δ(v/vb)4 − (1 − β − δ)(v/vb)6],

β = 1.10, δ = −0.33, (19)

near v ≈ vb, which is presented in Fig. 14. On the other hand,
for τ > τ̃ , we observe in Fig. 15 that the data around v � vb

fit well with the following form:

λ(v) =
{
λ, for v � vb

λ − (v − vb)
3
2 , for v � vb

. (20)

This is expected since the system has made a transit from
the chaotic to nonchaotic regime so that the VDLE here in
Eq. (20) behaves in the same way as obtained in Eq. (13) for
the nonchaotic scenario.

IV. VARIATION OF FTLE AND IS WITH f̄ , γ̄, κ̄

So far, we have chosen parameters such that we are in a
particular regime of interest such as chaotic, nonchaotic, or
transient regimes. In this section we study what happens if
we tune parameters so that we go through all the regimes.
In particular we vary f̄ or γ̄ or κ̄ continuously and observe
how the FTLE [λi(τ )] or IS [vb(τ, Dth )] changes as we cross
from one regime to another. Such studies are important in
diverse areas such as optimal signal transmissions, secure
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FIG. 15. VDLE vs v for τ � τ̃ in the transient chaos regime: At
large time (τ � 800), the VDLE is negative meaning the whole DC
becomes nonchaotic. Here the VDLEs satisfy the relation (λ(v) −
λ) ∼ −(v − vb)3/2 for v � vb. This is consistent with the λ(v) be-
havior in the nonchaotic regime as observed in Fig. 9. Parameters
used are { f̄ = 0.24, γ̄ = 0.15, κ̄ = 1.0}.

communications, and synchronization in electronic circuits
[86–90], where a common goal is to gain control over chaotic
systems. In this connection, we should mention that a novel
chaotic secure communication system has been proposed in
Ref. [75] where the encryption system consists of a Duffing
oscillator. However, it is also argued [75] that use of only one
Duffing oscillator in the encryption stage leads to low level of
security. So one might think of considering the coupled DC
as a plausible candidate for increasing the security level of the
encrypted messages in those communication systems.

For FTLE measurement we choose to study λ0(τ ), and for
vb(τ, Dth ) we fix Dth = 1. Note again that vb(τ, 1) in different
regimes behaves as

vb(τ, 1)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

= 0, for large τ ⇒ Nonchaotic

= vb > 0, for large τ ⇒ Sustained chaos

> 0 for small τ
= 0 for large τ

}
⇒ Transient chaos.

(21)

On the other hand, for different choices of parameters we
look at the saturation value λ = λ0(τ )|τ→∞ to check if the
DC belongs to sustained chaos (λ > 0) or nonchaotic (λ < 0)
regimes. In Figs. 16(a) and 16(b), we present heat map plots
of λ in the γ̄ − f̄ plane at τ = 300 and τ = 1200, respec-
tively, for κ̄ = 1. In both plots, the red (light gray) regions
correspond to sustained chaos regime, and the blue (dark)
regions correspond to the nonchaotic regime. When com-
paring between Figs. 16(a) and 16(b), a careful observation
reveals the disappearance of red (light gray) regions (and
appearance of blue (dark) regions accordingly) when going
from Fig. 16(a)(τ = 300) to Fig. 16(b) (τ = 1200), indicating
the existence of transient chaos regimes. To identify these

FIG. 16. Identifying different dynamical regimes of the DC in
the f̄ − γ̄ parameter plane: The heat maps in (a) and (b) show the
dynamical behavior of the DC in γ̄ − f̄ plane as we vary f̄ ∈ [0, 1.5]
and γ̄ ∈ [0, 1] at time τ = 300 (left panel) and τ = 1200 (right
panel), respectively. The parameter regime with large drive and com-
paratively small dissipation (e.g., f̄ ∈ [0.5, 1.5]) and γ̄ ∈ [0, 0.3]) is
spanned by sustained chaos [red (light gray) region], whereas the
parameter regime corresponding to low drive and large dissipation
(e.g., f̄ ∈ [0, 0.2] and γ̄ ∈ [0.3, 1]) results in a fully nonchaotic
regime [blue (dark) region]. These fully chaotic and fully nonchaotic
regions are separated by regions of highly intermittent dynamical
behaviors; for example, in ( f̄ , γ̄ ) ∈ [0.5, 1], we observe a mixture
of puddles of chaotic and nonchaotic windows [irregularly occurring
red (light gray) and blue (dark) regions[. The DC dynamics along
the dashed lines γ̄ = 0.15 and f̄ = 0.95 is discussed in detail. To
identify the transient chaos regions, in panels (c) and (d), we plot
zoomed-in portions of (a) and (b), respectively. As we shift from
the left panel (τ = 300) to the right panel (τ = 1200), we observe
the disappearance of the previously existing transient chaos regions.
Some of these transient chaos regions are enclosed by yellow rings,
which appear as chaotic [red (light gray)] at τ = 300 but become
nonchaotic [blue (dark)] at τ = 1200. One such particular parameter
set ( f̄ = 0.21, γ̄ = 0.15) corresponding to transient chaos is pointed
out in both panels and will be discussed more elaborately in the next
section. Here the coupling constant is fixed at κ̄ = 1.0.

transient chaos regions more appropriately, we zoom in a
particular parameter region from Figs. 16(a) and 16(b) and
plot them in Figs. 16(c) and 16(d), respectively. There we
observe that the regions marked by yellow rings are red (light
gray) at an earlier time (τ = 300, left panel), whereas they
become blue (dark) at a later time (τ = 1200, right panel),
implying that these parameter regions correspond to transient
chaos regimes.

In the sections below we discuss, in detail, our numerical
results for the variation of λ0(τ ) and vb(τ, 1) with respect to
one parameter (while keeping the other two fixed) for different
times τ .
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FIG. 17. FTLE vs f̄ : The driving amplitude value f̄ ∗ = 0.25
separates the sustained chaos (SC) regime ( f̄ > 0.25) from the non-
chaotic (NC) regime (0 < f̄ < 0.25). In f̄ > 0.25 (SC), the FTLE
curves at large times saturate to constant λ > 0, whereas the curves
in 0 < f̄ < 0.25 (NC) saturate to λ < 0. Particularly, deep inside the
SC regime, for 0.35 < f̄ < 1, λ0(τ ) is a monotonically increasing
function of f̄ . Inside the NC regime, we note that there exists an
intermittent chaotic window at f̄ = 0.12 and a few transient chaos
points, e.g., at f̄ = 0.21 and f̄ = 0.24 [(heat map in Fig. 1(c)] char-
acterized by the crossing of λ0(τ ) from positive to negative values
as time progresses. The transient behavior at f̄ = 0.21 is zoomed in
the inset (a) where we observe that λ0(τ ) transits from a positive
value to a negative value as time increases. This transient behavior is
also seen from the heat map presented in inset (b). In all plots, the
measurements are performed after every  f̄ = 0.01 on the x axis.
Parameters used are {γ̄ = 0.15, κ̄ = 1.0}.

A. Variation with respect to f̄

In Fig. 17 and Fig. 18 we plot the variation of λ0(τ ) and
vb(τ, 1) with respect to f̄ , respectively, for γ̄ = 0.15, κ̄ =
1.0, and different values of τ . In both plots we observe that
with f̄ , increasing from 0 to 1, the system crosses over from
nonchaotic to sustained chaos regime through an intermediate
transient regime [ f̄ ∼ (0.21–0.24)]. However, deep inside the
nonchaotic regime we observe some intermittent window of
sustained chaos ( f̄ = 0.12).

Although both the FTLE and IS are time-dependent entities
in general, the convergence of the curves at large times clearly
indicates the parameter regions giving rise to a sustained
chaos regime or nonchaotic regime as can be observed in
Fig. 17 and Fig. 18. In particular we observe in Fig. 17 that
f̄ ∗ = 0.25 separates the sustained chaos ( f̄ > 0.25) regime
with λ0(τ → ∞) = λ > 0 and the nonchaotic regine (0 <

f̄ < 0.25) with λ0(τ → ∞) = λ < 0. The same sustained
chaos and nonchaotic regimes can be alternatively identified
from Fig. 18 with vb(τ, 1) = vb > 0 and vb(τ, 1) = vb = 0,
respectively.

As mentioned earlier, inside the nonchaotic region 0 <

f̄ < f̄ ∗, we interestingly observe intermittent points of sus-
tained chaos (e.g., at f̄ = 0.12) and transient chaos (e.g., at
f̄ = 0.21 and f̄ = 0.24). The appearance of transient chaos
at f̄ = 0.24 has already been discussed in Sec. III C. Here

FIG. 18. IS vs f̄ : The IS characterizes the nonchaotic (NC)
regime (0 < f̄ < 0.25) with vb(τ ) = 0, whereas the IS curves at
different times saturate to constant vb(τ ) = vb > 0 in sustained chaos
(SC) regime ( f̄ > 0.25). Inside the SC regime, for 0.4 < f̄ < 1.0, IS
is a monotonically increasing but much slowly varying function of f̄
in comparison to FTLE. Inside the NC regime (0 < f̄ < 0.25), the
transient chaos points f̄ = 0.21 and f̄ = 0.24 are characterized by a
decreasing vb(τ ) to zero as time progresses. This decrease is shown
for f̄ = 0.21 in the inset. The intermittent chaotic window appears at
f̄ = 0.12, and it has also been observed in Fig. 17. At this point, we
also observe that vb(τ ) = vb > 0. In all plots, the measurements are
performed after every  f̄ = 0.01 on the x axis. Parameters used are
{γ̄ = 0.15, κ̄ = 1.0}.

we focus on the transient chaos appearing at f̄ = 0.21 and
demonstrate how one can identify this feature from the λ(τ )
versus f̄ and vb(τ ) versus f̄ plots for different τ . In Fig. 17(a)
we zoom the behavior of λ0(τ ) near f̄ = 0.21 where we
note that at smaller τ, the FTLE λ0(τ ) > 0, suggesting the
dynamics could be chaotic. But with increasing τ , we observe
that the value of the FTLE at f̄ = 0.21 decreases, and finally
at large τ it saturates to a value λ < 0. This indicates that
the dynamics for f̄ = 0.21 is actually transient, which crosses
over from sustained to nonchaotic regime as time progresses.
For reference, a heat map plot of the OTOC at f̄ = 0.21 is
also shown in Fig. 17(b). Alternatively, the same feature at
this value of f̄ can be observed from the vb(τ, 1) versus f̄
plots for different values of τ in Fig. 18, where the crossover
is demonstrated (see the inset of Fig. 18) by the decrease of IS
to zero with increasing τ as shown in Eq. (21).

Deep inside the SC regime, for f̄ ∈ [0.4, 1], we observe
that FTLE grows linearly with f̄ for large f̄ . In connection to
this observation, it is worth mentioning a recent conjecture
λ ∝ √

T made for a classical chaotic Hamiltonian systems
where T is the temperature [39]. Our observation λ ∝ f̄ in
Fig. 17 is similar in spirit with this conjecture as the energy
scale of each oscillator in the SC regime is ∼ f̄ 2, which can be
considered as effective temperature in our driven dissipative
system. On the other hand, as observed in Fig. 18, vb(τ, 1)
almost remain constant as we vary f̄ inside the SC regime.
This indicates that the driving amplitude ( f̄ ) has more impact
on the FTLE than on IS.
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FIG. 19. FTLE vs γ̄ : The dissipation value γ̄ ∗ = 0.4 separates
the sustained chaos (SC) regime (0 < γ̄ < 0.4) from the nonchaotic
(NC) regime (γ̄ > 0.4). In 0.05 < γ̄ < 0.55, the FTLE is a mono-
tonically decreasing function of γ̄ . The FTLE curves at different τ

saturate to λ0(τ ) = λ > 0 in the SC regime and to λ0(τ ) = λ < 0
in the NC regime. The parameter regime 0.55 < γ̄ < 0.85 (inside
the NC regime) exhibits a highly intermittent behavior with several
chaotic windows. To understand the importance of nonlinearity, in
the inset we compare the dependence of the FTLE saturation value
on γ̄ (as shown in the main plot) with that of a driven dissipative HC.
For the latter we observe that the FTLE saturates to −γ̄ /2 for γ̄ > 0.
The measurements are taken with the resolution γ̄ = 0.01 along
the x axis. Parameters used are { f̄ = 0.95, κ̄ = 1.0}.

B. Variation with respect to γ̄

In this section we study the variation of λ0(τ ) and vb(τ, 1)
with respect to γ̄ for f̄ = 0.95 and κ̄ = 1.0 at different values
of τ . In Fig. 19 and Fig. 20 we plot the variation of λ0(τ ) and
vb(τ, 1), respectively, over the range γ̄ ∈ [0, 1]. As noticed
earlier, the curves at large τ converge in both figures. We

FIG. 20. IS vs γ̄ : In the SC regime (0 < γ̄ < 0.4), vb(τ ) curves
for different τ saturate to vb(τ ) = vb > 0 and behave in a mono-
tonically decreasing way as γ̄ is increased. Inside the NC regime
(0.4 < γ̄ < 1), the intermittent chaotic windows have vb(τ ) = vb >

0 surrounded by all NC points with vb(τ ) = vb = 0. Parameters used
are { f̄ = 0.95, κ̄ = 1.0}.

FIG. 21. FTLE vs κ̄: For κ = 0, λ0(τ ) = λ < 0 implies the
uncoupled DC is nonchaotic. As the coupling is turned on and in-
creased, the DC becomes chaotic at κ̄∗ = 0.17. In the nonchaotic
(NC; 0 < κ̄ < 0.17) and sustained chaos (SC; κ̄ > 0.17) regimes
the FTLE curves at different τ saturate to λ0(τ → ∞) = λ < 0
and λ0(τ → ∞) = λ > 0, respectively. It is also observed that deep
inside the SC and NC regimes, λ0(τ → ∞) is a very slowly varying
function of κ̄ . In the inset (γ̄ = 0.15, τ = 1500), we observe that
with increasing driving amplitude ( f̄ ), the minimum coupling (κ̄∗)
required to make the DC chaotic decreases. Parameters used are
{ f̄ = 0.95, γ̄ = 0.15} for the main figure.

see that the value γ̄ ∗ = 0.4 marks the transition from the
SC regime [γ̄ ∈ (0, 0.4)] to the NC regime [γ̄ ∈ (0.4, 1.0)].
It seems that the FTLE in Fig. 19 decreases approximately
linearly with increasing γ̄ in the regime 0.05 < γ̄ < 0.55.
This sustained chaos regime is identified by a monotonic but
nonlinear decrease of vb(τ, 1) with increasing γ̄ in Fig. 20. It
is interesting to observe that this monotonic decrease in the
FTLE and IS is followed by a highly intermittent behavior as
we further increase the dissipation [γ̄ ∈ (0.55, 1)]. In particu-
lar, we observe a mixture of chaotic and nonchaotic windows
in this parameter regime from both Fig. 19 and Fig. 20.

To understand the above mentioned approximately linear
decrease of the FTLE for 0.05 < γ̄ < 0.55, we look at how
FTLE λ0(τ ) varies with increasing γ̄ for a driven dissipative
HC. For this case it is possible to compute the FTLE analyti-
cally (see Appendix A), and we find λ0(τ ) decays linearly as
λ0(τ ) = − γ̄

2 . In the inset of Fig. 19, a comparison between
the FTLE of the HC and of the DC is provided. We observe
that the FTLE in the anharmonic case decays with γ̄ , although
the dynamics at small γ̄ is chaotic in contrast to the harmonic
case for which the dynamics is always nonchaotic as expected.
However, upon increasing γ̄ further the FTLE goes beyond
zero and becomes negative till γ̄ = 0.56 after which the be-
havior with respect to γ̄ becomes irregular with chaotic and
nonchaotic regimes appearing apparently abruptly.

C. Variation with respect to κ̄

Here we would like to discuss the effect of the coupling (κ̄)
on λ0(τ ) and vb(τ, 1) at different τ , while the other parameters
are fixed to f̄ = 0.95, γ̄ = 0.15. From Fig. 21 and Fig. 22, we
note that when κ̄ = 0, i.e., for uncoupled Duffing oscillators,
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FIG. 22. IS vs κ̄: In the sustained chaos (SC) (0.17 < κ̄ < 1)
regime, the IS curves at different τ converge to vb(τ, 1) = vb > 0,
whereas we see vb(τ, 1) = vb = 0 in the nonchaotic (NC) (0 < κ̄ <

0.17) regime. Inside the SC regime, for comparatively large κ (κ >

0.4), the IS varies with κ̄ as vb ∼ κσ with σ = 0.71. That σ = 0.71
is shown in the inset by plotting the main figure in log-log scale.
Parameters used are { f̄ = 0.95, γ̄ = 0.15}.

the system is nonchaotic with λ0(τ ) = λ < 0 and vb(τ, 1) =
0, respectively.

In Fig. 21 it is very interesting to observe, as we turn on
the coupling κ̄ , that near κ̄∗ = 0.17, the DC transits from
the nonchaotic [λ0(τ ) = λ < 0] to the sustained chaos regime
[λ0(τ ) = λ > 0]. Equivalently, this feature manifests itself as
a transition from vb(τ, 1) = vb < 0 to vb(τ, 1) = vb > 0 in
Fig. 22. So this behavior of the DC indicates that coupling
alone can initiate chaos in spatially extended systems. To
understand the difference between the dynamics of the uncou-
pled and coupled Duffing oscillators in the sustained chaos,
transient chaos, and nonchaotic regimes explicitly, a brief
discussion comparing the corresponding dynamical behaviors
using the FTLE is presented in Appendix B.

A natural question one might ask is, How does the min-
imum coupling strength κ̄∗, required to make the system
chaotic, change as we vary the driving amplitude f̄ ? This is
an important question given the possibility of tuneability of
various parameters such as coupling and driving. To answer
this, we present the behavior of λ0(τ ) versus κ̄ for different
values of f̄ at large time in the inset of Fig. 21. We observe that
as we increase the driving amplitude f̄ , κ̄∗ decreases, which
implies at higher f̄ comparatively lower coupling is sufficient
to turn on the chaos in the DC. However, for κ̄ ∈ (0.35, 1), i.e.,
deep inside the chaotic regime, and κ̄ ∈ (0, 0.15), i.e., deep
inside the nonchaotic regime, we observe from Fig. 21 that
the FTLE is almost independent of κ̄ as manifested by plateau
regions on the right and left of the κ̄∗.

On the other hand, in the sustained chaos regime corre-
sponding to the range 0.17 < κ̄ < 1.0, from Fig. 22 we see
that vb(τ, 1) increases significantly with κ̄ as a power law. In
this regard, one may note that even in the absence of nonlin-
earity (a driven dissipative HC), vb behaves as a power law
vb ∼ √

κ (see Appendix A). In the presence of nonlinearity,
as shown in the inset of Fig. 22, it is interesting to observe

that deep inside the sustained chaos regime, corresponding to
κ̄ ∈ (0.4, 1), at large time, the IS follows the functional form
vb ∼ κσ with σ = 0.71. The fact that σ is different from 0.5
is a fingerprint of nonlinearity, which explicitly includes the
effect of drive strength in contrast to the HC case.

V. CONCLUSIONS AND OUTLOOK

In this paper, we have studied the dynamics of a driven
dissipative chain of coupled Duffing oscillators. Interest-
ingly, depending on the choice of the system parameters
(namely, the driving amplitude, driving frequency, dissipation,
nonlinearity, and coupling strength), the DC is observed to
exhibit rich dynamical behavior with three different dynami-
cal regimes: (1) sustained chaos, (2) nonchaotic regime, and
(3) transient chaos. Although the existence of these dynamical
regimes was known [80], powerful diagnostics to investigate
these rich regimes have been missing.

We have thoroughly investigated these dynamical regimes
by introducing the out-of-time-ordered correlator (OTOC) as
a promising tool which serves as a measure of both the spatial
spread and temporal growth (or decay) of an initially localized
infinitesimal perturbation. We have observed that spatiotem-
poral heat maps of the OTOC (Fig. 1) clearly demonstrate
the existence of the different dynamical regimes. While the
OTOC grows exponentially in the sustained chaos regime,
it decays in the nonchaotic regime. In the transient regime
we have found that the OTOC at small times looks like the
sustained chaos pattern, but at large time it crosses over to the
nonchaotic regime, where it ceases both to grow exponentially
and spread ballistically.

In order to quantify separately the spatial spread and and
temporal growth (or decay) of the OTOC, we have looked
at the instantaneous speed [IS, Eq. (6)] and the finite-time
Lyapunov exponent [FTLE, Eq. (7)], defined directly from the
OTOC. Equivalently, to characterize the temporal growth (or
decay) of perturbation in a frame moving with a velocity (v)
with respect to the initially perturbed oscillator, we have used
the velocity-dependent Lyapunov exponent [VDLE, λ(v)] as
a spatiotemporal measure of the dynamics, defined directly
from the OTOC in Eq. (10). Through extensive numerical sim-
ulation and theoretical arguments, we show that these quanti-
ties characterize the above mentioned regimes very well.

We have shown that for all three regimes the FTLE starts
from a value <0 initially and finally saturates to a nonzero
value. For sustained chaos we find that the FTLE saturates to
a λ > 0, thus crossing the λ = 0 value only once, whereas for
the nonchaotic case it never becomes positive and saturates,
at large time, to a negative value. In the case of the transient
chaos regime, the FTLE for some oscillators, starting from a
negative value, increases to a positive value, and at a certain
time, the FTLEs of all these oscillators start decreasing si-
multaneously and finally, at large time, saturate to a negative
value. Thus in this regime the FTLE crosses the λ = 0 line
twice. We also have shown that IS also provides a good diag-
nostic for the detection of the three regimes. In particular, we
have found that the VDLE in the three regimes behaves dis-
tinctly in the sustained regime and in the nonchaotic regime,
whereas in the transient regime, as for the other two diagnos-
tics, it shows behaviors similar to sustained chaos at small
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times and behaviors similar to nonchaotic regimes at late
times. All these features are summarized in Table I.

We have also studied the behavior of the FTLE and IS
when the driving amplitude ( f̄ ), dissipation (γ̄ ), and cou-
pling strength (κ̄) are changed separately. Such studies are
particularly important in the context of gaining control and
tuneability over chaotic systems. In all three cases, we find
that typically the sustained chaos regime and the nonchaotic
regimes are separated by a transient chaos regime with inter-
mittent sustained chaos points appearing inside the nonchaotic
regime. When f̄ is increased from a small value the DC
undergoes a transition from the nonchaotic to sustained chaos
regime (see Fig. 17 and Fig. 18). Deep inside the sustained
chaos regime, interestingly, the saturated FTLE increases lin-
early with f̄ (Fig. 17). Similar observations are made from the
variation of IS with changing f̄ as well, the only difference
being that the IS does not change much with the increasing
drive deep inside the chaotic region. On the other hand, we
have observed a monotonic and linear decrease in the FTLE
(Fig. 19) and a nonlinear decrease in IS (Fig. 20) with increas-
ing dissipation in the sustained chaos region. This is followed
by a highly intermittent mixture of chaotic and periodic win-
dows as one further increases the dissipation. In the case
of variation with respect to coupling strength (κ), the most
important observation (see Fig. 21) that we made is as follows:
by turning the harmonic coupling only, it is possible to make
the dynamics of the DC transit from a nonchaotic to chaotic
regime, and this happens at a critical strength κ∗, which de-
creases with increasing driving amplitude. We observe that IS
varies with κ as vb ∼ κσ (see Fig. 22). Interestingly, σ for
the DC is found to be different from 1

2 obtained for a driven
dissipative HC.

Our work can be explored further in several directions.
Since most of our findings rely on extensive numerical simula-
tion, it would be very interesting to explore possible analytical
means of describing the numerical results obtained in this
work. In particular we feel it would be possible to develop
a perturbation theory for capturing the nonchaotic to chaotic
crossover. Another interesting direction to explore is the sen-
sitivity to initial conditions [73]. In the present paper, we have
dealt with a fixed initial condition. One could investigate the
sensitivity of the dynamical properties to different sets of ini-
tial conditions. A crucial direction is to investigate the effect
of adding a stochastic noise [20] on the dynamical behavior
of the driven-dissipative DC. To study the generality of the
results obtained here, one can consider different systems like
a self-sustained chain of oscillators, e.g., coupled Van der Pol
oscillators or coupled Van der Pol–Duffing oscillators [71],
to analyze the intricate interplay between the self-sustained
characteristic with external drive, dissipation, and coupling.
Having a handle on the classical driven dissipative system, it
is a fascinating and a challenging task to study the quantum
version of these models [91,92].
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APPENDIX A: VDLE FOR A DRIVEN DISSIPATIVE
LINEAR HARMONIC CHAIN (HC)

In Sec. III B we have discussed that, in the nonchaotic
regime, the dynamics of the DC essentially acts as a driven
dissipative linear HC. A brief calculation has been demon-
strated there for the corresponding behavior of the VDLE
in Eq. (13). Here we present a rigorous derivation for the
results in Eq. (13) starting from the evolution equation of
perturbations [Eq. (14)],

d2δyi

dτ 2
= −k0δyi − γ̄

dδyi

dτ
+ κ̄ (δyi−1 + δyi+1 − 2δyi ), (A1)

where 1 � i � N . We consider the same initial conditions as
in Eq. (9): δyi = εδi, N+1

2
,

dδyi

dτ
= 0 for i = 1, 2, . . . , N . Equa-

tion (A1) can be represented in the following matrix form:

d2δY
dτ 2

= MδY − γ̄
dδY
dτ

, (A2)

where δY = (δy1 . . . δyi . . . δyN )T and the matrix M is the
following N × N matrix:

M =

⎛⎜⎜⎜⎜⎜⎝
−2κ̄ − k0 κ̄ 0 0 .. 0 κ̄

κ̄ −2κ̄ − k0 κ̄ 0 .. 0 0
0 κ̄ −2κ̄ − k0 κ̄ .. 0 0
. . . . .. . .

. . . . .. . .

κ̄ 0 0 0 .. κ̄ −2κ̄ − k0

⎞⎟⎟⎟⎟⎟⎠.

(A3)
The eigenvalues νi and eigenvectors |ψi〉 (i = 1, 2, . . . , N ) of
M are obtained to be

νi = −k0 − 4κ̄ sin2
(π i

N

)
,

ψ
j

i = 1√
N

[
cos

(
2π i j

N

)
+ sin

(
2π i j

N

)]
, (A4)

with ψ
j

i being the jth component of |ψi〉. Consequently, the
matrix in Eq. (A3) can be diagonalized as Md = U −1MU ,
where (Md )i, j = νiδi, j and Ui, j = ψ

j
i . Also note that in this

case U −1
i, j = Ui, j = ψ

j
i . So Eq. (A2) can now be expressed

conveniently as

d2δQ
dτ 2

= MdδQ − γ̄
dδQ
dτ

, (A5)
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where δQ = (δq1 . . . δqi . . . δqN )T with δqi = ∑
j U −1

i, j δyi; δqi

are uncoupled variables with individual equations of motions
such as

d2δqi

dτ 2
+ γ̄

dδqi

dτ
− νiδqi = 0. (A6)

The above equation, being uncoupled, can be solved directly,
and the resulting solution is given as

δqi(τ ) = ε e
−γ̄ τ

2 U −1
i, N+1

2

[
cos(iτ ) + γ̄

2i
sin(iτ )

]
, (A7)

where

 j =
√

4κ̄ sin2
(π j

N

)
+ k0 −

( γ̄

2

)2

.

We would be dealing with the underdamped scenario where
( γ̄

2 )2 < k0. Now we can invert δqi to obtain the following
expression for δyi(τ ) = ∑

j Ui, jδqi(τ ):

δyi(τ ) = ε e− γ̄ τ

2

N

N∑
j=1

ψ
j

i ψ
N+1

2
j

[
cos( jτ ) + γ̄

2 j
sin( jτ )

]
.

(A8)

By using Eq. (A4) and making a shift in the oscillator index as
i → (i − N+1

2 ), we obtain the OTOC defined as D(i, τ ) = δyi

ε
,

which is given by

D(i, τ ) = e− γ̄ τ

2

N

N∑
j=1

{
cos

(
2π i j

N

)
+ sin

[
2π j

N
(i + 1)

]}

×
[

cos( jτ ) + γ̄

2 j
sin( jτ )

]
, (A9)

for −N−1
2 � i � N−1

2 . Now we note that

N∑
j=1

sin

[
2π j

N
(i + 1)

][
cos( jτ ) + γ̄

2 j
sin( jτ )

]

=
N∑

j=1

χ (i, j, τ ) = 0, (A10)

using the fact χ (i, N − j, τ ) = −χ (i, j, τ ) for j =
1, 2 . . . (N − 1)/2 and χ (i, N, τ ) = 0. So, using (A10),
Eq. (A9) reduces to

D(i, τ )

= e−γ̄ τ/2

N

N∑
j=1

cos

(
2π i j

N

)[
cos( jτ ) + γ̄

2 j
sin( jτ )

]

= e− γ̄ τ

2

2N

N∑
j=1

{
cos

(
2π i j

N
−  jτ

)
+ cos

(
2π i j

N
+  jτ

)

+ γ̄

2 j

[
sin

(
2π i j

N
+  jτ

)
− sin

(
2π i j

N
−  jτ

)]}
.

(A11)

Using a suitable variable transformation of the form j̃ = (N −
j) and some well-known trigonometric identities, it is straight-
forward to prove that the first two (cos) sums in Eq. (A11) are

equal and the other two remaining (sin) sums are also equal.
Consequently, Eq. (A11) simplifies to

D(i, τ ) = e−γ̄ τ/2

N
×

N∑
j=1

[
cos

(
2π i j

N
−  jτ

)

− γ̄

2 j
sin

(
2π i j

N
−  jτ

)]
. (A12)

Since we are considering a spatially extended system of very
large size N, in the limit N → ∞, we can take the continuum
limit of Eq. (A11) by identifying π j

N = q where q ∈ [0, π ] is
a continuous variable. So the sum in Eq. (A11) becomes an
integral such as

D(i = vτ, τ ) = e− γ̄ τ

2

π

∫ π

0
dq ×

{
cos

[
2τ

(
qv − 1

2
q

)]
− γ̄

2q
sin

[
2τ

(
qv − 1

2
q

)]}
, (A13)

with

q =
√

2κ̄
√

1 + η − cos(2q) (A14)

where η = k0−(γ̄ /2)2

2κ̄
. The integrand in Eq. (A13) is like a

forward-moving wave with angular frequency ω(q) satisfying
the dispersion relation ω(q) = 1

2q. Then one can define the
group velocity (vg) and butterfly speed (vb) from there as

vg(q) = ∂ω

∂q
=

√
κ̄sin(2q)√

2[1 + η − cos(2q)]
,

vb(κ̄, γ̄ , k0) = maxqvg

= √
κ̄

√
1 + η −

√
(1 + η)2 − 1, (A15)

where maxq vg = vg(q∗) with q∗ satisfying the equa-
tion cos(2q∗) = (1 + η) −

√
(1 + η)2 − 1. Clearly, at q =

q∗, ∂2ω
∂q2 |q∗ = 0 implying that q∗ is the saddle point of ω(q)

such that ∂3ω
∂q3 |q∗ < 0.

Since we have the exact analytical expression of the OTOC
for the DC in Eq. (A11), we can directly calculate the VDLE
using Eq. (10). This is plotted for two different values of the
dissipation in Fig. 23(a) at τ = 200; the corresponding data
from simulation are presented in the same plot. The analytical
and numerical data exhibit an excellent match. Interestingly,
Fig. 23(a) reveals that the greater the dissipation value, the
more oscillators tend to achieve enough perturbation to at-
tain λ(v) ≈ − γ

2 . This, in turn, indicates that the IS is larger
for larger γ . This fact is further ensured by the plot of vb

[calculated from Eq. (A15)] as a function of γ presented in
Fig. 23(b). There we clearly observe that vb is an increasing
function of γ for the driven dissipative HC. Although this
might seem somewhat surprising, actually one has to keep
in mind that in Fig. 23, what one measures is how far a
perturbation (however small it may be) can reach rather than
the magnitude of the perturbation.

Note that in the absence of dissipation (γ̄ = 0) and on-site
potential (k0 = 0), we get η = 0, and the dispersion relation
simplifies to ω(q) = √

κ̄ sin(q). Consequently, for this con-
served harmonically coupled chain, the group velocity is vg =
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FIG. 23. In panel (a) we have plotted VDLE vs v for two dif-
ferent dissipation values, γ̄ = 0.1 and γ̄ = 1.9, both from numerical
computation (showed by the solid lines) and analytical calculation
from Eq. (A11) (showed by dotted lines) at time τ = 200. We ob-
serve that the more the dissipation, the more oscillators gain enough
perturbation to reach the VDLE value λ(v) ≈ − γ̄

2 . This indicates
that vb(γ̄ ) is larger for larger dissipation. This is indeed the case,
as clearly observed from panel (b), where we have plotted vb, from
Eq. (A15), as a function of γ̄ .

√
κ̄ cos(q), and the butterfly speed simply becomes vb = √

κ̄

occurring at q = q∗ = 0.
Our goal is to analyze the behavior of D(i, t ) near v ≈ vb.

To achieve that, we can do a saddle point approximation of
the integral in (A13) by analyzing the integrand near q∗, i.e.,
letting q = q∗ + δq where δq ∈ (−ε, ε), ε being a very small
number. It is important to note that the previous statement is
based on the underlying assumption that q∗ ∈ (0, π ). In other
words, the endpoints q∗ = 0 and q∗ = π have to be dealt with
separately since for them the neighborhoods are restricted
only to δq ∈ (0, ε) and δq ∈ (−ε, 0), respectively. In the con-
text of system parameters, the equation cos(2q∗) = (1 + η) −√

(1 + η)2 − 1 directly implies that q∗ = 0 and q∗ = π means
η = 0. An example of a system leading to this scenario is
k0 = 0 = γ , i.e., the chain of harmonically coupled oscillators
in the absence of dissipation and on-site harmonic potential.

The analysis for this case will be done separately at the end
of this Appendix. For now, we stick to the general driven
dissipative coupled HC for which η �= 0. Near v ≈ vb, from
Eq. (A13), the OTOC becomes

D(vτ ≈ vbτ, τ ) = e− γ τ

2

π

{
g(q∗)

∫ ε

−ε

d (δq)cos[2τh(δq)]

+ ḡ(q∗)
∫ ε

−ε

d (δq)sin[2τh(δq)]

}
, (A16)

where

h(δq) = (v − vb)δq +
∣∣∣∣12 ∂3ω

∂q3

∣∣∣∣ (δq)3

3

= (v − vb)δq + 2vb
(δq)3

3
,

g(q∗, τ ) = cos

[
2τ

(
vq∗ − 1

2
q∗

)]
− γ̄

2q∗
sin

[
2τ

(
vq∗ − 1

2
q∗

)]
,

ḡ(q∗, τ ) = −sin

[
2τ

(
vq∗ − 1

2
q∗

)]
− γ̄

2q∗
cos

[
2τ

(
vq∗ − 1

2
q∗

)]
. (A17)

Now, using the fact that
∫ a
−a dx f (x) = ∫ a

0 dx[ f (x) +
f (−x)] and sin[2τ h(δq)] is an odd function, the integral in
Eq. (A16) reduces to

D(i = vτ ≈ vbτ, τ )

= 2e− γ̄ τ

2

π
g(q∗, τ )

∫ ε

0
d (δq)cos[2th(δq)]

= 2e− γ̄ τ

2 g(q∗, τ )

π

∫ ε

0
d (δq)cos[2(v − vb)τδq

+ 4vbτ
(δq)3

3

]
.

Now, with the variable transformation

(4vbτ )1/3 δq = s ⇒ s ∈ (0,∞) as τ → ∞,

the above integral becomes

D(vτ ≈ vbτ, τ ) = 2e− γ̄ τ

2 g(q∗, τ )

(4vbτ )1/3π

×
∫ ∞

0
ds cos

[
s3

3
+ 2

1
3 (v − vb)τ

2
3

v
1
3
b

s

]
. (A18)

The above integral is in the form of the well-known Airy
integral. So we finally have

D(vτ, τ ) =

⎧⎪⎨⎪⎩
2e− γ̄ τ

2 g(q∗,τ )
(4vbτ )1/3 Ai(z), for v � vb

2e− γ̄ τ
2 g(q∗,τ )

(4vbτ )1/3 Ai(−z), for v � vb

(A19)

with z = 2
1
3 |vb − v|τ 2

3

v
1
3
b

> 0. (A20)
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FIG. 24. In the panels we have plotted the exact form of OTOC
(scaled by eγ τ/2τ 1/3) vs the scaled variable (i − vbτ )/τ 1/3 from
Eq. (A11) for a driven dissipative coupled HC at different τ . We
compare these with the corresponding approximate expression of the
OTOC obtained in Eq. (A19) using continuum theory. The observa-
tion is that at each τ, the exact [shown by solid curve computed from
Eq. (A11)] and approximate [shown by dashed curve computed from
Eq. (A11)] expressions of the OTOC show perfect agreement near
v ≈ vb and start deviating from each other as we go reasonably far
from v ≈ vb. Parameters used are {κ̄ = 1, k0 = 0.1, γ̄ = 0.05}.

In order to compare the exact expression of the OTOC in
Eq. (A11) with the corresponding approximated expression
near v ≈ vb in Eq. (A19), we plot D(i, τ ) (scaled by τ

1
3 ) as a

function of (i − vbτ )/τ 1/3 in Fig. 24 for an arbitrary chosen
parameter set {κ = 1, k0 = 0.1, γ = 0.05}. The four panels
in Fig. 24 correspond to different τ (sufficiently large). We
observe that, for each τ , the exact form of the OTOC (shown
by the solid curve) computed from Eq. (A11) exhibits prefect
agreement near v ≈ vb with the corresponding approximate
form (shown by dashed curve), obtained using a continuum
approximation, in Eq. (A19). However, as one moves suffi-
ciently far from v ≈ vb region, the two expressions [Eq. (A11)
and Eq. (A19)] start deviating from one other.

Since we are in the limit τ → ∞, from Eq. (A19), we can
use the large z asymptotic of Airy functions, and we have

D(vτ, τ ) =

⎧⎪⎨⎪⎩
ĝ(q∗,τ )

2
√

τ
e
− γ̄

2 τ− 2
5
2

3√
vb

τ (v−vb)
3
2
, v > vb

e− γ̄ τ
2 ĝ(q∗,τ )√

τ
sin
[

π
4 + 2

5
2 τ

3
√

vb
(v − vb)

3
2

]
, v < vb

,

(A21)

where ĝ(q∗, τ ) = g(q∗ )

2− 3
4
√

π (v−vb)
1
4 v

1
4

b

. It should be mentioned

that, in Eq. (A21), both ĝ(q∗, τ ) and vb are functions of γ̄

through q∗(γ̄ ) and η(γ̄ ), respectively. So, other than the ex-
plicit exponential dependence as e− γ̄

2 τ , the OTOC depends
nontrivially on the dissipation through ĝ(q∗, τ ) and vb. The

velocity-dependent Lyapunov exponent (VDLE), λ(v), is de-
fined in Eq. (10). Using this, we obtain that near v ≈ vb, the
VDLEs are given by

λ(v) − λ ≈ −(v − vb)
3
2 for v > vb,

λ(v) ≈ λ for v < vb, (A22)

where λ = − γ

2 .
As stated earlier, we would now like to consider the special

case of a harmonically coupled chain without any dissipation
and on-site potential (i.e. k0 = 0 = γ ). For this chain, we have
η = k0−(γ̄ /2)2

2κ̄
= 0 leading to q∗ = 0 or q∗ = π . Without any

loss of generality we consider q∗ = 0 so that now δq ∈ (0, ε)
instead of δq ∈ (−ε, ε). Correspondingly, after a saddle point
approximation, Eq. (A15) in this case boils down to

D(i = vτ ≈ vbτ, τ ) = 1

π

∫ ε

0
d (δq)cos[2τh(δq)], (A23)

where

h(δq) = (v − vb)δq + vb
(δq)3

6
. (A24)

Note that, for a harmonically coupled chain, g(q∗, τ ) = 1 and
ḡ(q∗, τ ) = 0. In the limit τ → ∞, with the variable transfor-
mation (vbτ )1/3δq = s, Eq. (A23) transforms into

D(vτ ≈ vbτ, τ ) = 2

(vbτ )1/3π

×
∫ ∞

0
ds cos

[
s3

3
+ 2(v − vb)τ

2
3

v
1
3
b

s

]
. (A25)

As already discussed, the integral in Eq. (A25) is in the well-
known form of the Airy function, and we have

D(vτ, τ ) =
{ 2

(vbτ )1/3 Ai(z), for v � vb

2
(vbτ )1/3 Ai(−z), for v � vb

(A26)

with z = 2|vb − v|τ 2
3

v
1
3
b

> 0. (A27)

Note the difference between the expressions of the OTOC for
the driven dissipative coupled HC in Eq. (A19) and (A20)
with that of a harmonically coupled chain in Eq. (A26) and
(A27). Due to the absence of the time-dependent term g(q∗, τ )
in Eq. (A26), we expect collapse of data at different τ when
the OTOC D(i, τ ) is scaled by τ

1
3 . This is indeed observed

in Fig. 25 where the exact expression for OTOC (scaled by
τ

1
3 ) in Eq. (A11) for a harmonically coupled chain (with

κ = 1) is plotted against the scaled variable (i − vbτ )/τ 1/3.
Apart from the excellent data collapse at different τ (shown by
the solid curves), Fig. 25 exhibits perfect agreement with the
exact OTOC expression in Eq. (A11) with the corresponding
approximated expression (obtained through continuum the-
ory and saddle point approximation) in a considerably large
range around v ≈ vb in Eq. (A19) (shown by the dashed
curve).
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FIG. 25. Here we compare the exact expression of the OTOC
in Eq. (A11) for a harmonically coupled DC (in the absence of
dissipation and on-site harmonic potential) to the approximate ex-
pression of the OTOC in Eq. (A19) near v ≈ vb obtained using
continuum theory. The OTOC (scaled by a factor τ 1/3) at different
times [shown by the solid curves computed from Eq. (A11)] collapse
perfectly on top of each other when plotted against the scaled variable
(i − vbτ )/τ 1/3. This data collapse also exhibits perfect agreement
with the corresponding continuum approximation [the dashed curve
computed from Eq. (A19)] within a reasonably large range about
v ≈ vb. Parameters used are {κ̄ = 1, k0 = 0, γ̄ = 0}.

APPENDIX B: COMPARING UNCOUPLED AND COUPLED
DUFFING OSCILLATORS IN DIFFERENT

DYNAMICAL REGIMES

Here we present a brief comparison between the dynamical
behaviors of uncoupled and coupled Duffing oscillators in the
sustained chaos, transient chaos, and nonchaotic regimes. To
do so, we have plotted the corresponding finite-time Lyapunov
exponents in Fig. 26.

In the sustained chaos regime, we observe that depending
on the system parameters, the uncoupled and coupled Duffing
oscillators can behave similarly or they can behave in a com-
pletely different manner. More elaborately, in Fig. 26(a) we
observe that the uncoupled Duffing oscillator can be as chaotic

FIG. 26. This figure shows comparison among different dynam-
ical behaviours of coupled (κ �= 0) and uncoupled (κ = 0) Duffing
oscillators.

as the coupled oscillator with both having positive Lyapunov
exponents. In sharp contrast, Fig. 26(b) interestingly exhibits
that, with a moderate variation of the driving amplitude, the
coupled Duffing oscillator remains chaotic (λ > 0) whereas
the uncoupled one becomes nonchaotic (λ < 0).

For the case of transient chaos, as shown in Fig. 26(c),
both the uncoupled and coupled oscillators are chaotic at
small time and nonchaotic at large time. The only difference
is that the time at which the FTLE crosses Lyapunov zero
[λ0(τ ) = 0] is smaller for the coupled oscillator with respect
to the uncoupled one. In Fig. 26(d) the coupled and uncoupled
Duffing oscillators both exhibit nonchaotic behaviors at large
time. However, notably here, the uncoupled oscillator has
λ0(τ ) > 0 at small τ in contrast to the coupled one, which
remains nonchaotic at all time.

In a nutshell, we conclude that the role of coupling can
be most prominent in the sustained chaos regime, whereas
the difference between the behaviors of the uncoupled and
coupled Duffing oscillators is comparatively small in the other
dynamical regimes.
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