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General hierarchical structure to solve transport phenomena with dissimilar time scales:
Application in large-scale three-dimensional thermosolutal phase-field problems
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A general hierarchical structure is developed for phase-field lattice-Boltzmann simulations with dissimilar
time scales. The number of the grid levels can be artificially selected in a reasonable range, which can enhance
the time marching step by two to three orders of magnitude in comparison with explicit methods. Constructed
on a massively parallel platform, the mesh distribution is dynamically adjusted according to a gradient criterion.
The developed high performance computing scheme is applied to simulate the coupled thermosolutal dendrite
evolution. Numerical tests indicate that the computing efficiency can be further improved by two to three orders
of magnitude, which makes numerical simulation of fully coupled thermosolutal dendrite growth viable for
alloys with Lewis number ∼104. The domain size which equivalently consists of billions of uniform meshes
is handled to simulate multidendrite evolution. Results show that the domain temperature becomes extremely
uneven due to the release of latent heat, which causes a significant difference from isothermal solidification. A
simple analytical model is proposed to predict the relation between growth velocity and Lewis number, and the
growth morphologies of both equiaxed and directional multiple dendrites are discussed. The combination of the
hierarchical mesh structure and the phase-field lattice-Boltzmann method provides an efficiency-driven approach
to solve the coupled thermosolutal microstructure evolution.
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I. INTRODUCTION

Dendrite microstructure is one of the most common so-
lidification patterns of alloys [1–3]. Starting from a stable
nucleus, the solid-liquid (S-L) interface proceeds into the un-
dercooled melt to maintain local thermodynamic equilibrium
and evolves into a treelike microstructure named the dendrite
[4].

The interaction between capillarity and thermosolutal
transport during solidification determines eventual dendrite
morphology, which significantly influences the mechanical
properties of materials [5–7]. However, performing exper-
iments to investigate the microthermosolutal transport is
commonly infeasible due to a rather large Lewis number (i.e.,
Le = α/D, thermal diffusivity α divided by solutal diffusivity
D). On the other hand, numerical modeling is a powerful
tool to explore the microstructure evolution. The phase-field
method (PFM) is becoming a standard computational ap-
proach to predict the mesoscale microstructure [8–11]. The
most remarkable improvement of the PFM is that the interface
width is assumed to be thin but finite, over which an order
parameter, i.e., the phase field φ, is introduced and it varies
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smoothly across the adjacent bulk phases. Besides, the explicit
tracking of the interface is avoided, which greatly simplifies
the complexity of the problem.

The simulation of dendrite evolution by the PFM has at-
tracted considerable interest for decades, but most studies
only focus on the pure solute diffusion by assuming that the
heat diffuses infinitely fast. A so-called frozen temperature
approximation [12–16] or isothermal solidification [17–21]
is normally employed to decouple the solute field and the
thermal field, which reduces the computing overhead but de-
viates from the practical solidification condition. Loginova
et al. [22] found that the nonisothermal effect would become
non-negligible for a larger cooling rate and fewer nuclei.
Removing the isothermal assumption is essential to retrieve
the true coupled thermosolutal dendrite evolution. However,
to realize this, three major difficulties need to be addressed:

(1) For metallic alloys with Le ∼ 104, the time step during
simulation must be sufficiently small, e.g., 10−10 s, to match
the constraint limit for numerical stability, which significantly
increases the computing overhead when a real time scale for
the simulation is required.

(2) The mesh size must be small enough, e.g.,
10−9–10−8 m, to resolve the refined diffuse interface, which
leads to a large number of grids if a real length scale is
reproduced.

(3) To fully recover the underlying physics, three-
dimensional (3D) simulations are mandatory to eliminate
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the possible biased or inaccurate results in 2D simulations
[21,23]. The 3D simulations are generally much more com-
putationally intensive than the 2D cases.

A general and robust numerical scheme is needed to
efficiently solve the three tough problems, especially the dis-
similar time scales. Ramirez et al. [4] used a nonuniform
grid to investigate the thermosolutal (Le ∼ 40) 2D dendrite
growth. Rosam et al. [24,25] adopted an adaptive and implicit
multigrid method to simulate the 2D thermosolutal (Le ∼ 200)
dendrite solidification. Guo et al. [26] extended the multigrid
algorithm with a highly parallelized computing scheme to
simulate thermosolutal (Le ∼ 104) multidendrite evolution.
Nevertheless, the 3D phase-field simulation is still struggling
due to its intensive computing overhead, especially when Le
approaches ∼104. Recently, the current authors [27] com-
bined the parallel multigrid algorithm and mesh adaptivity,
realizing 3D thermosolutal simulation (Le ∼ 104). But this
computing scheme is rather complicated and needs many it-
erations in each advancing step due to its implicit nature.

To improve the availability of the algorithm, in this work, a
simpler numerical scheme is developed based on our latest
work on 3D isothermal dendrite growth [28,29]. In detail,
the PFM is used to simulate the dendrite evolution, and a
kinetic-based approach, i.e., the lattice Boltzmann method
(LBM), is employed to solve the evolution of the thermal
field. It is worth stressing that the LBM shows good stability
and high computing performance [30]. The LBM has been
successfully combined with the PFM to simulate dendrite
growth under convection [31,32] and is validated effective to
simulate thermal evolution during solidification by Cartalade
and co-workers [33,34].

Furthermore, a hierarchical structure with dynamically ad-
justed mesh distribution is developed to enable the large-scale
phase-field lattice-Boltzmann (PFLB) simulations with dis-
similar time scales. The restriction on the time marching step
is eliminated by constructing a multilevel data structure and
the number of grid levels can be artificially selected in a rea-
sonable range. The computing efficiency is further improved
by building the numerical scheme on a massively parallel plat-
form, which enables the domain which equivalently comprises
billions of meshes in a uniform-grid scheme to be processed.
Both 2D and 3D single and multidendrites are discussed to
illustrate the robustness of the numerical scheme. A simple
analytical model is proposed to predict the relation between
growth velocity and Lewis number. Influenced by the uneven
temperature distribution, a significant difference is observed
in the development of dendrite arms.

II. MATHEMATICAL METHOD

A. Phase-field model

A quantitative phase-field model coupled with thermosolu-
tal diffusion proposed by Ramirez et al. [35] is employed to
simulate dendrite evolution. The total free energy F and cor-
responding governing equations for the phase field φ, solute
concentration C, and temperature T are given by

F [φ,C, T ] =
∫

dV
[σ

2
|∇φ|2 + fAB(φ,C, T )

]
, (1)

∂φ

∂t
= −Kφ

δF

δφ
, (2)

∂C

∂t
= ∇ ·

(
Kc∇ δF

δC
− �jat

)
, (3)

∂T

∂t
= α∇2T + L

2cp

∂φ

∂t
− q̇, (4)

where the phase field φ varies smoothly from 1 in solid to −1
in liquid, σ is the gradient energy coefficient, and fAB is the
bulk free energy density of the dilute binary alloy including A
and B components. Kφ and Kc are constants, L is the latent
heat, and cp is the specific heat. q̇ > 0 is an imposed heat
sink to simulate the heat flux out of the computational domain
[26,36,37]. Without this additional term, the released latent
heat will elevate the domain temperature and arrest solidifica-
tion. �jat is an antitrapping current introduced by Karma [38]
to eliminate nonequilibrium effects at the diffuse interface,

�jat = − W√
2

C/C∞
1 + k − (1 − k)φ

∂φ

∂t

∇φ

|∇φ| , (5)

where W is the interface thickness, C∞ is the initial solute
concentration, and k is the equilibrium partition coefficient.

According to the thin-interface analysis [35], the dimen-
sionless phase-field equations can be expressed as follows:

A(n̂)2
[ 1

Le
+ k[1 + (1 − k)U ]

]∂φ

∂ t̃

= 1

2
∇ ·

[
∂[A(n̂)2|∇φ|2]

∂∇φ

]

+ φ − φ3 − λ(1 − φ2)2(θ + kU ), (6)

1 + k − (1 − k)φ

2

∂U

∂ t̃
= ∇ ·

[
D̃

1 − φ

2
∇U − �jat

]

+ 1 + (1 − k)U

2

∂φ

∂ t̃
, (7)

∂θ

∂ t̃
= α̃∇2θ + 1

2

L/cp

	T0

∂φ

∂ t̃
− ˜̇q, (8)

where A(n̂) is the anisotropy function, which reflects
the anisotropy of the interfacial energy [35,39], and n̂ =
−∇φ/|∇φ| is the unit vector normal to the interface. α̃ =
Leλa2, D̃ = λa2, and ˜̇q = q̇τ0/	T0 are the dimensionless
thermal diffusivity, dimensionless solutal diffusivity, and di-
mensionless heat sink respectively, where the time, length,
and temperature are scaled by τ0 = d2

0 a2λ
3/(Da2

1), W0 =
λd0/a1, and the equilibrium freezing temperature range
	T0 = |m|C∞(1 − k)/k. d0 = �/	T0 is the chemical capil-
lary length, � is the Gibbs-Thomson coefficient, m is the
liquidus slope, a1 = 0.8839, a2 = 0.6267, and λ is a coupling
constant defined as

λ = 15RTM (1 − k)

16υ0H |m| 	T0, (9)

where R is the gas constant, TM is the melting point of the pure
solvent, υ0 is the molar volume, and H is the energy barrier
of the double well potential. U and θ are the dimensionless
solute concentration and dimensionless temperature, and they
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are defined as follows:

U =
2C/C∞

1+k−(1−k)φ − 1

1 − k
, (10a)

θ = T − TM − mC∞
	T0

. (10b)

θ < 0, and the dimensionless undercooling defined by 	 =
−θ is specified in the following simulations.

For the crystal with cubic symmetry, the anisotropy func-
tion A(n̂) in the 3D case can be expressed as follows [39]:

A(n̂) = 1 + ε1(Q − 3/5) + ε2(3Q + 66S − 17/7), (11a)

Q = φ4
x̃ + φ4

ỹ + φ4
z̃

|∇φ|4 , (11b)

S = φ2
x̃ φ

2
ỹ φ

2
z̃

|∇φ|6 , (11c)

where φĩ = ∂φ/∂ ĩ (i = x, y, or z.), ε1 and ε2 are the weight
coefficients favoring 〈100〉 and 〈110〉 dendrite growth direc-
tions, respectively. For the 2D case, the anisotropy function
is expressed as A(n̂) = 1 + ε cos 4(ψ − ψ0) [35], where ε

denotes the anisotropy strength, ψ = arctan(φỹ/φx̃ ) is the an-
gle between the primary arm and the x+ axis, and ψ0 is the
predefined growth orientation.

When simulating multidendrite growth with random
growth orientations, a much simpler method is employed to
avoid introducing extra equations describing the orientation
field [37]. The solid nuclei with predefined orientations are
initialized in the computational domain. As the solidification
proceeds, a small quantity of liquid is transformed into the
solid, and the solid increment is assumed to have the same
orientation as that of the original, which is equivalent to that
the dendrite grows by imposing its orientation on its nearest
liquid. This method is physically closer to the practical solidi-
fication condition and has been validated in our previous work
including the 2D case [26] and 3D isothermal case [28].

B. Lattice Boltzmann method

As a mesoscopic kinetic method, the LBM assumes that
the macro fluid is comprised of a collection of pseudoparti-
cles represented by a distribution function [40]. The transport
phenomena are revealed by the local streaming and collision
of those particles [40]. For the heat transport in this work,
a widely used approximation named the lattice Bhatnagar-
Gross-Krook (LBGK) model [41] is employed to solve the
thermal evolution [i.e., Eq. (8)], and the corresponding gov-
erning equation is expressed as

fi(�r + δ�r, tLBM + δt ) = fi(�r, tLBM) − 1

τLBM
[ fi(�r, tLBM)

− f eq
i (�r, tLBM)] + Fi(�r, tLBM)δt,

(12)

where fi(�r, tLBM) is the particle distribution function along the
ith direction, which represents the number of the particles at
the position �r and time tLBM. τLBM is the relaxation time re-
lated to the thermal diffusivity αLBM in the LBM, i.e., αLBM =
c2δt (2τLBM − 1)/6, where c = δx/δt is the lattice speed, δx is

the lattice spacing, and δt is the time step in the LBM, both
of which are formally rescaled to 1. f eq

i (�r, tLBM) = wiθ is the
equilibrium distribution function accounting for the diffusion
effect [42], where wi is the weight coefficient determined by
the discrete velocity model, i.e., w0 = 4/9, w1−4 = 1/9, and
w5−8 = 1/36 for the 2D nine-velocity model named D2Q9,
and w0 = 1/3, w1−6 = 1/18, and w7−18 = 1/36 for the 3D
19-velocity model named D3Q19. The macroscopic tempera-
ture and the discrete force reflecting the source term in Eq. (8)
are expressed as follows [43]:

θ =
∑

i

fi + δt

2

(1

2

L/cp

	T0

∂φ

∂tLBM
− q̇LBM

)
, (13a)

Fi(�r, tLBM) =
(

1 − 1

2τLBM

)
wi

(1

2

L/cp

	T0

∂φ

∂tLBM
− q̇LBM

)
,

(13b)

where q̇LBM is the imposed heat sink in the LBM, and the
coefficient (1–1/2τLBM) in Eq. (13b), together with the sec-
ond term on the right side of Eq. (13a), is to eliminate the
unwanted term during the Chapman-Enskog analysis [30,43].

III. NUMERICAL APPROACH

A. Discretization of equations

The discretization of the phase-field equations is performed
on a Cartesian uniform grid. Taking Eq. (6) for instance, the
central difference scheme is employed for the gradient term
∇, and a net flux control volume approach is applied for the
divergence operator ∇·. In detail, the variable is fixed at the
cell center and its divergence is determined by summing the
fluxes at cell walls, i.e., ∇ · J = ∑

i (Ji+ − Ji− )/dx̃, where i =
x, y, z, dx̃ is the space step, and Ji+ and Ji− are the fluxes at the
opposite walls.

The flux along the x+ direction can be deduced from the
first term on the right of Eq. (6), i.e.,

Jx+ = A(x+)2
φx̃ + |∇φ|2A(x+)∂[A(x+)]/∂φx̃, (14a)

where J = ∂[A(n̂)2|∇φ|2]/∂ (∇φ), and A(x+) is the anisotropy
function at the x+ wall.

Similarly, the divergence operator in Eq. (7) can be written
as JS = 0.5D̃(1 − φ)∇U − �jat, and thus the discretization
form is expressed as follows in terms of the x+ direction:

JSx+ = D̃
1 − φ

2

∂U

∂ x̃
+

√
2

4
[1 + U (1 − k)]

∂φ

∂ t̃

φx̃

|∇φ| . (14b)

A first-order forward Euler stepping scheme is adopted to
update the phase field and solute field, taking the phase-field
variable for instance, i.e.,

∂φ

∂ t̃

∣∣∣n

= φn − φn−1

dt̃
, (15)

where dt̃ is the time step during simulation, and the super-
scripts n and n − 1 denote the time.

B. Hierarchical mesh structure

A hierarchical mesh architecture with block-structure
adaptive mesh refinement (AMR) is constructed to solve the
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PFLB equations. This multilevel structure has been success-
fully used to simulate the isothermal dendrite [28,44,45] and
eutectic growth [46–49]. The key idea of this scheme is to tag
the cells that need to be refined and then to separate them into
clusters.

The refinement process is proceeded by first tagging the
potential grids according to a predefined gradient criterion,

|∇φ| + EU |∇U | + Eθ |∇θ | � ξ, (16)

where EU and Eθ are the weight coefficients for solute con-
centration and temperature respectively, and ξ is a threshold
value determined via numerical tests.

The S-L interface is the position where the gradient reaches
the local extremes and hence the refinement is required. After
a certain number of grids are tagged, a cluster algorithm
developed by Berger and Rigoutsos [50] is adopted to sepa-
rate the tagged grids into clusters or patch boxes which are
actually rectangles in two dimensions but boxes with interior
boundaries in three dimensions. The patch box consists of a
collection of meshes with the same size. Starting from the
bottom (i.e., the coarsest) grid level, the tagged grids are
refined by subdividing the mesh with a predefined refining
ratio (i.e., 2), and the refinement process continues until the
required finest grid level is reached. It is noted that the layout
of the patch boxes on each grid level must be correctly nested,
i.e., the finer grids must be located inside the coarser ones.

After constructing a hierarchical structure with different
sets of patch boxes on each grid level, the computing data
including the phase field, solute concentration, and temper-
ature needs to be communicated among different patch boxes
at each time step. For that, a layer of ghost cells is added at
the external boundaries of each patch box to collect the data
from its closest neighbors. The values at the coarse level are
updated by performing the restriction operation, i.e., updating
values through the weighted average from the fine ones cover-
ing it, while those at the fine level are updated by interpolation
operation using the data in the underlying coarse grid.

To maintain the thermal diffusivity constant in different
levels, the relaxation time τLBM in the multilevel structure
needs to vary with the grid size [51], i.e.,

τLBMf = 2(τLBMc − 1/2) + 1/2, (17)

where τLBMf and τLBMc are the relaxation time at the fine and
coarse grid levels respectively. In addition, to ensure the conti-
nuity of the physical quantities over the coarse-fine interface,
special attention is paid to the distribution function, which is
rewritten as the sum of the equilibrium and nonequilibrium
parts [51],

f f
i (�r, tLBM) = α f̄ c

i (�r, tLBM) + (1 − α) f eq, f
i (�r, tLBM), (18a)

f c
i (�r, tLBM) = 1/α

�

f f
i (�r, tLBM) + (1 − 1/α) f eq,c

i (�r, tLBM),

(18b)

where α = 0.5 τLBMf/τLBMc is a weight coefficient, and the
superscripts f and c denote the fine and coarse grid level re-
spectively. f̄i denotes the spatially and temporally interpolated
distribution function of the coarse level, and

�

fi denotes the
restricted values of the fine level.

To maintain the lattice velocity at one at any grid level, a
multistep advancing approach is employed in the multilevel
structure. In detail, after one “streaming and collision” step
on the coarsest grid level, 2ld “streaming and collision” steps
need to be proceeded on the subsequent fine grid level [52],
where ld is the level difference between the coarsest and
chosen fine grid level.

It is noted that there are three dimensions adopted in the
PFLB method, i.e., actual → PFM → LBM. In particular,
t → t̃ → tLBM and x → x̃ → xLBM for time and length re-
spectively, which satisfy t̃ = t/τ0, tLBM = t̃/dt̃ for time, and
x̃ = x/W0, xLBM = x̃/dx̃max for length. dx̃max is the grid size at
the coarsest grid level, which acts as the length unit for scaling
length in the LBM because the quantities in the multilevel
structure must be advanced from the coarsest to the finest grid
level, i.e., from “bottom to top” [53]. dt̃ is restricted by the
stability of the explicit algorithm, i.e.,

dt̃ = rdx̃2
min

2Nd D̃
, (19)

where r is an introduced stability coefficient, dx̃min is the grid
size at the finest grid level, Nd is the dimension of the domain
(i.e., 2 and 3 for the 2D and 3D cases respectively).

An outstanding advantage of the multilevel PFLB method
over the direct solution to the thermal evolution equation (8)
is that the constraint on the time step becomes much less
restricted. According to Eq. (19), the time step needs to be
inversely proportional to the diffusivity for explicit methods.
Because Le is ∼104 for metallic alloys, if Eq. (8) is explicitly
discretized, the time step will be reduced by four orders of
magnitude compared with that determined by Eq. (19), which
requires a very long simulation time to approach the real case.
On the contrary, if the LBM is employed to determine the
thermal evolution, the time step can still be determined by
Eq. (19) after choosing a proper stability coefficient r (see the
detailed derivation in the Appendix), i.e.,

r = (τLBM − 0.5)
Nd 22nl −1

3Le
, (20)

where nl is the number of the grid levels in the hierarchical
structure with a refining spacing ratio of 2 (i.e., the mesh size
of the coarse grid level is two times larger than that of the
neighboring fine level).

Accordingly, if Nd = 3 and Le = 1 × 104, we can choose
nl = 5, τLBM = 1.08, and thus r = 0.03, which is magnified
by 300 times in comparison with the constraint limit in the
explicit methods. In addition, the number of the grid levels
can be artificially selected in a reasonable range. nl is related
to τLBM, and τLBM is advised to approach 1 [30]. A larger τLBM

can cause larger numerical error, while a lower one (i.e., close
to 0.5) might lead to numerical instability. nl is not limited to
a specific value, and there are infinite pairs of (r, nl ). Table I
lists some reference values based on Eq. (20) for different
Le in three dimensions, in which “Magnification” denotes
the magnification of the time step compared with that in the
explicit finite difference method. The number of the grid levels
can be up to 50 theoretically if more sophisticated method is
combined to ensure numerical accuracy and stability [52].

Furthermore, the simplicity of explicit formulations in the
LBM offers enhanced efficiency without any major change in
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TABLE I. Reference values based on Eq. (20) for different Le in
three dimensions.

Case Le nl τLBM r Magnification

1 1 × 103 4 1.28 0.1 ∼100
2 1 × 104 5 1.08 0.03 ∼300
3 1 × 105 6 0.99 0.01 ∼1000
4 1 × 106 7 1.11 0.005 ∼5000
5 1 × 107 8 1.11 0.002 ∼20000

the algorithmic structure. The solution of the expensive ma-
trix problem during implicit time marching is avoided, which
enforces the conservation laws by improving the round-off
precision [54].

C. Parallel computing scheme

After the adaptive mesh is generated, the overall mesh
structure, together with the computing data, is broadcast to all
processes, based on which the computing work is constructed,
partitioned, and dispatched. Consequently, each process has
its own but different data according to the local array of patch
boxes, achieving the so-called single program with multiple
data (SPMD).

The data partitioning, dispatching, and communication are
controlled by a message passing library named the Message
Passing Interface [55], which handles all data on a distributed
memory level. A method based on the space filling curve [56]
is adopted to avoid load imbalance of the computing data.

D. Summary of the numerical scheme

The overall numerical scheme is organized as follows:
(1) Initialize the computational domain.
(2) Construct a hierarchical data structure by tagging and

clustering operations based on Eq. (16).
(3) Broadcast the grid architecture to all processes to real-

ize the parallelization of the computing data.
(4) Computation on each process:

for step = 1 : nt

for grid level = 1 : nl

for ip = 1 : np

solve Eqs. (6) and (7);

solve Eqs. (12), (13a), and (13b);

end

end

data communication among patch boxes and grid
levels;

at specified step, reconstruct the grid architecture
according to Eq. (16);

end,

where nt , nl , and np are the number of the total steps, the
number of the grid levels and the number of the patch boxes,
respectively, and ip is the index of the patch box on the certain
grid level.

TABLE II. Scaling parameters used for the simulations.

Parameter Value

τ0 (time scale in the PFM, s) 1.155 × 10−4

dt (time step, s) 1.638 × 10−8

d0 (chemical capillary length, m) 4 × 10−9

W0 (interface width, m) 1.358 × 10−7

dxmin (minimum spacing step, m) 1.086 × 10−7

	T0 (freezing range, K) 60

IV. NUMERICAL TEST

The Al-4 wt % Cu alloy, physical parameters of which can
be found elsewhere [26,57], is simulated in this work. The
PFM is established and employed as a dimensionless form,
and the scaling parameters used for the simulations are listed
in Table II. The computational domain is a square (cube) filled
with the undercooled melt for 2D (3D) cases. For the equiaxed
dendrite, a zero-Neumann boundary condition is applied at all
sides for all variables including the phase field, solute concen-
tration, and temperature. The initial shape of the predefined
solid seeds is circular (spherical) with the initial radius being
6.4 W0 for 2D (3D) cases. The physical properties of materials
are assumed constant, and the solute diffusion in the solid is
neglected.

A. Accuracy test

The phase-field model has been exhaustedly studied by
direct comparisons with experiments in our previous work
[3,28,29]. To test the accuracy of the temperature field cal-
culated by the LBM, the diffusion equation coupled with the
heat sink, i.e., Eq. (4), is solved on a domain [−1,1] × [−1,1]
by both the finite difference method (FDM) and the LBM.
The dimensionless physical quantities are set as α = 1, L = 0,
and q̇ = 0.2. All boundary conditions are zero Neumann.
The temperature distribution is initialized as T (t = 0) = 1 +
exp(−100r2

d ), where rd is the distance from the point (0.25,
0.25) in the 2D case and (0.25, 0.25, 0.25) in the 3D case,
respectively.

Taking the 3D case for instance, based on the explicit
FDM, Eq. (4) is discretized as

T n+1
i, j,k = Fo

(
T n

i+1, j,k + T n
i−1, j,k + T n

i, j+1,k + T n
i, j−1,k

+ T n
i, j,k+1 + T n

i, j,k−1

) + (1 − 6Fo)T n
i, j,k − q̇dt, (21)

where the superscripts n and n + 1 denote the time, the sub-
scripts i, j, and k denote the position, and the Fourier number
Fo is dt/dx2. The scheme can keep stable by using a fixed
time step dt = rdx2/(2Nd ), where the stability coefficient r
should satisfy 0 < r � 1.

The macro thermal evolution equation is transformed
into the lattice-Boltzmann equation by the Chapman-Enskog
analysis [42,58], and corresponding parameters in the
LBM are r = 0.9, τLBM = 0.5 + 3r/(2Nd ), and Fi(�r, tLBM) =
−(1 − 1/2τLBM)wiq̇dt . The D2Q9 and D3Q19 discrete ve-
locity models are employed for the 2D and 3D cases,
respectively. Figure 1 shows the predicted temperature versus
the distance along the horizontal centerline (i.e., y = Y/2 for
the 2D case and y = Y/2, z = Z/2 for the 3D case, where X,
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FIG. 1. Temperature distribution along the horizontal centerline for (a) 2D and (b) 3D cases, respectively. Both T and x are dimensionless.

Y, Z are the domain length) at the 4000th steps with inset tem-
perature field cloud maps. The temperature-distance curves
overlap, indicating that the calculated results by the LBM
agree quite well with those by the FDM. Table III shows the
maximum and minimum of the particle distribution functions
fi. Despite the difference in the numerical values of fi, the
cloud maps are basically similar to the insets in Fig. 1 except
for a small amount of offset in position.

B. Efficiency test

The computing efficiency is tested by changing the num-
ber of the parallel processes np and the number of the grid
levels nl . The seed is initialized at the domain center, and
the dimensionless minimum mesh size dx̃min is 0.8. The fol-
lowing parameters are adopted until stated otherwise: For
the 2D case, 	 = 0.2. λ = 10, ε = 0.02, r = 0.01, while
for the 3D case, 	 = 0.12, λ = 30, ε1 = 0.1, ε2 = 0, r =
0.05. The stability coefficient r is significantly larger than
that used in the explicit difference method, i.e., the time step
is enhanced by 100 and 500 times for the 2D and 3D cases
respectively.

The domain size is 1024 × 1024 and 512 × 512 × 512
in 2D and 3D cases respectively, i.e., 819.2 × 819.2 units of
W0

2 and 409.6 × 409.6 × 409.6 units of W0
3 if a uniform

grid dx = 0.8 units of W0 is employed. The total computing
steps are 500 000 and 50 000 steps for the 2D and 3D cases,
and the corresponding memory consumption is 1.8 and 24 GB
respectively, which is accessible for today’s computers (e.g.,
a single workstation with 64 GB memory). Figure 2 shows
the total elapsed time varying with np and nl . It is noted that
when np = 1 and nl = 1, the current algorithm is restored to
the normally applied algorithm without acceleration. In this

TABLE III. Maximum (Max.) and minimum (Min.) of the distri-
bution function fi in the LBM.

Case fi Max. Min.

2D f0 0.4578 0.4393
f1– f4 0.1145 0.1098
f5− f8 0.028 61 0.027 46

3D f0 0.3238 0.3231
f1− f6 0.053 97 0.053 85
f7− f18 0.026 99 0.026 92

case, it takes about 50 758 s in the 2D case. When np reaches
32, the elapsed time is shortened to 1993 s, i.e., gaining 25
times speedup, which is lower than the theoretical prediction
(i.e., 32) due to the inevitable data communication among
processes. Besides, because the amount of computing data
is not enough to be dispatched to each process, no further
computing speedup is achieved when np exceeds 24 for the
2D case with three grid levels and 144 for the 3D case with
five grid levels.

Remarkable improvement in efficiency is also observed by
applying the mesh adaptivity. Taking the 3D case in Fig. 2(b)
for instance, when np = 48, the elapsed time decreases from
91 906 s at nl = 1 to 9511 s at nl = 5, i.e., speeding up
∼10 times in efficiency. The construction of the multilevel
structure decreases the total computing data and thus improves
the computing efficiency. Further increasing np also short-
ens the computing time. With a combination of nl = 5 and
np = 144, the total computing time is shortened to 4303 s.
Similar to the efficiency improvement by only increasing np,
no more significant acceleration is observed when nl reaches
a certain value, e.g., nl increases from 3 to 4 when np = 8
for the 2D case, because building the complicated hierarchical
architecture will consume much of the total elapsed time.
Nevertheless, the combination of the parallel computing and
adaptive hierarchical structure greatly reduces the computing
overhead and shortens the simulation time by two to three
orders of magnitude in comparison with the normally applied
algorithm without acceleration.

Furthermore, as designated by “L1” and “L2” in Fig. 2,
the logarithm of the total elapsed time tsimu decreases nearly
lineally with log2np, which can be described as

log10 tsimu = klog2np + log10 t
np=1
simu , (22)

where k is the slope, and t
np=1
simu is the elapsed time for the

case where np = 1. The slopes of the lines “L1” and “L2” are
−0.2848, −0.2512 for the 2D cases, and −0.2392, −0.2048
for the 3D cases, respectively. To maximize the utilization of
the computing resource, the number of the parallel processes
and the number of the grid levels should be chosen reasonably
before simulation.

C. Influence of heat sink

When the thermal evolution is considered into the dendrite
evolution, an imposed heat sink q̇LBM is introduced to avoid
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FIG. 2. Efficiency test for (a) 2D and (b) 3D cases by using the developed numerical algorithm to solve the thermosolutal PFLB equations.
np is the number of the parallel processes, and nl is the number of the grid levels employed during simulation.

the continuous temperature rise induced by the release of
latent heat. q̇LBM influences the dendrite morphology by uni-
formly changing the total undercooling. To investigate such
effect, the dendrite morphology under different heat sink is
compared.

Figure 3 shows the average growth velocity of the 2D den-
drite tip versus the magnitude of the heat sink. The insets show
the thermal distribution (on the left side) and the dendrite
contour with the patch-box architecture (on the right side).
The closer to the S-L interface, the finer the mesh size, and
the higher the temperature due to the release of latent heat.
Because of the large difference of the growth velocity under
different thermal conditions, the average growth velocity is
used instead. The average growth velocity is calculated by the
distance divided by the required elapsed time when the den-
drite reaches the same domain position (see the insets). For a
relatively small heat sink, e.g., q̇LBM = 1 × 10−7, the dendrite
grows slowly because a large amount of heat is accumulated
near the S-L interface, lowering the local undercooling. Sim-
ilar to that induced by increasing local solute concentration,

FIG. 3. Dimensionless average growth velocity Vave of the 2D
dendrite tip versus heat sink q̇LBM. The insets show the thermal distri-
bution (on the left side) and the dendrite contour with the patch-box
architecture (on the right side).

the accumulated heat widens the primary arms [3]. As the
heat sink increases, the temperature is efficiently reduced,
which increases the undercooling and accelerates the dendrite
growth. When the heat sink is large enough, e.g., q̇LBM =
5 × 10−6, the dendrite morphology becomes square due to
increasingly developed side arms, i.e., the crystal anisotropy
is significantly weakened.

Figure 4 shows the simulated 3D dendrite morphology
with q̇LBM being 5 × 10−6, 1 × 10−5, 5 × 10−5, and 1 × 10−4

respectively. Each column corresponds to the same heat sink,
and the first and second rows show the dendrite morpholo-
gies viewed from [100] and [111] directions respectively.
A smaller heat sink corresponds to more accumulated heat,
which decreases the driving force for solidification and causes
less developed side branches. When the heat sink is relatively
large, e.g., q̇LBM � 5 × 10−6, the side arms become highly
developed.

V. RESULTS AND DISCUSSION

A. Single dendrite growth

Figure 5 shows the simulation results of the single dendrite
including the phase field, solute field, temperature field, and
typical hierarchical structure of the patch boxes. In Fig. 5(a),
the domain size is 4096 × 4096 (i.e., 3276.8 × 3276.8 units
of W0

2 when dxmin = 0.8 units of W0), and q̇LBM = 5 × 10−7.

FIG. 4. 3D dendrite morphology with q̇LBM being 5 × 10−6, 1 ×
10−5, 5 × 10−5, and 1 × 10−4 from (a) to (d) [or from (e) to (h)] re-
spectively. The first and second rows show the dendrite morphologies
viewed from the [100] and [111] directions respectively.
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FIG. 5. Simulated single dendrite morphology including the phase field, solute field, temperature field, and hierarchical structure of the
patch boxes during the AMR for (a) 2D and (b) 3D case. (c) Hierarchical grid structure according to the AMR for the 3D single dendrite.

The dendrite is magnified from the original size which is inset
in the upper-left quadrant to present the detailed structure. A
general fourfold symmetric morphology exhibits, and some
side arms start to stretch out along the direction perpendic-
ular to the primary arms. Influenced by the curvature effect,
the rejected solute becomes enriched between those protrud-
ing side branches, causing local solute accumulation, which
agrees well with those reported by Ramirez et al. [4,35]. In the
bottom-left quadrant, an intricate microsegregation pattern is
predicted in the solid region. Besides, as expected from a large
Le, the thickness of the thermal boundary layer is noticeably
larger than that of the solutal boundary layer. Because of the
release of latent heat, the recalescence behavior occurs, and
the temperature in solid is higher than that in liquid. The
temperature gradually decreases with the distance away from
the interface. In the upper-right quadrant, a hierarchical grid
structure is presented, in which the S-L interface is properly
characterized by the layout of the patch boxes at the top (i.e.,
the finest) grid level.

Figure 5(b) shows the 3D dendrite morphology including
the phase field, solute field, and temperature field. The domain
size is 1024 × 1024 × 1024 (i.e., 819.2 × 819.2 × 819.2 units
of W0

3 when dxmin = 0.8 units of W0), which is equivalent
to over one billion meshes if a uniform mesh structure is
employed. q̇LBM = 0. The highest temperature appears near
the S-L interface, and the width of the thermal boundary layer
is larger than that of the solutal boundary layer. Six primary
arms grow out from the seed center and gradually evolve
into a paraboloid shape. Figure 5(c) shows the hierarchical
grid structure according to the AMR. It is worth stressing
that the boxes are not grid cells but rather patch boxes as
discussed in Sec. III B. The layout of the patch boxes clearly
illustrates that the AMR can perfectly characterize the S-L
interface, which reduces the computing overhead and makes
the 3D simulations in a larger computational domain feasible.
In comparison with the pyramidal dendrite envelope reported
by Bragard et al. [59], a fully evolving dendrite with more
detailed features is reproduced, especially the evolution of the
secondary arms.

Figure 6 shows the dimensionless temperature versus the
distance along the horizontal centerline of the 2D domain

corresponding to Fig. 5(a) at the 300 000th, 600 000th, and
1 000 000th steps respectively. The temperature obtains the
maximum at the dendrite tip and exhibits a symmetric dis-
tribution which is similar to the dendrite pattern. Besides, the
temperature in the solid region is always higher than that in
the liquid, and the temperature-distance curves at different
times are broadly similar, i.e., the temperature increases from
a lower value to the maximum at the tip and then maintains
a higher value until reaching another tip. As the distance
further increases, i.e., approaching the far-field liquid, the
temperature starts to decrease. It is noted that the maximum
temperature does not keep increasing with dendrite evolution.
When the released latent heat is not enough to counterbalance
the effect of the imposed heat sink, the domain temperature
decreases, e.g., from the 300 000th step to the 600 000th step.

Figure 7 shows the tip growth velocity and dimension-
less temperature versus time for the 3D thermosolutal single
dendrite growth. q̇LBM = 2.5 × 10−5. As the dendrite grows,
the temperature keeps decreasing, while the growth velocity
increases.

FIG. 6. Dimensionless temperature θ vs distance along the hori-
zontal centerline of the 2D domain at the 300 000th, 600 000th, and
1 000 000th steps respectively. The inset is the dendrite contours at
different time.
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FIG. 7. Tip growth velocity Vtip and dimensionless temperature θ

vs time for the 3D thermosolutal single dendrite growth.

Figure 8 shows the effect of Le on dimensionless temper-
ature at the 50 000th steps and the dendritic average growth
velocity (from initialization to the 50 000th steps), in which
q̇LBM = 2.5 × 10−5, and Le = ∞ means the temperature is
independent of the position. As Le increases, the thermal
propagation increases, i.e., the released latent heat diffuses
rapidly, which tends to make the domain temperature uni-
form (see the decreasing maximum-minimum undercooling
difference). The spreading heat decreases the thermal accu-
mulation near the S-L interface, which increases the driving
force for solidification and accelerates the dendrite growth.
Furthermore, the relation between the average growth velocity
Va and Le can be described by the following fitting function:

Va = p0 + p1

1 + p2Lep3
, (23)

where p0 = 16.3, p1 = −15.8, p2 = 0.042, and p3 = 0.76
are constants dependent on the physical properties of the alloy.
Two fitting indicators, namely reduced chi sq and adj. r square
[60], are used to characterize the fitting degree, which are
0.085 37 and 0.996 24 respectively, indicating a higher fitting
degree.

FIG. 8. Average growth velocity Vave and dimensionless temper-
ature θ vs Le.

B. Equiaxed multidendrite growth

1. 2D equiaxed multidendrite growth

Figure 9 shows the evolution of the 2D equiaxed multiden-
drite morphology including the phase field, temperature field,
and solute field. The column corresponds to the snapshots
at the 40 000th, 400 000th, 800 000th, and 1 200 000th steps
from left to right. Twenty seeds are initialized (artificially)
randomly in the domain, and each column corresponds to the
distribution of the phase field, temperature field, and solute
field at the same time. The domain size is 4096 × 4096 (i.e.,
3276.8 × 3276.8 units of W0

2 when dxmin = 0.8 units of W0),
and q̇LBM = 4 × 10−6. Different colors are used to distinguish
the dendrites with different growth orientations. Initially, all
dendrites grow independently, exhibiting a fourfold symme-
try, and the secondary arms stretch out as the primary arms
protrude into the undercooled melt.

As shown in the regions A and B in Fig. 9(f), the denser the
distribution of dendrite, the more the released latent heat, and
thus the higher the local temperature. The uneven distribution
of the seeds causes a nonuniform temperature distribution,
which in turn affects the development of the secondary arms.
In particular, the secondary arms at region A are less de-
veloped than those at B due to lower undercooling (i.e.,
less driving force). When different dendrite arms meet and
impinge, as marked by the circles in Fig. 9(d), the growth
of the primary arms is blocked, and some side arms even
overgrow the neighboring primary arms. Furthermore, the
dendrite microsegregation and competitive growth are also
reproduced under the coupled thermosolutal condition. As
shown in Fig. 9(l), the interdendrite concentration is always
higher due to solute accumulation.

Figure 10(a) shows the temperature fluctuations along
the horizontal centerline of the computational domain corre-
sponding to Figs. 9(e)–9(h). Because of the release of latent
heat, the temperature is always higher at the growing S-L
interface. The temperature-distance curves experience multi-
ple local extreme points, indicating the complexity of thermal
diffusion. Such complexity can also be revealed by the non-
linear variation of the dimensionless maximum and minimum
temperature in the whole domain in Fig. 10(b). The domain
temperature is controlled by the interaction between the im-
posed heat sink and released latent heat. As the dendrites
grow, the released latent heat increases due to increasing S-L
interface, which counteracts the effect of heat sink and makes
the maximum temperature (i.e., the temperature at the inter-
face) change slightly. But far from the interface, the sink effect
dominates and decreases the temperature at late solidification.

2. 3D equiaxed multidendrite growth

Figure 11 shows the 3D simulation result of ten randomly
distributed dendrites including the phase field, temperature
field, and solute field at the 10 000th, 50 000th, and 150 000th
steps, respectively. The domain size is 2048 × 2048 × 2048
units of W0

3, which is equivalent to over eight billion meshes
if a uniform mesh structure is employed. q̇LBM = 5 × 10−6

and θ = −0.2. Similar to the 2D case in Fig. 9, colors are
used to distinguish the dendrites with different growth orien-
tations. All dendrites propagate outwards from the seed center
independently and then impinge each other. The temperature
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FIG. 9. Evolution of 2D equiaxed multiple dendrites including (a)–(d) phase field, (e)–(h) temperature field, and (i)–(l) solute field.
The column corresponds to the snapshots at the 40 000th, 400 000th, 800 000th, and 1 200 000th steps from left to right. Twenty randomly
distributed seeds are initialized in the domain.

reaches the local extreme at the S-L interface, and the thick-
ness of the thermal boundary layer is significantly larger than
that of the solutal boundary layer.

The combination of the parallel computing and adap-
tive hierarchical structure greatly improves the computing

efficiency. The total elapsed time for the 2D equiaxed multi-
dendrite case is about 17 h for a total 1 200 000 steps when 72
processes are employed, and for the 3D case it is about 415 h
for a total 150 000 steps when 192 processes are employed.
If uniform meshes are employed, in order to achieve such

FIG. 10. (a) Temperature fluctuations along the horizontal centerline of the computational domain corresponding to the temperature field
cloud maps shown in Figs. 9(e)–9(h). (b) The dimensionless maximum and minimum temperature at different time.
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FIG. 11. Evolution of 3D equiaxed multiple dendrites including (a)–(c) phase field, (d)–(f) temperature field, and (g)–(i) solute field. The
column corresponds to the snapshots at the 10 000th, 50 000th, and 150 000th steps from left to right. Ten randomly distributed seeds are
initialized in the domain.

simulation scale, one will need lattice with billions of nodes
[25], which makes it impractical to simulate microstructures
over meaningful volumes of materials.

C. Directional multidendrite growth

1. 2D directional multidendrite growth

Figure 12 shows the 2D directional multidendrite growth
including the phase field, temperature field, and solute field at
the 100 000th, 800 000th, 1 800 000th, and 2 800 000th steps,
respectively. A periodic boundary condition is set at the two
side walls while a zero-Neumann boundary condition is ap-
plied at both top and bottom sides for all variables including
the phase field, solute concentration, and temperature. Each
column corresponds to the distribution of the phase field, tem-
perature field, and solute field at the same time. Twenty seeds
are initialized (artificially) randomly at the domain bottom,
and a uniform temperature gradient Gθ is set along the growth

direction (i.e., y+),

Gθ = θt − θb

Y
, (24)

where θt = −0.18 and θb = −0.2 are the specified dimension-
less temperature at the domain top and bottom, respectively,
and Y is the domain height. The domain size is 4096 × 4096
(i.e., 3276.8 × 3276.8 units of W0

2 when dxmin = 0.8 units
of W0), and q̇LBM = 1 × 10−6. Different colors are used to
distinguish the dendrites with different growth orientations.

The dendrites grow upwards with developed side branches
and complex impingement. Some dendrites survive while oth-
ers are blocked. Only nine dendrites can be observed at the
final time step [see Fig. 12(d)]. The blocked dendrites, as
circled in Fig. 12(d), are always those growing with larger
deviation from the temperature gradient direction (i.e., y+).
Taking dendrites D1 and D2 for instance, the angles between
the growing direction and the y+ axis are 0° and 13.5°
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FIG. 12. Evolution of 2D directional multiple dendrites including (a)–(d) phase field, (e)–(h) temperature field, and (i)–(l) solute field.
The column corresponds to the snapshots at the 100 000th, 800 000th, 1 800 000th, and 2 800 000th steps from left to right. Twenty randomly
distributed seeds are initialized at the domain bottom.

respectively. The deviation from the y+ makes dendrite D2

finally blocked by dendrite D1.
The maximum temperature evolves with the dendrite

growth and always exhibits near the dendrite tip, as circled
in Figs. 12(e)–12(h). Figure 13(a) shows the temperature dis-
tribution along the vertical centerline of the computational
domain corresponding to Figs. 12(e)–12(h). The released
latent heat during solidification makes the temperature-
distance curves obtain extremes at the growing S-L interface.
Figure 13(b) shows the dimensionless maximum and mini-
mum temperature at different time in the whole domain. At
early solidification, the heat sink dominates and the domain

temperature keeps decreasing. As the dendrites evolve, the
released latent heat starts to counteract the effect of heat sink,
and the domain temperature rises. Controlled by both heat
sink and latent heat, the domain temperature exhibits non-
linear change. In addition, similar to Fig. 9, the interdendrite
concentration is significantly higher than that elsewhere.

2. 3D directional multidendrite growth

Figure 14 shows the evolution of 3D directional multi-
dendrite growth including the phase field, temperature field,
and solute field. The column corresponds to the snapshots

FIG. 13. (a) Temperature fluctuations along the vertical centerline of the computational domain corresponding to the temperature field
cloud maps shown in Figs. 12(e)–12(h). (b) The dimensionless maximum and minimum temperature at different time.
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FIG. 14. Evolution of 3D directional multiple dendrites including (a)–(c) phase field, (d)–(f) temperature field, and (g)–(i) solute field. The
column corresponds to the snapshots at the 10 000th, 150 000th, and 300 000th steps from left to right. Ten randomly distributed seeds are
initialized at the domain bottom.

at the 10 000th, 150 000th, and 300 000th steps from left to
right. The domain size is 1024 × 1024 × 512 (i.e., 819.2 ×
819.2 × 409.6 units of W0

3 when dxmin = 0.8 units of W0),
q̇LBM = 5 × 10−7, θt = −0.12, and θb = −0.14. Ten nuclei
are randomly seeded at the domain bottom, and colors are
used to distinguish the dendrites with different growth orien-
tations. A periodic boundary condition is set at the four side
walls, while a zero-Neumann boundary condition is applied at
both top and bottom sides for all variables.

The nuclei grow towards the surrounding liquid under the
control of the crystal anisotropy and then impinge with one
another. The dendrite arms along the temperature gradient
direction grows fastest. As expected from a large Le (∼104),
the thermal boundary layer is wider than the solutal boundary
layer. It is noted that a smaller heat sink is used in this case,
which makes the effect of the latent heat become predominant.
The accumulated heat near the dendrite tip reduces the driv-
ing force for solidification, which makes the dendrites grow
slowly.

As the dendrites evolve, the computing time per time step
increases due to increasing S-L interface area, i.e., more grids

need to be generated to characterize the refined interface. In
particular, the computing time for the current case increases
from 1.1 h for the first 10 000 steps to 8 h for the last 10 000
steps when 120 processes are employed. Generally, the last
30% occupies 70–80% of the entire elapsed time, because the
number of the grids, especially at the finest level, increases
proportionally with the increasing S-L interface area [28].

VI. CONCLUSIONS AND OUTLOOK

Typical cases are tested to illustrate the robustness and high
efficiency of the proposed numerical scheme. Accordingly,
the following three conclusions can be summarized:

(1) A general hierarchical structure is developed for the
phase-field lattice-Boltzmann simulation with dissimilar time
scales. The restriction on the time marching step is relaxed
by constructing the multilevel data structure, and the number
of the grid levels can be artificially selected in a reason-
able range. Constructed on a massively parallel platform, the
proposed numerical scheme can adjust the mesh distribution
dynamically according to a gradient criterion. The developed
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high performance computing scheme is successfully applied
to simulate the coupled thermosolutal dendrite evolution.

(2) Numerical tests reveal that by employing the numer-
ical scheme, the time step can be enhanced by two to three
orders of magnitude in comparison with the explicit meth-
ods. Meanwhile, employing LBM avoids solving complicated
coupled partial difference equations in an implicit time march-
ing scheme. With the capability of parallel computing and
adaptive hierarchical structure, the computing efficiency can
be further improved by two to three orders of magnitude.
Combining these two strategies can improve the overall com-
puting efficiency at a very significant extent, which makes
it viable to simulate large-scale (equivalently consisting of
billions of meshes in a uniform-grid scheme) thermosolutal
microstructure evolution with less computing overhead.

(3) The dendrite growth with realistic Lewis number ∼104

is presented under fully coupled thermosolutal condition. Be-
cause of the release of latent heat during solidification, the
temperature is always higher near the growing S-L interface.
A simple analytical model is proposed to predict the rela-
tion between growth velocity and Lewis number. The growth
morphologies of equiaxed and directional multidendrites are
discussed. Influenced by the uneven temperature distribution,
significant difference from the isothermal cases is observed in
the development of dendrite arms.

The scales of the secondary dendrite arm spacing and the
dendrite tip radius are typically in the range of 1–100 μm
and 0.1–10 μm. To simulate a representative volume of a
real casting (1–1000 mm3), a high performance computing
scheme is a prerequisite to achieve high-efficiency large-
scale phase-field simulations. However, strong assumptions,
e.g., ignorance of liquid convection, use of binary alloys,
and frozen temperature approximation, are still necessary
to simulate multiple dendrites in 3D [61]. Considering that
solidification is a multiscale, multiphysical, multicomponent
problem in four dimensions (space and time), the current work
in thermosolutal dissimilar time scales can help reveal the
underlying solidification behaviors in a much more explicit
way. The following aspects can be explored in a future work:

(1) Mechanism of fragmentation. Fragmentation occurs
under nonequilibrium conditions and is largely dependent on
the rapidly changing thermal conditions (e.g., recalescence
and reheating).

(2) Columnar-to-equiaxed transition. Such transition usu-
ally occurs in the front of columnar dendrites where thermal
effects play an important role in the crystal nucleation and
grain remelting.

(3) Microstructure and phase selection. Both transition
from primary to eutectic reaction and transient growth of den-
drites emerging from the eutectic interface are closely related
to local thermal conditions.

(4) Extension to additive manufacturing. The thermal
condition changes abruptly during additive manufacturing,
and consideration of the release of the latent heat during
simulation can give more accurate prediction in the final
microstructure-property relationship.

(5) Improvement of thermodynamical models. The ther-
mal diffusion affects the calculation of multicomponent phase
equilibrium by changing the local temperature, which im-
proves the accuracy of multiscale multicomponent modeling
in investigating solidification problems (e.g., grain sedimenta-
tion and solute segregation).
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APPENDIX: DERIVATION OF EQ. (20)

The thermal diffusivity in the LBM is scaled by dx̃max and
dt̃ , i.e.,

αLBM = α̃

dx̃2
max/dt̃

, (A1)

where dx̃max = 2nl −1dx̃min.
By combining Eqs. (19) and (A1), we obtain

αLBM = rLe

22nl −1Nd
(A2)

where Le = α̃/D̃.
To match macroscopic thermal diffusivity, the relaxation

time τLBM in the LBM satisfies [30,42]

τLBM = 3αLBMδt

δx2
+ 1

2
. (A3)

By combining Eqs. (A2) and (A3), we can derive Eq. (20).
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