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Nonlinear dynamical modeling of adsorption and desorption processes
with power-law kinetics: Application to CO2 capture
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Modeling of random sequential adsorption (RSA) process is studied in this paper as this kind of process is
close to the surface adsorption phenomenon that is, for instance, exploited in gas sensors or for liquid or gas
purification. Analysis and simulation of the RSA process is first performed to highlight a power-law kinetic
behavior. Such behaviors are often modeled in the literature with fractional models. The paper, however, shows
that fractional models are not able to capture some important properties of the RSA process. A nonlinear model
and the associated parameters tuning method are, thus, proposed. A discussion on the ability of the proposed
model to capture the power-law kinetics without exhibiting some of the drawbacks of fractional models is
proposed. This nonlinear model is then modified to take into account the reverse desorption process. The
proposed modeling approach is applied to experimental data of CO2 capture.
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I. INTRODUCTION

In chemistry, adsorption is a surface phenomenon in which
atoms, ions, or molecules (adsorbates) attach to a solid surface
(adsorbent) from a gaseous, liquid, or solid solution. This pro-
cess is based on the interaction of the adsorbate with a surface,
which can involve various, more or less intense, processes,
such as Van der Waals interactions [1], dipolar interactions,
covalent, or ionic chemical bonds [2].

This phenomenon is widely used in academic applications
in physical, chemical, or biological domains to capture pol-
lutants, gas separation, catalysts, and so as a rule remove a
substance from a liquid or gaseous solutions [3]. Adsorption
phenomenon is also widely used in industry especially for
water purification [3] but also in many other applications (e.g.,
[4,5]), such as sensor design [6,7]. It is, therefore, essential to
characterize this phenomenon and its associated kinetics and
to have efficient tools to model these kinetics.

In this paper, the authors consider first an idealized adsorp-
tion process called random sequential adsorption (RSA) in
two dimensions (2D), which is close to the surface chemical
adsorption phenomenon previously cited. The RSA process
has been studied since the early 20th century first in one
dimension independently by Flory [8] and Rényi with the
denoted car-parking problem [9]. The 2D process was studied
in Refs. [10–12] in which the kinetic behavior and the particle
concentration final value were investigated.

Then this paper focuses on the kinetics of the adsorption
process. Several models were proposed in the literature for
these kinetics. An interesting analysis of these models is pro-
posed in Ref. [13]. If q(t ) denotes the amount of adsorbed
particles, most of the discussed models express the adsorption
rate dq(t )

dt as a function of the distance qe − q(t ), where qe
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denotes the amount of adsorbed particles at the equilibrium.
The following models have been proposed:

(1) by Lagergren [14],

dq(t )

dt
= k1[qe − q(t )],

(2) by Kopelman [15],

dq(t )

dt
= k2t−h[qe − q(t )] with 0 � h � 1,

(3) by Ho and Mckay [16],

dq(t )

dt
= k3[qe − q(t )]2,

(4) by Brouers and Sotolongo-Costain [17],

dαq(t )

dtα
= k4[qe − q(t )]n.

If θ (t ) = q(t )
qm

denotes the relative surface coverage, where qm

is the maximal amount of adsorbed particles and if c denotes
the concentration of particles close to the surface (bulk), the
following model was also proposed by Haerifar and Azizian
[18] and Bashiri and Shajari [13],

dθ (t )

dt
= k5t−hc[1 − θ (t )] with 0 � h � 1.

The most realistic model seems to be the last one as the
previous ones do not take into account explicitly the par-
ticle concentration near the surface. On the other hand, if
we consider an analogy between the physical adsorption and
the idealized RSA process (see Sec. II), a thorough study
[10,12,19] of the RSA process reveals that the “fractal-like”
behavior introduced in Refs. [13,18] under the form of the t−h

factor does not hold during all the process but is valid only
asymptotically when packing is close to saturation limit. Thus,
it should not be used to fit kinetics at the beginning of the
packing formation. Moreover, their model has a singularity at
time t = 0.
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In the following to some results presented in Ref. [20],
the main goal of this paper is to propose a new model for
adsorption kinetics in a physical time in accordance with the
kinetic behavior observed in the RSA process and without
the limitations of the models previously cited, and to apply
this new model on real data. To this purpose, several known
properties of the 2D RSA process are first recalled. As this
process kinetic exhibits a power-law behavior, a fractional
order model is naturally first studied. For a constant flow of
particles, it permits a nice fitting of the 2D RSA kinetics but
is not compatible with the process for a null flow and is of
infinite dimension (thus, requiring an infinite number of initial
conditions). To address this problem, a drift less input affine
nonlinear model (or distributional model) is proposed. This
kind of model was previously proposed in the literature to take
into account the different types of kinetics that appear for low
and high surface coverages. A theoretical justification of this
class of model appears in Ref. [21]. The proposed model for
RSA kinetics of anisotropic particles is based on the available
surface function concept and is defined by

dθ (t )

dt
= 1

2π

∫
�[θ (t ),�]d�, (1)

where �[θ (t ),�] is the probability of adding a new parti-
cle with orientation � to the surface when the coverage is
θ (t ). The function �[θ (t ),�] cannot be obtained exactly, but
approximations can be computed under the form of series
expansions for low and high coverage regimes. These two
approximations are then combined to provide an approximate
description of the kinetics over the entire coverage range.
The following two interpolation formulas are proposed in
Ref. [21],

�(ζ ) = (1 − ζ )4(1 + c1ζ + c2ζ
2) with ζ = θ (t )

θ∞
, (2)

and

�(ζ ) = (1 − ζ )4

(1 + c1ζ + c2ζ 2)
. (3)

Parameters c1, c2, d1, and d2 are then computed to fit
the series expansions of the function �[θ (t ),�] in (1). An
expansion similar to (2) is used in Refs. [22,23],

�(ζ ) = (1 − ζ )4(1 + c1ζ + c2ζ
2 + c3ζ

3). (4)

In Ref. [22], parameters c1, c2, and c3 are computed as in
Ref. [21] and to fit insulin adsorption data as Ref. [23]. These
works, and particularly Ref. [21], fully justify the interest of
nonlinear models for RSA kinetic modeling and by extension
for adsorption kinetics in physical time. However, these mod-
els have a constrained form to meet the asymptotic behaviors
for low and high surface coverage which reduces the accuracy
of the model outside these coverage regimes.

In our approach a more general expansion is considered
in model (1). The tuning method associated with this model
is detailed, and its efficiency is proved. In order to get closer
to the possible physical application, a rate of desorption not
considered in Refs. [21–23] is also finally added to the model.
In the last section, it is shown that the model and the method
described in this article can be applied to real data. Data of

FIG. 1. A partially filled surface.

adsorption and desorption of CO2 on copper hexacyanoferrate
controlled by N2 are, thus, analyzed and modeled.

II. RANDOM SEQUENTIAL ADSORPTION

A. Presentation of the process

In this section is described the random sequential adsorp-
tion process (denoted in the following RSA process) studied in
the paper. Random sequential adsorption was widely studied
in the literature ([24–26]). In this paper, the substrate in which
particles adsorb is a square on the plane with edge length L
and with corresponding area L2. Adsorption of discs particles
of radius R (R � L) on the surface is considered. The parti-
cles sequentially incide at uniformly randomly chosen surface
positions. The particles are supposed moving in the perpen-
dicular direction of the plane at each iteration of the process.
A particle attaches to the surface only if the target sites is
empty, i.e., if all the surface occupied by the incident particle
correspond to an empty site at the substrate. Otherwise, the
adsorption attempt is rejected, and the disk goes back. At the
initial time t0, the adsorption surface is empty. In the following
tk denotes the iteration number (also called time) at which the
kth particle tries to attach to the surface and let �t = tk+1 − tk .

In Fig. 1, an example of the process is illustrated. The
surface is yet not completely filled with disks. Figure 2(left)
shows a region in which adsorption is impossible, and
Fig. 2(right) shows a region in which adsorption is possible.

The density of occupied area is noted θ (t ). The value of
θ (t ) when t goes to infinity is denoted θ∞. According to
the literature ([12,27,28]), numerical simulations lead to the
following value for θ∞:

θ∞ = lim
t→∞ θ (t ) ≈ 0.547. (5)

B. Simulation of the process

In order to simulate this process, a (pseudo) random couple
c = (p, q) of real numbers that follows a uniform distribution
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FIG. 2. Two cases of adsorption on the surface: Subregion of
Fig. 1 where adsorption is impossible (left), and subregion of Fig. 1
where adsorption is possible (right).

in range [0, L] is generated at each iteration of the process. A
disk of radius R and center c will fix on the surface if:

(1) A part of the disk does not lie outside the surface, which
is true if the following two conditions are satisfied: p, q � R
and p, q � L − R;

(2) there is no overlap between the current disk and a
previously fixed disk, that is if d (c, ck ) � 2R where for all
k ∈ N, ck = (pk, qk ) is the center of a disk previously fixed
on S and where d (c, ck ) =

√
(p − pk )2 + (q − qk )2 is the dis-

tance between disks.
In Fig. 3 is plotted the density θ of occupied area for

R = 0.5 and L = 50 ( L
R = 100) as a function of trials which

is denoted t in the following. If the flow of particles that hit
the surface per second is constant, t is proportional to the real
time. The final density value is here θ∞ ≈ 0.5344. Since the
goal of this paper is not to do a deep analysis of RSA, it is
not relevant here to go any further, since the convergence is
very slow, and the algorithm becomes really time consuming.
About 4.106 trials were needed to reach this value and the
last different value before θ∞ = 0.5344 was unchanged for
918 534 iterations. It was concluded that the jamming con-
figuration was close enough to be reached. The error bars
correspond to the fluctuations of the value at the given trial
between several simulations of the process. These fluctuations
are due to the randomness of the process.

0 0.5 1 1.5 2 2.5 3 3.5 4

Trials 106

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6
Error bars

FIG. 3. Density of the occupied area as a function of trials.
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FIG. 4. Highlighting of the power law behavior of θ∞ − θ for
large values of t .

It is suggested in the literature [10,12,19] that the covered
surface can be described for high coverage regimes by a power
law,

θ∞ − θ (t ) ∼ t−1/2. (6)

In order to confirm this statement, θ is represented in Fig. 4
as a function of t−1/2. For large enough values of t (small
values of t−1/2), this figure highlights that θ∞ − θ (t ) ∼ at−1/2

with a = 13. Note that this behavior only holds in a limited
trials range. At the beginning due to the large number of free
places θ∞ − θ (t ) ∼ t .

Remark 1. Other simulations were performed for other L
R

ratios in the range of 50 < L
R < 1000. The high coverage

kinetics (dynamics in t−(1/2) for large values of t) and final
coverage density were the same in all cases, showing that the
ratio considered above ( L

R = 100) is large enough.

III. DYNAMICAL MODELING OF RSA

A. Fractional order modeling

Since a behavior in t−1/2 has been highlighted in Sec. II B,
modeling using a fractional order model seems natural [29].
As shown in Fig. 5, the signal y(t ) = θ∞ − θ (t ) is, thus,
considered as the response of a dynamical system to a Heavi-
side step function [u(t ) = 0 ∀ t < 0; u(t ) = 1 ∀ t � 0]. The
input u(t ) of the system can, thus, be viewed as a particles
flow of one particle per unit of time (trials). Based on the
asymptotical behavior of the system, the following transfer
function is used as the considered fractional model,

H (s) = sK(
sα

ωb
+ 1

)(
s1−α

ωh
+ 1

) . (7)

H(s)
U(s) Y (s)

FIG. 5. Input-output representation of the system.
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FIG. 6. Density of free area (in blue) and response of the frac-
tional model (in red).

The constant K is related to the initial value of y(t ). Indeed,
according to the initial value theorem,

y0 = lim
t→0

y(t ) = lim
s→∞ sY (s) = lim

s→∞ sH (s)
1

s
= K

ωbωh
. (8)

Hence,

K = y0

ωbωh
. (9)

The fractional order α and the constants ωb and ωh are ob-
tained by minimizing the following criterion (least-squares
optimization) that is nonlinear with respect to the parameters:

C = 1

N

N∑
k=1

|y(k) − yFO(k)|2, (10)

where yFO denotes the model (7) step response. The following
parameters were obtained: α = 0.52, ωb = 0.0145 rad s−1,
and ωh 	 6.1542 × 10−4 rad s−1. In Fig. 6 is proposed a com-
parison of model (7) step response yFO with y obtained by the
implementation of RSA process. The criterion (10) value is as
follows:

C1 = 2.7013 × 10−6. (11)

B. Discussion on fractional order modeling

At first look, this model seems effective in order to describe
the kinetic of the density θ (t ). However, there exist some limi-
tations on the capacity of the model to capture some properties
of the process described in Sec. II A.

Indeed, the RSA process is nonlinear. If the flow of par-
ticles is doubled, the filling dynamic of the surface is almost
doubled, but the final value is the same as for a single flow as
illustrated in Fig. 7. However, as the fractional order model is
linear, if the flow is doubled, the final value will be doubled as
well.

0 1 2 3 4 5 6 7 8 9

Trials t 105

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

double
(t)

(t)

FIG. 7. Comparison between the dynamic θdouble(t ) of the pro-
cess for a doubled flow of particles (blue) and a for a single flow of
particles (orange).

Moreover, with the RSA process if the flow is stopped
then the filling is obviously stopped. And if the flow restarts,
the filling will restart at the same point. To reach such a
behavior, model (3) must be transformed. Using this model,
it is possible to write that

θ (s)

(
s

ωhωb
+ sα

ωb
+ s1−α

ωh
+ 1

)
= U (s), (12)

where U (s) is the flow of particles (linked to the concentra-
tion of particle near the surface). Relation (12) leads to the
following differential equation:

dθ (t )

dt
= −ωh

dαθ (t )

dtα
− ωb

d1−αθ (t )

dt1−α
− θ (t ) + ωhωbu(t ).

(13)
The constancy of θ (t ) when the flow is zero can be ob-

tained with a modification of relation (13) and by introducing
a function v(t ) such that,

dθ (t )

dt
=

(
−ωh

dαθ (t )

dtα
−ωb

d1−αθ (t )

dt1−α
− θ (t )+ωhωbu(t )

)
v(t ),

(14)
with v(t ) = 0 if u(t ) = 0 and v(t ) = 1 if u(t ) > 0.

However, such a modification does not solve the linearity
problem with respect to to the flow u(t ) but above all, leads to
using an infinite dimensional model which implies problems
highlighted in Refs. [30–33] and to several other drawback
discussed in Ref. [34] and summarized in Refs. [35,36]. It is,
therefore, proposed to consider a nonlinear model to capture
these properties.

C. Nonlinear modeling

In order to capture the nonlinear behavior of the RSA
process described in Sec. III B, the following model is con-
sidered:

ẏ(t ) = f (y)u(t ), (15)

where
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(1) y:R+ → R+ is the density of free places on the sur-
face as a function of time, y(t ) = 1 − θ (t );

(2) u:R+ → R+ stands for the flow of particles;
(3) f :R+ → R+ is a function to be determined.
This model is called a drift-free control-affine system or

affine-in-control system [37,38]. It is clear that it has the prop-
erty that if u(t ) is doubled, the dynamic is also doubled. Note
that the initialization of this model only requires the knowl-
edge of y(0). Physically the free place information is enough
for the initialization of the process along with a stochastic
distribution of the disk on the surface.

1. Application on the simulated data

Let k ∈ N. For N ∈ N, k RSA processes of N trials are
simulated. The output of the kth process is denoted Yk . For all
n ∈ [|0, N |], Yk (n) is the density of free places on the surface
according to the nth trial for the kth simulation. To approach
the values of the unknown function y(t ), a large number of
simulations is performed. The mean of these simulations is
then considered.

More precisely, for all k ∈ N, Yk is a random vector and
for all

i ∈ N, Yk (i) ∈ [0, 1]. Then the sequence (Yk )k∈N is
bounded and the mean E[Yk] exists for all k ∈ N . The se-
quence (Yk )k∈N is a sequence of independent and identically
distributed random vectors with mean E[Y0] = E [Y1] = · · · =
μ. By the strong law of large numbers, when k → ∞,

Ymean = 1

k

k∑
i=0

Yi → μ = y(t ), almost surely. (16)

With 200 simulations of the RSA process of 4 × 106 trials, the
curve of Fig. 8 is obtained. The number of 200 simulations
has been chosen because with more than 200 simulations,
changes in the mean value and behavior deviations is less than
5 × 10−5. For all n ∈ �0, N�, the derivative ẏ of y is computed

0 0.5 1 1.5 2 2.5 3 3.5 4

Trials t 106

0.4

0.5

0.6

0.7

0.8

0.9

1

Y
m

ea
n

Error bars

FIG. 8. Mean density of free area for u(t ) = 1.

0 1 2 3 4 5 6 7 8 9 10

Trials t 104

-3

-2

-1

0
10-4

FIG. 9. Approximation of the derivative ẏ.

using the following formula and plotted in Fig. 9:

ẏ(n) ≈ Ymean(n + 1) − Ymean(n − 1)

2
. (17)

The aim is now to find an analytical expression for function
f in relation (15). In Fig. 10, ẏ is, thus, plotted as a function
of y [considering that u(t ) = 1].

The curve of ẏ[y(t )] is then fitted using a least-squares
method with the following function:

f (y)= a0y + a1y + a2y2 + a3y3 + a4y4. (18)

The parameters a0, a1, a2, a3, and a4 given in Table I were
obtained using MATLAB function FMINCON.

The comparison of f (y) with the approximation ẏ(y) com-
puted previously is also represented in Fig. 10. The diagram in
Fig. 11 is an implementation of relation (15) where function f

0.4 0.5 0.6 0.7 0.8 0.9 1

y(t)

-3

-2

-1

0
10-4

FIG. 10. Function ẏ[y(t )] and its approximation.
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TABLE I. Parameters of f from relation (18).

a0 a1 a2 a3 a4

2.8163 × 10−4 −9.4715 × 10−4 −6.4938 × 10−4 0.0050 −0.0043

is given by relation (18). Such a diagram is used for simulation
of the density of free space as a function of time.

In Fig. 12 is proposed a comparison of model (15) response
for u(t ) = 1, denoted Yapprox and of the curve Ymean.

The value of the error between y(t ) = Ymean and Yapprox

given below is less than the value of C1 in (11) obtained with
a fractional model,

C2 = 1

N

N∑
k=1

|y(k) − Yapprox(k)|2 = 1.8714 × 10−7. (19)

IV. ADDITION OF A PHENOMENON OF DESORPTION

The phenomenon of desorption is the release of particles
from a surface. In order to capture this phenomenon, a desorp-
tion rate is added to the model (15). At each trial, every disk on
the surface has a probability p of being desorbed. Taking into
account this phenomenon combined with the RSA process
gives the filling dynamic behavior of Fig. 13 with p = 10−4.
The filled surface in steady-state (θ∞ ≈ 0.33) is less important
than in the case of Fig. 3 (θ∞ ≈ 0.53).

The model (15), thus, becomes

ẏ(t ) = f (y)u(t ) − α[1 − y(t )], (20)

where α is the rate of desorption. For α = 7.7 × 10−5 and
f given by (18), model (20) gives the result represented in
Fig. 14. The value of the criterion is

C3 = 1

N

N∑
k=1

|y(k) − Ydes,fit (k)|2 = 1.1158 × 10−6. (21)

If the flow of particles is stopped during the process, the
density of free area follows an exponential growth as it is
illustrated in Fig. 15. The model (20) captures this behavior
as is shown in Fig. 15.

The criterion value is

C4 = 1

N

N∑
k=1

|y(k) − Ypulse,fit (k)|2 = 1.7907 × 10−5. (22)

1

s
Yapprox

f(y)
u(t)

FIG. 11. Block diagram for simulation of model (15).
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FIG. 12. Approximation for u(t ) = 1 (in blue) of the mean den-
sity Ymean of free space (in red).

V. APPLICATION ON EXPERIMENTAL DATA

The experimental data used for this application are from
adsorption of CO2 on copper hexacyanoferrate. These data
come from the paper [39]. The copper hexacyanoferrate struc-
ture is composed of polydispersed particles with sizes ranging
between 20 and 50 nm. The particles aggregate to form a
porous network. The atmosphere is full of N2 at t = 0. The
adsorption then occurs switching from N2 to CO2 atmosphere,
without occupying specific sites (CO2 enters both large and
small cavities). Switching back from CO2 to N2 starts the
desorption phenomenon. The used instruments measure the
weight of adsorbed CO2 over time. Figure 16 shows the ki-
netic of adsorption-desorption of CO2.
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FIG. 13. Occupied density for adsorption-desorption.
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FIG. 14. Density of free area obtained by model (20) (in blue)
compared to simulated data (in orange).

A. Modeling of the adsorption part

Using method described in Sec. III C, the adsorption part
is modeled by the equation,

ẏ(t ) = f (y)u(t ), (23)

with

f (y) = a0 + a1y + a2y2 + a3y3 + a4y4 + a5y5, (24)

and here, t corresponds to the physical time. The parame-
ters, obtained with FMINCON MATLAB’S function are given in
Table II.

A comparison of the data and of the model response is
performed in Fig. 17.
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FIG. 15. Comparison between model (20) (in green) and simu-
lated data (in blue) for a pulsed flow.
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FIG. 16. CO2 adsorption and desorption kinetic.

B. Modeling of the pure desorption part

With a simple first order desorption term of the form
(20) and optimal value α = 0.0129, the model does not fit
the data as it is shown in Fig. 18. The quadratic error is
C5 = 2.3622 × 10−4.

To fit the desorption part as suggested in Ref. [39], it is
proposed to use a second order model of impulse response,

Ad1e−k1t + Ad2e−k2t . (25)

The parameters of this model are obtained through the
minimization of a quadratic criterion that gives the following
values: Ad1 = 0.2342, Ad2 = 1.039, k1 = 0.0033, and k2 =
0.0181.

A comparison of the second order model with the desorp-
tion data is shown in Fig. 19, after shifting time origin. For
this second order, the quadratic error is C6 = 2.8148 × 10−5.

C. Modeling whole data

The used desorption model suggests that a part of adsorbed
particles desorb with a time constant k1 and the other part with
a time constant k2. To create a global model for adsorption
and desorption, it is, thus, proposed to consider two bulks of
adsorbed particles and to split model (23) in two parts,

ẋ1 = f1(x1)u(t ) − k1x1,

ẋ2 = f2(x2)u(t ) − k2x2,

y = x1 + x2, (26)

with f1 and f2 as two polynomials to be reconstructed from
the knowledge of function f .

In accordance with Eq. (25), let y0 = y(t0) = Ad1 + Ad2 be
the initial value after the adsorption ends, where t0 denotes

TABLE II. Parameters of f from relation (24).

a0 a1 a2 a3 a4 a5

0.0247 0.0075 −0.0557 0.01954 0.0115 −0.0033
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FIG. 17. Comparison of the adsorption part of the data and the
model response.

this instant. The model must, thus, verify

x1(t0) = Ad1, x2(t0) = Ad2. (27)

This leads to choose

x1(t0) = Ad1, x2(t0) = Ad2, (28)

whose derivative is

ẋ1(t ) = Ad1

y0
ẏ(t ), ẋ2(t ) = Ad2

y0
ẏ(t ). (29)

Since ẏ(t ) = f (y) [where f is the function given by re-
lation (24) in which associated parameters are gathered in
Table II], Eq. (30) can be rewritten

ẋ1(t ) = Ad1

y0
f (y),

ẋ2(t ) = Ad2

y0
f (y),

⇔
⎧⎨
⎩

ẋ1(t )= Ad1
y0

f
( x1(t )y0

Ad1

)
,

ẋ2(t )= Ad2
y0

f
( x2(t )y0

Ad2

)
.

(30)
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FIG. 18. Comparison of the desorption part of the data and the
first order desorption model response.
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FIG. 19. Comparison of the desorption part of the data and the
second order desorption model response.

Adding the desorption term and the flow u(t ), the previous
system becomes

ẋ1(t ) = Ad1

y0
f1

(
x1(t )y0

Ad1

)
u(t ) − k1x1

ẋ2(t ) = Ad2

y0
f2

(
x2(t )y0

Ad2

)
u(t ) − k2x2, (31)

in which f1(X ) = a′
0 + a′

1X + a2X 2 + a3X 3 + a4X 4 + a5X 5

and f2(X ) = a′′
0 + a′′

1X + a2X 2 + a3X 3 + a4X 4 + a5X 5 are
two polynomials. The parameters a′

0, a′
1, a′′

0, and a′′
1 are de-

duced from those of f as shown in the following, and the
other parameters ai are the same as in f . Adding the term of
desorption affects the values of the parameters of degree 1. To
avoid an impact on the adsorption part, the parameters a′

1 in
f1 and a′′

2 in f2 must verify

a′
1 = a1 + k1 and a′′

1 = a1 + k2. (32)

As the final value of the given data is not 0 (as depicted in
Fig. 19) model (32) must be modified to take into account this
constraint and becomes

ẋ1(t ) = Ad1

y0
f1

(
x1(t )y0

Ad1

)
u(t ) − k1(x1 − yf/2),

ẋ2(t ) = Ad2

y0
f2

(
x2(t )y0

Ad2

)
u(t ) − k2(x2 − yf/2), (33)

where yf is the value of the weight at the end of desorption.
Adding yf affects the parameters of degree 0 of model

(32). To avoid an impact on the adsorption part, the following

TABLE III. Parameters of f1 and f2 of model (34).

a′
0 a′′

0 a′
1 a′′

1 a2

0.0241 0.0239 0.0111 0.0279 −0.0557
a3 a4 a5 k1 k2

0.0195 0.0115 −0.0033 0.0033 0.0181
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FIG. 20. Comparison of CO2 adsorption and desorption data (in
blue) with the model response (in red).

equality must hold:

a′
0 = a0 − k1yf

2

y0

Ad1
and a′′

0 = a0 − k2yf

2

y0

Ad2
. (34)

To summarize, the parameters obtained with this method-
ology for functions f1 and f2 are given in Table III.

A comparison of the data and of the response of model
(34) is shown in Fig. 20. The quadratic error is C7 =
2.1785 × 10−5.

In order to further improve the model, it is possible to
increase again the order of the model that characterizes the
pure desorption part and to use the exact same methodology.

VI. CONCLUSION

Since many systems use the adsorption phenomenon espe-
cially for purification or measurement problems (gas sensors
[6,7]), it is important to know how to model this phenomenon
kinetic using dynamic models. This paper is a contribution to
this modeling topic. In order to propose a relevant model, the
RSA process, which describes a possible behavior of the par-
ticles during an adsorption phenomenon, is first investigated.
This process shows kinetics in tν, ν ∈ [0, 1] (power-law type
kinetics). Moreover, the tν kinetic is observed only in a
middle time range of the RSA process. Such a behavior is
not permitted with the models previously proposed in the
literature. It is, thus, first proposed to capture the particular
kinetic using a fractional model whose fractional behavior is
only on a limited frequency band. However, introduction of a
fractional model leads to several drawbacks: infinite dimen-
sional model, initialization matters, inconsistences with the
studied phenomenon in terms of response to flux variations... .
Thus, in order to overcome these limitations, it is proposed to
use a drift free control affine nonlinear model. The method
to tune the parameters of this model is described, and the
model efficiency is highlighted. Finally, the nonlinear model is
enhanced to account for the desorption phenomenon and used
to model data resulting from adsorption of CO2 on copper
hexacyanoferrate.

The authors intend to extend their results to the ν di-
mension with ν ∈ [2, 3] in order to take into account fractal
surfaces.
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