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An autonomous out-of-equilibrium Maxwell’s demon is used to reverse the natural direction of the heat flux
between two electric circuits kept at different temperatures and coupled by the electric thermal noise. The demon
does not process any information, but it achieves its goal by using a frequency-dependent coupling with the two
reservoirs of the system. There is no mean energy flux between the demon and the system, but the total entropy
production (system 4 demon) is positive. The demon can be power supplied by thermocouples. The system
and the demon are ruled by equations similar to those of two coupled Brownian particles and of the Brownian
gyrator. Thus our results pave the way to the application of autonomous out-of-equilibrium Maxwell’s demons

to coupled nanosystems at different temperatures.
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Nowadays the notion of Maxwell’s demon (MD) is gener-
ically used to indicate mechanisms that allow a system to
execute tasks in apparent violation of the second law of ther-
modynamics, such as, for example, to produce work from a
single heat bath and to transfer heat from cold to hot sources.
To obtain this result the demon does not exchange energy with
the system but it has a positive entropy production rate, which
compensates the negative entropy production of the system.
In general the increase in entropy is induced by the fact
that the demon needs to analyze the information that it gath-
ers on the system status [1,2]. In experiments this apparent
violation of the second law is obtained by feedback mecha-
nisms which often require the use of external devices such
as analog-to-digital (A/D) converters, computers, etc. [3-6].
Several smart experiments [7-9] have implemented this feed-
back locally, constructing in this way autonomous Maxwell’s
demons, which do not need the use of external devices as the
measure and the feedback are performed in the same place.
Several autonomous Maxwell’s demons have been theoreti-
cally developed [10-14], but they can be of difficult practical
implementation in several devices such as colloidal particles
and mesoscopic electric circuits at room temperature. How-
ever, Refs. [15,16] introduced a new paradigm of MD based
on an out-of-equilibrium device, which does not elaborate
any information about the system status. It has been shown
that the parameters of this device can be suitably tuned in
such a way that it does not exchange energy (heat or work)
with the system but it has a positive entropy production rate.
Thus it has the two main requirements of an autonomous MD
and it can be more easily experimentally realized because, in
contrast to the commonly used definition of MD, it works
without acquiring and analyzing any information about the
system status.
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We discuss here how to implement an out-of-equilibrium
MD (OEMD) [15,16] in electric circuits, which are versa-
tile dynamical systems ruled by coupled Langevin equations
[17,18].

Thus our study is quite general because it opens the way
to the application of OEMDs to coupled nanosystems mod-
eled by Langevin equations. As an example we will show
in this Rapid Communication how an OEMD can be used
to reverse the natural direction of the heat flux between two
electric circuits kept at different temperatures and coupled by
the electric thermal noise [19,20]. In Fig. 1 we sketch the
system (gray box) and the demon (yellow box). We chose
for the system this specific circuit because the statistical
properties of the heat flux have been characterized both theo-
retically and experimentally [19,20]. Furthermore, it is ruled
by the same equations of the Brownian gyrator [21,22] and of
two Brownian particles coupled by a harmonic potential and
kept at different temperatures [19], making the result rather
general.

The system (gray box in Fig. 1) is constituted of two resis-
tances R; and R, which are kept at two different temperatures
Ty and T, > Ty. In the figure, the two resistances have been
drawn with their associated thermal noise generators 7, and
12, whose power spectral densities are given by the Nyquist
formula |#,,|> = 4kgR,,T,,, with m = 1, 2. The coupling ca-
pacitance C controls the electrical power exchanged between
the resistances and as a consequence the energy exchanged
between the two baths. No other coupling exists between the
two resistances. The two capacitors C; and C, represent the
sum of the circuit and cable capacitances. All the relevant
energy exchanges in the system can be derived by the simul-
taneous measurements of the voltage V,, (m = 1,2) across
the resistance R,, and the currents i,, flowing through them.
When 77 = T, the system is in equilibrium and exhibits no net
energy flux between the two reservoirs. The circuit equations
can be written in terms of charges ¢, flowing through the
resistances R,,, so the measured instantaneous currents are
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FIG. 1. Diagram of the system (gray box) and of the demon
(yellow box). The system is constituted by the two resistances R; and
R, kept respectively at temperature 7; and 75, with 7, > T;. They are
coupled via the capacitor C. The capacitors C; and C, schematize the
capacitances of the cables and of the amplifier inputs. The demon
(yellow box) is composed of two resistances (R;; and R,,) kept at
two different temperatures 7, and 7,. Furthermore, the resistance
R, is driven by a voltage generator V; whose output is filtered by
the low-pass filter composed of the resistance R; and the capacitance
C,. The four voltage generators 1, (k = 1,2, d1, d2) represent the
Nyquist noise voltages of the resistances at the temperatures of the
heat baths.

im = gn. We make the choice of working with charges be-
cause the analogy with a Brownian particle is straightforward
as ¢, is equivalent to the displacement of the particle m
[18-20]. A circuit analysis shows that the equations for the
charges are

Rigi=Vi—m, and Ry g =m —V,, (D
with
—q1(C + C C
v, = G (C+C)+qr ’ 2)
X
—q; C C+C
Vy = q +;1(z( + 1)’ 3)

where X = G, C + C(C, + ;) and n,, is the Nyquist white
noise: (n;(t)n;(t")) = 26;jkgTiR;6(t —t'). In Ref. [20] we
have shown that Egs. (1) fully characterize all the thermody-
namics properties of the system.

In this system the work and the heat are defined as

W = < g 4
m — XQm’qm»

Q Vi \% Vm — Nm (5)
m = Ymlm = Vm——F—-
Ry,

The quantities W,, are identified as the thermodynamic work
performed by the circuit m’ on m # m’ and Q,, the heat dissi-
pated by the resistance m [17-20,23]. As all the variables are
fluctuating, the derived quantities Q,, and W,, fluctuate too.
In Ref. [19] we computed and measured the mean heat flux
between the two heat baths, which is given by

C*kp(T, — Ty)

(01) = —(Qn) = XY

(6)

where (-) stands for mean value and we have introduced the
quantity ¥ = [(C} + C)R; + (C; + C)R,]. We use the con-
vention that the heat extracted from a system reservoir is
negative and the heat dissipated is positive.

The out-of-equilibrium demon is sketched in the yellow box
in Fig. 1 and it is composed of two resistances (R, and R;,)
kept at two different temperatures 7y, and 7, [24]. The two
voltage generators 74 and 14, represent the Nyquist noise
voltages associated with the two resistances at the heat bath
temperatures. Furthermore, the resistance R, is driven by a
voltage generator V; whose output is filtered by the low-pass
filter composed of the resistance R; and the capacitance C;. We
notice that demon scheme is similar to that of the system, with
a coupling capacitance C — oo, on which the driving V| has
been added. To design it, we followed the main prescriptions
of Ref. [15]: (1) It is out of equilibrium; (2) either T;; or
T;» has to be smaller than 77; (3) it produces colored noise,
obtained in our case by the source V; filtered by R; and Ci;
and (4) it is coupled with the two parts of the system on
different frequency ranges, specifically, high frequencies with
subsystem 1 and DC coupled with subsystem 2.

The choice of V; is very important in order to simplify
the experimental configuration. Indeed, V; can be either the
thermal fluctuations of R; with a suitable cutoff imposed by
the R,C; or an external driving. Many choices are possible and
the simplest one is to use V; = V; = const and R; = 0. In such
a way Vy is coupled with R, only and the thermal noises 74,
and n,; are directly coupled with R, and high-pass filtered for
R,. The demon is always out of equilibrium, because, when
it is disconnected from the system, the power supplied by
V; is entirely dissipated in the demon resistances producing
a mean heat flux towards the demon heat baths, even in the
case Ty; = Ty,. This is a simplified version of the original
OEMD of Ref. [15] because it requires the use of only one
cold source at 7T; and a DC signal that can be easily generated
by thermocouples making the demon fully autonomous. We
will demonstrate that this demon can reverse the heat flux of
the system in a wide range of parameters with a zero energy
flux (heat and work) with the system.

The connection of the demon to the system changes the
current distributions and the energy exchanges. The circuit
analysis shows [24] that the currents ¢, (k =1,2,d1,d2)
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flowing in the resistances R; are now ruled by the following
equations,

Rigi=Vi—n, @)

Ry g =1n2 — Vs, ®)

Ri1 a1 = na1 — Va, 9

Ra2 i = naz + V5 — V2, (10)

—(C, +C C

Vv, = (G +C)q1 +Cgq; (11)

X
C C)yg — C

v, = (C1 +C)q; qu (12)
X

where ¢; = (¢2 + a2 +9a1), Gt = G, + Cy,and X; = C,C; +

CC+G).

In order to reduce the number of parameters we con-
sider the case T; = T;; = Ty, and R;; = R;». The heat fluxes
in the four reservoirs can be computed using Qk = UGk,
where vy is the potential difference on the resistance Ry [24].
Introducing the following parameters, R; = Ry1R42/(Ra1 +
Rai2), Ry = RiRo/(Rg + Ro), Y, = Ri(C + C1) + R,(C + (),

= C*kg/(XY,), (V2) =V, =VyR//Rpn, B=AR/[XR +
Ri(C; + C)*1/(R; R, C?), we obtain

= A( R~y B, -1 13
(01) = (R_z( 2 — 1)+R—d( d— 1)), (13)
: R, v?

(O)=-A—(L-T))-BhL-TpH+—, 14
R2 R2
) R,
(Qa) = —AR—(Td -T)—B(T; — 1)
d
VR [ 1 1 V2
Al (R 15
* Ra» (Rdl * Rz) Ry (15)
<V’V>—V’"2R’<1 +1> (16)
/= R \Rsi R}’

where (Q4) = (O41) + (Qg) is the total heat flux in the de-
mon reservoirs and (Wf) is the total power supplied by the
external generator Vy. The total energy balance demon -+
system is

(Oa) — (Wp) + (O1) + (02) = 0.

These equations allow us to define the conditions for which
the demon can reverse the flow without any energy exchange
with the system.

In the absence of the demon the heat flux is given by
Egs. (6),1.e., (Qz) = —(Ql) < 0. Using the demon we want to
reverse this flow, making (0> >0 but keeping (01) = —(05)
because an observer, who measures the heat flux of the sys-
tem, has to establish that heat flows from the cold to the hot
reservoir. The condition (Q;) = —(Q,) has two main conse-
quences. First, it reduces Eq. (17) to

A7)

(Qa) — (W) =0,

which indicates that all the power supplied by V; is dissipated
in the demon reservoirs and not in the system reservoirs.

(18)

Second, applying it to Egs. (13) and (14) we find that

V2

<= A— T, —

R (h
Finally, using Eq. (19) and the condition (Q> >0 in Eq. (14),
we compute the range of T, where the spontaneous process is
reversed, finding

1) + B(T, — Ty). (19)

Rq
In < — (I, —T). (20)
Ry
Equations (19) and (20) fix the conditions that allow the
demon to reverse the system mean heat flux without mean en-
ergy exchanges [Eq. (18)] between the demon and the system.
Equation (19) indicates that the fraction of the power injected
by the demon and dissipated in R, [VZZ/RZ in Eq. (14)] is
compensated by the heat extracted from the system baths (see
also Sec. VI in Ref. [24]). We can also prove that owing to
Eq. (19) the demon does not perform any work on the system.
Indeed, the total work performed by the demon on the system
is (Was) = (Wa1) + (Wa2), where (Wy1) and (W,,) are the
works performed on subsystems 1 and 2, respectively. These
can be computed using Egs. (7) and (8) in which we see
that a “force” proportional to g4 + g4 is applied on the two
subsystems. Thus the work per unit time of these forces is [20]

C
—{q1(ga1 + qa2)),

W, 21
(Waa) = X, 21
. C+C .
(Wa2) = == —{d2(qur + 4un))- (22)
1
From these two works [24] we obtain for the total work

. R, V2
Was)=—-A—( —Ty) —B(L —Ty) + . (23)

Ry R,

We clearly see that if the condition on V; [Eq. (19)] is verified,
then (W, ) = 0, i.e., no work is done by the demon on the
system. Thus Eqgs. (19) and (18) ensure that the total energy
flux from the demon to the system is zero.

However, the demon produces entropy and the total en-
tropy production rate (S) is positive in spite of the fact that
the system entropy productlon rate (S;) = (Qz)(l /T —1/Ty)
is negative, because (Q2 >0 and 7> > T} when the demon is

on.” The total entropy production rate is

. y . 1 1
§ =20 <Q2><— - —>.

To show that ($ >0, we start by taking into account that
(Qq) = (Wf) [see Eq. (18)] and that (Wf >>

have seen that is a fraction of the total power 1nJected into
the system by the demon source [24].

Furthermore, as we want (Q> >0, then from Eq. (14)
we have that V,z/Rz > (Q») as the other terms are nega-
tive because T, > Ty > T;. As a consequence, (04) [Ta >
(Qa)(1/Ty = 1/T2) > (Q2)(1/Ty — 1/T3) and we find (S 0.

These results on the effect of the demon on the system
can be checked by comparing the heat fluxes computed from
Eqgs. (13) and (14) with those obtained by the direct nu-
merical integration of Eqs. (7)—(10), where the four (Ok) =
(vrqy) are directly computed using Stratonovich integrals.

(24)

because we
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FIG. 2. (a) Heat fluxes as a function of the demon tempera-
ture Ty : (Qz) (blue line) computed when the demon is on, using
Egs. (13)—(16) and the condition for Vf [Eq. (19)]; (0y) (horizontal
red dashed line) computed [Eq. (6)] when the demon is “off”; (05)
(red circles) and (Q,) + () (black stars) obtained from the direct
numerical simulation of Egs. (7)—(10). (b) Demon efficiencies as a
function of 7;: n, (black line) and 7, (blue line, red circles) computed
from Egs. (14), (16), and (25) (continuous lines) and obtained from
the direct numerical simulations of Egs. (7)—(10) (red circles). The
parameters used to compute the curves in (a) and (b) are 7} = 300K,
T, =450K,C=1nF,C, =C, =100pF, Ry =R, = 10 MQ, R, =
3 M, and C,; = 50 pF.

This comparison is done using for the system compo-
nents (i.e., Ry, Ry, Cy, C;, C) the values of the experiment of
Refs. [19,20]. For the demon, we chose for C; a typical wiring
value and we fixed R; < R, for having a reasonable range
of T; [see Eq. (20)]. All the components and temperatures
values are indicated in the caption of Fig. 2. In Fig. 2(a) the
horizontal red dashed line indicates |(Q,)| at T, — T} = 150K
computed from Eq. (6) when the demon is “off.”” When the
demon is “on” the value of 0, computed from Egs. (14) and
that obtained from direct numerical simulation agree. Most
importantly, for 7; < 250 K the heat flows from the cold to the
hot thermal bath. The values of V; necessary for implementing
the demon conditions [Eq. (19)] are plotted in the inset, and

indeed for these values of V; we see that (Q,) + (Q1) = 0 in
the numerical simulation. It is important to notice that the
necessary V; is of the order of a few microvolts, meaning that
it can be easily obtained by two thermocouples coupled with
a cold and an hot bath, for example, 7} and 7.

The demon efficiency can be defined in two ways. As the
demon does not exchange any work and heat with the system,
then the efficiency can be defined in terms of entropy pro-
duction rates, which has been used in other contexts [25-27].
Another way to define efficiency is in terms of the energy
fluxes. Specifically, these efficiencies are

__ S _ o)
n=—g wd ng= o (25)

We see that 7 is the ratio between the entropy of the nonspon-
taneous process divided by the entropy of the spontaneous
process whereas 1y is the ratio between the reversed heat
flux in the system divided by the work performed by the
demon to achieve the goal. These two quantities are plotted
in Fig. 2(b) as a function of Ty, and we observe that n;, < 1%
and ng < 4%, i.e., in order to achieve its goal the demon
has to do a lot of work with a very large entropy production
rate.

To conclude, let us first point out that we do not discuss
here whether the OEMD [15] acts as a real demon or it is
only an “entropic refrigerator” [28]. We leave this question to
future works, because the main purpose of this Rapid Commu-
nication is to demonstrate that the original idea of the OEMD
[15] can be simplified and applied to electric circuits. We use
a simple one as a proof of principle but other complex circuits
can be implemented. We proved that the OEMD reverses the
spontaneous heat processes with no mean energy flux between
the system and demon, which has a single bath and a DC
forcing (powered by thermocouples) instead of two baths with
colored noise as in Refs. [15,16]. The demon has a small
efficiency and a very large positive entropy production that
compensates the negative one of the system. Our results are
very general because they are based on four coupled Langevin
equations, which model not only electric circuits, but many
mesoscopic systems, which are in principle controllable by
OEMDs.
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