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Variationally derived intermediates for correlated free-energy estimates between intermediate states
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Free-energy difference calculations based on atomistic simulations generally improve in accuracy when
sampling from a sequence of intermediate equilibrium thermodynamic states that bridge the configuration space
between two states of interest. For reasons of efficiency, usually the same samples are used to calculate the
stepwise difference of such an intermediate to both adjacent intermediates. However, this procedure violates the
assumption of uncorrelated estimates that is necessary to derive both the optimal sequence of intermediate states
and the widely used Bennett acceptance ratio estimator. In this work, via a variational approach, we derive the
sequence of intermediate states and the corresponding estimator with minimal mean-squared error that account
for these correlations and assess its accuracy.
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I. INTRODUCTION

Free-energy calculations are widely used to investigate
physical and chemical processes [1–7]. Their accuracy is es-
sential to biomedical applications such as computational drug
development [8–11] or material design [12–15]. Among the
most widely used methods based on simulations with atom-
istic Hamiltonians are alchemical equilibrium techniques,
including the free-energy perturbation (FEP) [16] and ther-
modynamic integration (TI) [17] methods. These techniques
determine the free-energy difference between two states, rep-
resenting, for example, two different ligands bound to a target,
by sampling from intermediate states whose Hamiltonians are
constructed from those of the end states. The free-energy
difference between the end states is then determined via a
stepwise summation of the differences between the interme-
diate states.

The choice of these intermediates critically affects the
accuracy of the free-energy estimates [18–20] by determin-
ing which parts of the configuration space are sampled to
which extent [21], thereby performing a function similar to
importance sampling [22]. In addition, different estimators
that determine the free-energy differences between these in-
termediates and the end states have been developed, most
prominently the Zwanzig formula [16] for FEP, the Bennett
acceptance ratio method (BAR) [23], and multistate BAR
(MBAR) [24].

We have recently derived [25] the sequence of discrete
intermediate states—the variationally derived intermediates
(VI)—that yield, for finite sampling, the lowest mean-squared
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error (MSE) of the free-energy estimates with respect to
the exact value. Their form differs from the most common
scheme, which, for N states, linearly interpolates between the
end states Hamiltonians H1(x) and HN (x), respectively, along
a path variable λs,

Hs(x) = (1 − λs)H1(x, λs) + λsHN (x, λs), λs ∈ [0, 1], (1)

where x ∈ IR3M denotes the coordinate vector of all M par-
ticles in the system. All states are labeled by an integer s
with 1 � s � N and λs corresponding to state s. The addi-
tional λs argument of the end states Hamiltonians indicates
the commmon use of soft-core potentials [26–28] to avoid
divergences for vanishing particles. Other approaches involve
the interpolation of exponentially weighted Hamiltonians of
the end states, such as enveloping distribution sampling [29]
(and variants thereof [30,31]) or the minimum variance path
[32,33] for TI.

In contrast, the VI are not directly defined via the end
states; instead, the optimal form of each intermediate s is de-
termined by the form of the adjacent ones s − 1 and s + 1. For
the setup shown in Fig. 1(a), which consists of two types of
intermediates, sampling is conducted in the first type labeled
with even numbered s and indicated by the solid lines with
yellow points. These are governed by the optimal Hamilto-
nian,

Hs(x) = − 1
2 ln

[
e−2Hs−1(x)r−2

s−1,s + e−2Hs+1(x)r−2
s+1,s

]
, (2)

where rs,t = Zs/Zt denotes the ratio of the configurational
partition sums of states s and t . Virtual intermediates are the
second type and labeled with odd numbers s with 2 < s <

N − 1 and indicated by the dashed lines in Fig. 1(a). For these,

Hs(x) = ln[eHs−1(x)rs−1,s + eHs+1(x)rs+1,s]. (3)

Virtual intermediates are used as target states to evaluate the
difference in free energy, too, and no sampling is conducted
in those. Due to the coupling of the VI, the optimal MSE
sequence of Hamiltonians H2(x) · · · HN−1(x) is determined by
solving the system of N − 2 equations of Eqs. (2) and (3).
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FIG. 1. Two schemes of free-energy calculation. The arrows
indicate the Zwanzig formula is used to evaluate the free-energy
difference to the adjacent state based on sample sets represented
through yellow dots. The dashed lines represent virtual intermediate
states that no sampling is conducted in. (a) Separate and uncorrelated
sample set are used to calculate the free-energy difference of the
respective intermediate to the state above and below (b). The same
sample set is used for this purpose.

The variational MSE minimization has been conducted
based on the Zwanzig formula [16],

�Gs,s+1 = − ln〈e−[Hs+1(x)−Hs (x)]〉s, (4)

being used to calculate the difference between two adjacent
states, as indicated by the arrows in Fig. 1. However, using
the virtual target states described by Eq. (3) is equivalent to
using BAR directly between two sampling states [25,34], and,
therefore, Eq. (3) also describes the optimal intermediates for
BAR.

Note that the Hamiltonians of the optimal intermediates,
Eqs. (2) and (3), depend on the ratios of the partition sums,
i.e., the desired quantity. Therefore, the system of equations
has to be solved iteratively. The principle is the same as for
BAR, where the estimator depends on an estimate of the
free-energy difference, and the optimal estimator is, therefore,
determined iteratively. However, BAR is, in practice, mostly
used with sampling states that are governed by Eq. (1) and a
user chosen λ value. The VI method generalizes the BAR prin-
ciple and determines not only the estimator but also the form
of all intermediates through such an iterative optimization by
using the information of the free-energy estimates between
these states. The resulting form differs from Eq. (1) and does
not require any additional user choice of a λ variable.

However, for both BAR and VI to be optimal for multiple
states, the free-energy estimates to the states above and below
an intermediate in the sequence have to be based on separate,
uncorrelated sample points. This is illustrated by the separate
yellow points in Fig. 1(a) that we refer to as the regular FEP
setup, which was the topic of our previous work [25]. Yet it
would be twice as efficient to use the same sample points
in both directions, as illustrated by Fig. 1(b), and as gener-
ally done in practice. However, this introduces correlations
between the estimates to both adjacent intermediates, thereby
violating the assumptions underlying the derivation of Eqs. (2)
and (3). Therefore, in this case, BAR and the above variational
intermediates are not optimal anymore. Due to these correla-

tions, we refer to the Fig. 1(b) as the correlated FEP (cFEP)
setup, which is the topic of this work.

Here we derive the minimal MSE sequence of intermediate
states and the corresponding estimators for cFEP, as used in
practice, that take these correlations properly into account.
This is in contrast to the derivation of VI [25] for FEP, where
these correlations do not occur. As will be shown below, what
might seem as a minor technical twist, markedly changes the
shape of the optimal intermediates and considerably improves
the accuracy of the obtained free-energy estimates.

II. THEORY

For the cFEP scheme shown in Fig. 1(b), we aim to derive
the sequence of intermediate Hamiltonians H2(x) · · · HN−1(x)
that optimizes the MSE,

MSE(�G(n) ) = E[[�G − �G(n)]2], (5)

along similar lines as for the regular FEP scheme [25], shown
in Fig. 1(a). Here �G(n)

1,N denotes the free-energy estimate
based on a finite number of sample points n and �G1,N the
exact difference between the end states 1 and N .

For the optimization metrics, different choices are possible,
such as the Kullback-Leibler divergence [35] or the Fisher
information metric [18,36] that measure the (dis)similarity
between configuration space densities. Instead, here we chose
to directly optimize the MSE, as it quantifies the average ac-
curacy with respect to the exact free-energy difference, which
is the relevant measure for most practical applications. Fur-
thermore, as the MSE can be decomposed into variance plus
bias squared, we account for both of these contributions that
are oftentimes optimized separately in the literature [37,38].

The cFEP variant in Fig. 1(b) only uses sampling in the
intermediate states. Setups that, in addition, involve sampling
in the end states, can also be treated with the formalism below.
However, first, as we have tested, the accuracy for a given
computational effort does not increase in this case. Second,
mixing two different types of sample points (the ones used to
evaluate �H to only one adjacent state vs. to both adjacent
states) further complicates the analysis.

For cFEP, the estimated difference is

�G(n) =
N−2∑

s = 2 s even

[
�G(n)

s→s+1 − �G(n)
s→s−1

]
. (6)

As in Fig. 1(b), the arrows point from sampling to target
states, i.e., either the end states or the virtual intermediates.
Assuming for each sample state s a set of n independent sam-
ple points {xi}, drawn from ps(x) = e−Hs (x)/Zs, with partition
function Zs, expanding Eq. (5) with the use of Eq. (6) reads

MSE
(
�G(n)

1,N

)
= (�G1,N )2 +

N−2∑
s = 2
s even

E
[(

�G(n)
s→s+1

)2 + (
�G(n)

s→s−1

)2]
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−2�G1,N

⎛
⎜⎜⎜⎝

N−2∑
s = 2
s even

(
E

[
�G(n)

s→s+1

] − E
[
�G(n)

s→s−1

])
⎞
⎟⎟⎟⎠

−
N−2∑
s = 2
s even

N−2∑
t = 2
t even

E
[
2 �G(n)

s→s+1 �G(n)
t→t−1

]
. (7)

The first two lines of Eq. (7) have already been processed
in Ref. [25], but the last term differs. Previously, as in the
regular FEP scheme in Fig. 1(a), these last expectation values
were originally derived from independent sample sets and
were, therefore, uncorrelated. In the present context of cFEP,
however, these estimates are correlated. Therefore, the term
needs to be split in two sums, distinguishing between the pairs
with samples from the same state and the ones from different
states,

N−2∑
s = 2
s even

N−2∑
t = 2
t even

E
[
2 �G(n)

s→s+1 �G(n)
t→t−1

]

= 2
N−2∑
s = 2
s even

E
[
�G(n)

s→s+1 �G(n)
s→s−1

]

+2
N−2∑
s = 2
s even

N−2∑
t = 2
t even
t �= s

E
[
�G(n)

s→s+1

]
E

[
�G(n)

t→t−1

]
, (8)

where the expectation value of the product between the two
estimates based on different sample sets has been separated,
as these are uncorrelated.

As we are only interested in the intermediates that optimize
the MSE, and not in the absolute value of the MSE, we focus
on the terms that will not drop out in the optimization below.

Continuing with the expression inside the sum of the first
term on the right-hand side of Eq. (8),

E
[
�G(n)

s→s+1 �G(n)
s→s−1

]
= −

∫
ps(x1)dx1...

∫
ps(xn)dxn (9)

ln

{
1

n

n∑
i=1

e−[Hs+1(xi )−Hs (xi )]

}

ln

{
1

n

n∑
i=1

e−[Hs−1(xi )−Hs (xi )]

}
. (10)

As in the derivation of Ref. [25], the Hamiltonians are now
shifted by a constant offset Cs, i.e., H ′

s (x) = Hs(x) − Cs. This
offset will cancel out for a given shape of an intermediate
when calculating the accumulated free-energy difference in
Eq. (6). However, as the intermediate states will turn out

to be coupled, these offsets do influence the shape of these
intermediates. The offsets can now be chosen such that the
terms inside the logarithms of Eq. (10) are close to one. In
this case, E[�G(n)

s′→(s+1)′ ] = �Gs′,(s+1)′ [25], and, therefore,
the two linear terms arising from Eq. (10) can be expressed
in terms of the exact free-energy differences.

Next, the product of the two sums in Eq. (10) is split
into terms based on the same and different sample points,
respectively,

E
[
�G(n)

s′→(s+1)′ �G(n)
s′→(s−1)′

]
= − 1

n2

∫
ps(x1)dx1...

∫
ps(xn)dxn (11)⎛

⎜⎜⎜⎝
{

n∑
i=1

e−[H ′
s+1(xi )−H ′

s (xi )]

}⎧⎪⎪⎪⎨
⎪⎪⎪⎩

n∑
j = 1
j �= i

e−[H ′
s−1(x j )−H ′

s (x j )]

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

+
n∑

i=1

e−H ′
s+1(xi )−H ′

s−1(xi )+2H ′
s (xi )

⎞
⎟⎟⎟⎠

+ fs′ (�Gs′→(s−1)′ ,�Gs′→(s+1)′ ), (12)

where the terms that can be expressed solely based on (con-
stant) free-energy differences are summarized by the term fs.
Again, the first two terms of Eq. (12) can be expressed in terms
of the free-energy differences between s and s + 1 as well as
between s and s − 1, respectively.

Collecting all terms arising from Eq. (7),

MSE
(
�G(n)

1,N

)
=

N−2∑
s = 2
s odd

1

n

{∫
ps(x) dx e−2[H ′

s+1(x)−H ′
s (x)]

+
∫

ps+2(x) dx e−2[H ′
s+1(x)−H ′

s+2(x)]

+
∫

ps+1(x) dx e−H ′
s+2(x)−H ′

s (x)+2Hs+1(x)

+ gs′ (�Gs′,(s+1)′ ,�G(s+2)′,(s+1)′ ,�G1′,N ′ )

}
, (13)

where the function g′
s serves the same purpose as f ′

s and can
be dropped in the optimization below.

The condition of small �G(n)
s′→(s+1)′ is fulfilled by setting

Cs = − ln Zs. By variation of the MSE from Eq. (13),

∂

∂Hs(x)

{
MSE

(
�G(n)

1,N

) + ν

∫
[e−Hs (x) − Zs]dx

}
!= 0, (14)

where ν is a Lagrange multiplier, the optimal sequence of
Hamiltonians is obtained. For s even, we obtain

Hs(x) = −1

2
ln

[
e−2Hs−1(x)r−2

s−1,s + e−2Hs+1(x)r−2
s+1,s

− 2e−Hs−1(x)−Hs+1(x)r−1
s−1,sr

−1
s+1,s

]
(15)
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FIG. 2. Configuration space densities of VI (left column) and cVI (right column) for (a) N = 3 and (b) N = 7 states. The individual rows
show different shifts in x direction between the minima of the harmonic, H1(x) (red toward the left in each panel), and the quartic, HN (x) (blue
toward the right), potentials of the end states, thereby showing setups with different configuration space density overlap K between the end
states, indicated by the yellow (light) area. Sampling is conducted in the even numbered intermediates. The dashed lines in (b) indicate the
(odd numbered) virtual intermediate target states that no sampling is conducted in.

For s odd and 2 < s < N − 1:

Hs(x) = ln[eHs−1(x)rs−1,s + eHs+1(x)rs+1,s]

− ln[e−Hs−2(x)+Hs−1(x)rs−1,s−2

+ e−Hs+2(x)+Hs+1(x)rs+1,s+2], (16)

where, as in Eqs. (2) and (3), the ratios rs,t of the partition
sums between states s and t have to be determined iteratively.
The above sequence, Eqs. (15) and (16), that we refer to as the
correlated variational intermediates (cVI), yield the minimal
MSE estimates for cFEP.

Figure 2 shows the resulting configuration space densities
of the above intermediates for the example of a start state
with a harmonic Hamiltonian, H1(x) = 1

2 x2, and an end state
with a quartic one, HN (x) = (x − x0)4. Figure 2(a) shows the
VI that are optimal for the regular FEP scheme in Fig. 1(a).
Figure 2(b) shows the cVI, optimal for cFEP.

The yellow (light) areas in Fig. 2, Eq. (17), provide a
simple measure of the configuration space density overlap K
between the end states 1 and N ,

K =
∫ +∞

−∞
dx min(pA(x), pB(x)), (17)

Here K = 0 indicates two separate distributions without any
overlap, and K = 1 full overlap, i.e., identical configuration
space densities.

The two rows in Figs. 2(a) and 2(b) depict the result for
two different values of x0, and correspondingly, varying K .

As can be inferred from Eq. (15), for N = 3, H2(x)
diverges at the points where p1(x) = p3(x), and therefore
p2(x) = 0 at these points, as can also be seen for the interme-
diate sampling state shown in Fig. 2(a). More generally, H2(x)
of cVI “directs” sampling away from the overlap regions and
toward the ones that are only relevant for one but not both end

states. For instance, the tails of the start state in the upper row
of Fig. 2(a) are sampled more for cVI than for VI. For larger
horizontal shifts of x0, i.e., low values of K , the two variants
become increasingly similar, as the additional term in Eq. (15)
with respect to Eq. (2) becomes smaller compared to the first
term.

For N = 7 states, Fig. 2(b) shows the converged resulting
configuration space densities. The case of x0 = 0, as shown in
Fig. 2(a), was omitted in Fig. 2(b) as the visualization is more
difficult in this case due to the higher number of states. In
Fig. 2(b), the additional changes from VI to cVI become more
complex. As in Fig. 2(a), the sampling states have smaller
densities p(x) in the overlap regions of the end states, but,
in contrast to Fig. 2(a), still differ between VI and cVI for
smaller values of overlap K . The reason is that while the
overlap between the end states vanishes with decreasing K , an
overlap between adjacent intermediate states remains that af-
fects the shape of the intermediates. Note that the divergences
mentioned above introduce instabilities in solving the system
of Eqs. (15) and (16). Hence, for N > 3 the factor 2 of the
additional term in the logarithm Eq. (15) has been replaced by
a factor κ that was set to slightly below 2 (κ = 1.95) in case
of Fig. 2(b). See Appendix for details.

cBAR Estimator

As mentioned above, using the Zwanzig formula [16] to
evaluate the free-energy difference between two sampling
states with respect to the virtual intermediate, Eq. (3), of VI
is equivalent to BAR [25,34]. Correspondingly, the virtual
intermediate defined by Eq. (16) of cVI also corresponds to
an estimator that is optimal for the sampling states of cFEP
and that we will refer to as correlated BAR (cBAR).
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To derive cBAR, we use the relation between the two
approaches. Determining the free-energy difference between
two sampling states labeled s − 1 and s + 1 by using the
virtual intermediate s to evaluate the difference between the
adjacent states yields

�G(n)
s−1,s+1 = − ln

〈e−[Hs (x)−Hs+1(x)]〉s+1

〈e−[Hs (x)−Hs−1(x)]〉s−1
. (18)

Using the approach of Bennett [23] instead,

�G(n)
s−1,s+1 = ln

〈w(Hs−1(x), Hs+1(x))e−Hs−1(x)〉s+1

〈w(Hs−1(x), Hs+1(x))e−Hs+1(x)〉s−1
. (19)

where w(Hs−1(x), Hs+1(x)) is a weighting function. From
Eqs. (21) and (19) follows that the two approaches are equiva-
lent if the weighting function relates to the Hamiltonian of the
virtual intermediate state through

w(Hs−1(x), Hs+1(x)) = e−Hs (x)+Hs−1(x)+Hs+1(x). (20)

Therefore, any Hamiltonian of a virtual intermediate state
corresponds to a weighting function. Bennett optimized the
weighting function with respect to the variance yielding the
famous BAR result

�G(n)
s−1,s+1 − C = ln

〈 f [Hs−1(x) − Hs+1(x) − C]〉s+1

〈 f [Hs+1(x) − Hs−1(x) + C]〉s−1
, (21)

where C ≈ �Gs−1,s+1 has to be determined iteratively and
f (x) is the Fermi function. This result is equivalent to using
the virtual intermediate of Eq. (3) with Eq. (18). Note that the
relation of a virtual intermediate to BAR result had already
been obtained by Lu et al. [34], albeit through a different
formalism, and that using the hyperbolic secant function [Eq.
(10), p. 2980] in their overlap sampling approach [34,39] is
equivalent to Eq. (20).

Next, for cFEP, using the Hamiltonian of the virtual in-
termediate from Eq. (16) in Eq. (20) yields the weighting
function of cBAR,

w(Hs−2(x), Hs−1(x), Hs+1(x), Hs+2(x),

Cs−2,s−1,Cs−1,s+1,Cs+1,s+2)

= [e−Hs−2(x)+Hs−1(x)+Cs−2,s−1

e−Hs+2(x)+Hs+1(x)+Cs+2,s+1 ]/

[eHs−1(x)−Hs+1(x)−Cs+1,s−1 + 1], (22)

where the MSE of the resulting estimates is minimal if all
Cs,t ≈ �Gs,t . A numerator of 1 in Eq. (22) would yield the
original BAR result.

Note that Hs−2(x), and Hs+2(x), are also virtual intermedi-
ates determined by Eq. (16). As such, the result is a system
of weighting functions, i.e., one for every pair of adjacent
sampling states. The optimal estimate can, therefore, only be
found by iteratively solving for the free-energy estimates be-
tween all sampling states at once. In this regard, the procedure
is similar to MBAR [24].

III. TEST SIMULATIONS

To assess to what extent our variational scheme improves
accuracy, we consider the one-dimensional system with a
harmonic and a quartic end state shown in Fig. 2. Rejection

sampling is used to obtain uncorrelated sample points. The
free-energy estimate, obtained from these finite sample sets,
is compared to the exact free-energy difference. The MSE,
Eq. (5), is then calculated by averaging over one million of
such realizations. With this procedure, different combinations
of overlap K , numbers of states N , and sample points n are
considered.

We compare three variants. First, using VI, Eqs. (2) and
(3), with FEP, i.e., the scheme in Fig. 1(a). Here the estimates
to both adjacent states are based on separate sample sets
and, therefore, not correlated. Second, also using VI but now
with cFEP, shown in Fig. 1(b). In contrast to variant 1, these
estimates are based on the same sample sets and, therefore,
correlated. In order to keep the total computational effort
constant, the number of sample points per set (i.e., per yellow
point in Fig. 1) is two times larger for cFEP than for FEP.
Third, using cVI, Eqs. (15) and (16), that accounts for these
correlations, also with cFEP.

IV. RESULTS

For N = 3 states, Fig. 3(a) shows the MSEs of the three
variants for different numbers of sample points. Here, for the
quartic end state, x0 = 0, corresponding to K = 0.85, was
used. The corresponding configuration space densities of VI
and cVI are shown in the upper row of Fig. 2(a).

As can be seen, cVI with cFEP, shown by the dark blue
(lower) line, yields the best MSE for all numbers of sample
points except very few ones. The other two variants, i.e., VI
with FEP (dashed green line) and cFEP (red upper line) yield
very similar MSEs. As such, the gain in information from
evaluating the Hamiltonians to both adjacent states for all
sample points yields only a very small improvement compared
to using separate sample sets for this purpose.

In order to quantify the improvement of cVI compared to
VI for cFEP, Fig. 3(b) shows the ratio of the MSEs of the two
variants, again in relation to the number of sample points per
set. The dark orange (upper) curve (K = 0.85), corresponds
to the MSEs shown in (a) (i.e., the values of the red curve
divided by the blue curve). The improvement in the MSE
plateaus slightly above two for more than two hundred sample
points per state. In addition, the improvements for setups with
different overlap K between the end states are shown (orange
to yellow). This improvement becomes smaller for smaller
values of K , but the qualitative dependence on the number of
sample points remains the same.

For a constant number of sample points n = 200 (and n =
100 per set for VI with FEP, shown by the dashed green line),
Fig. 3(c) shows how the MSEs of the three variants improve
with increasing K . The MSEs converge at low K , which is in
agreement with the observation from Fig. 2(a) that the phase
space densities of the intermediate state become more similar
in this case.

Figure 3(d) shows the MSEs for N = 7 states. The cor-
responding configuration space densities for two different
values of K are shown in Fig. 2(b). Here VI with FEP and
cFEP still yield similar MSEs, whereas cVI with cFEP, in
contrast to N = 3, now yields the best MSE for all K . The
improvement to VI ranges from around 20% for low K , to
around 50% for large K . This is in line with the observation
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FIG. 3. Comparison of the accuracy of VI and cVI using the schemes of Fig. 1. The accuracies were obtained from test simulations based
on the setups shown in Fig. 2. (a) Using N = 3 states and comparing three variants of free-energy calculations: Using cVI with cFEP (blue
lower solid line), VI with cFEP (red upper solid line) and VI with FEP (green dashed line). The MSEs of free-energy calculations are shown
for different number of sample points. (b) The ratio of the MSEs, and, therefore, the improvement, of using cVI compared to VI for cFEP.
The dark orange (upper) line (K = 0.85) corresponds to the ratio between the red and the blue (solid) lines in (a). In addition, the results for
different configuration space density overlaps K between the end states are shown (orange to yellow). (c) Using n = 200 sample points, the
MSEs of the three variants from (a) are shown over the full range of K . (d) As in (c), but with N = 7 states. The computational effort was kept
constant by reducing the number of sample points per state.

from Fig. 2(b) that the configuration space densities between
VI and cVI become more similar but do not fully converge for
a larger number of states in the limit of small K .

Last, the cBAR estimator can be used with any choice of
intermediate states for cFEP. To assess how much the cBAR
estimator improves the accuracy of free-energy estimates
compared to BAR for cFEP, we conducted test simulations
where the sampling states were chosen as in Eq. (1), i.e.,
by linear interpolation between the Hamiltonians of the end
states. Test simulations were conducted at varying values of K
and at N = 5 and N = 7. Evaluating the MSE, we found a sta-
tistically significant improvement, however, only in the range
of 1–2% (data therefore not shown here). The improvement
was independent of K and similar for both numbers of N .

Considering that the MSEs of cVI and VI can improve up
to an order of magnitude compared to the linear intermediates
defined in Eq. (1) (for a detailed comparison between VI
and linear intermediates, see Ref. [25]), the large majority of
improvements is not due to an improved estimator but due to
the way samples are generated.

V. DISCUSSION AND CONCLUSION

In summary, we have derived a variant of variational in-
termediates (cVI) that yield the optimal free-energy estimate
with minimal MSE when using the same sample points to
evaluate the differences between the adjacent states above and
below in the sequence (cFEP). This procedure is commonly
used in free-energy simulations, as it is computationally much

cheaper to evaluate sample points at different Hamiltonians
than to generate these. However, the resulting correlations
between these estimates have not been considered yet.

Our test simulations for a one-dimensional Hamiltonian
show that cVI with cFEP yields an improved MSE compared
to the optimal sequence (VI) with FEP, i.e., using different
sample points for estimates to states above and below in the
sequence. For N = 3 states, the first variant improved the
MSE by more than a factor of two for end states with high
configuration space density overlap K , whereas at low K the
MSEs were similar. For N = 7 states, the MSE improved
between 20% (low K) and 50% (large K).

Interestingly, due to the correlations mentioned above, us-
ing VI with FEP yields only slightly worse MSEs for all K
as using VI with cFEP, even though the latter involves twice
as many evaluations of Hamiltonians from adjacent states.
Only for cVI, thereby accounting for these correlations, the
additional gain in information translates into a marked im-
provement of the MSE.

Similarly to most other theoretical analyses and deriva-
tions of free-energy calculation methods, we also needed to
assume that all sample points within each intermediate state
are uncorrelated. If atomistic simulations are used for sam-
pling, then the resulting time-correlations reduce the number
of essentially independent sample points. Unfortunately, for
our one-dimensional systems, cVI increases barrier heights,
thereby increasing correlation times. We have so far not tested
our method on any complex biomolecular systems, so it is
unclear if these barriers can be circumvented or what the ex-
pected increase in correlation times is. However, to avoid such
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correlations between sample points in atomistic simulations,
usually only a small subset of all sample points is used to
calculate free-energy differences. Based on our findings and
in contrast to common practice, we therefore recommend to
use different subsets to evaluate the free-energy differences to
different adjacent states.

The above derivation provides an example on how optimal
intermediates and estimators with minimal MSE can be de-
rived for different types of setups based on finite sampling that
may help to incorporate a variety of assumptions and models
into future theoretical approaches.

APPENDIX: AVOIDING NUMERICAL INSTABILITIES

The divergence in Eq. (15) at all x for which

e−2Hs−1(x)r−2
s−1,s + e−2Hs+1(x)r−2

s+1,s

= 2e−Hs−1(x)−Hs+1(x)r−1
s−1,sr

−1
s+1,s (A1)

causes numerical instabilities in solving the system of
Eqs. (15) and (16). Replacing the factor 2 in Eq. (15) in the
logarithm with a factor κ , i.e., for s even,

Hs(x) = − 1
2 ln

[
e−2Hs−1(x)r−2

s−1,s + e−2Hs+1(x)r−2
s+1,s

− κe−Hs−1(x)−Hs+1(x)r−1
s−1,sr

−1
s+1,s

]
, (A2)

and setting, e.g., κ = 1.95, avoids these complications. As
can be easily validated, the inside of the logarithm in
Eq. (A2) is larger than zero for 0 < κ < 2 for all Hs−1(x)
and Hs+1(x). As shown for cVI in Fig. 2(b), κ < 2 prevents
ps(x) to go to zero at the crossing points of ps−1(x) and
ps+1(x) of the neighboring states but is still lowered at these
points.
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