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Robust impurity detection and tracking for tokamaks
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A robust impurity detection and tracking code, able to generate large sets of dust tracks from tokamak camera
footage, is presented. This machine learning–based code is tested with cameras from the Joint European Torus,
Doublet-III-D, and Magnum-PSI and is able to generate dust tracks with a 65–100% classification accuracy.
Moreover, the number dust particles detected from a single camera shot can be up to the order of 1000. Several
areas of improvement for the code are highlighted, such as generating more significant training data sets and
accounting for selection biases. Although the code is tested with dust in single two-dimensional camera views,
it could easily be applied to multiple-camera stereoscopic reconstruction or nondust impurities.

DOI: 10.1103/PhysRevE.102.043311

I. INTRODUCTION

Magnetic confinement fusion in deuterium-tritium plasmas
has the potential to be a clean, sustainable, and efficient al-
ternative to current power generation methods. Across the
globe numerous tokamaks have been built to achieve sustained
nuclear fusion, with the Joint European Torus (JET) [2] and
Doublet-III-D (DIII-D) [3] being two of the machines. To
achieve ignition in a fusion plasma, high densities, temper-
atures, and confinement times are required [4]. The central
challenge of fusion energy is in achieving these conditions and
attempts to do so have been through a multitude of physics and
engineering optimizations.

In every operational tokamak exists impurities, which can
either exist intrinsically or are extrinsically added for ex-
perimental purposes. One class of intrinsic impurity is dust,
which is typically a nm-mm particulate created from the toka-
mak plasma facing components (PFCs). These PFCs include
the tokamak walls and divertor, which in current experimen-
tal devices are typically composed of carbon, in the form
of graphite or carbon-fiber composites, or metals such as
tungsten, beryllium, and molybdenum [5,6]. During tokamak
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operation, high-energy events such as edge localized modes
(ELMs), disruptions, and vertical displacement events can
load these PFCs with powers up to the order GWm−2. These
events can potentially liberate intrinsic dust and even create
more dust via processes such as spallation, vaporization, and
erosion of the PFC melt layer [7–9]. In addition to these
plasma interactions, mechanical machining of PFCs can also
contribute to the creation of dust.

Dust in tokamaks can pose both operational and safety
concerns. In particular, dust particles can retain tritium fuel
leading to an increase in the in-vessel tritium inventory over
time. This is of concern both for safety and for the tritium
fuel cycle, and as a consequence future machines have limited
the tritium inventory to 700 g [10]. In addition, when dust
particles composed of high-mass elements such as tungsten
enter the plasma, this can cause sudden cooling of the plasma
by increased radiation and a drop in the plasma fusion perfor-
mance or in extreme cases lead to plasma disruptions [11,12].

In an attempt to understand and mitigate the risks posed
by tokamak impurities, the physics of dust in plasmas has
become a highly researched area in recent years. At the fore-
front of this research are dust in plasma simulation codes
such as MIgration of GRAINs in fusion devices (MIGRANe)
[13], Dust in TOKamaks (DTOKS) [14], DUST-TRACKing
(DUSTTRACK) [15], and DUST Transport (DUSTT) [16].
These codes solve differential equations governing the
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evolution of temperature, charge, and velocity of a dust grain
in a plasma background [17,18]. One key use for these codes
is in determining which physical forces and phenomena play
important roles in dust transport in tokamaks. In theory, one
of these codes could be run with different forces active, to
see which phenomena best replicate experiment. This, how-
ever, requires large statistically significant dust track datasets
to compare against the models. Such datasets are currently
sparse and manually selected. Here the Robust Impurity De-
tector and Tracker (RIDAT) code is presented, which allows
for automatic generation of such datasets from tokamak cam-
era footage.

II. METHOD

A. RIDAT code

The code for RIDAT was developed in Python, with aims
of detecting significant sets of dust tracks automatically. RI-
DAT was also designed to be robust, such that it can be
applied to various cameras and impurities. The code can be
separated into image processing and dust tracking modules.
The image processing module receives a list of image frames
from tokamak video footage as an argument and outputs a list
of dust grains detected in each frame—along with the dust
grain properties. The dust tracking module uses these isolated
detected grains as arguments and outputs a list of connected
dust tracks spanning multiple frames [19].

The image processing module detects and characterizes
dust grains, which can be seen as small bright ellipses or
streaks in camera footage. To achieve this, the code works
frame by frame, determining a background average for each
frame. This is done by averaging the pixel intensities in
temporally adjacent frames. This background average is then
subtracted from the intensity profile of a frame, and all pixels
over a user selected brightness threshold TB are detected.
These bright spots are collected into dust grains by grouping
spatially adjacent bright pixels. Two successfully detected
grains can be seen in Fig. 1.

Finally, basic properties of the grains are determined, such
as position, brightness, length, and width. Position and bright-
ness are found by averaging the x-y pixel coordinates and
normalized intensities of a grain, respectively. The length of a
grain is found by taking the longest distance (px) between any
two pixels on the grain. The width is then simply the grain
area (px2) divided by length. It is important to note that—
depending on camera frame rate—the length of a dust grain
can either be indicative of its physical dimensions, or how far
it has traveled over the camera exposure period. Because of
this, a user can manually select whether RIDAT is in streaking
or nonstreaking mode. In the former, RIDAT treats the length
as the distance traveled and stores two positions of a grain:
one at the start and one at the end of its motion.

The dust tracking module takes the unordered dust grain
lists of each frame outputted by the image processing module
as an argument. It returns an ordered list of fully connected
dust tracks spanning multiple frames. In other words, the pur-
pose of this module is to connect the temporally isolated dust
grains found by the image processing module. The core of this
module is an algorithm that works frame by frame analyzing

FIG. 1. (a) An unedited image taken from the DiMES camera in
DIII-D. (b) The same still, but with RIDAT’s background subtraction
applied with a TB of 35. Detected dust grains are indicated by red
circles.

all possible tracks for a dust grain in frame N across frames
N + 1 and N + 2. Then the algorithm determines which of
these tracks is the most likely real track using a naive Bayesian
machine learning classifier. Finally, it repeats the process on
the next set of three frames (N + 1, N + 2, and N + 3), join-
ing the new data to any previously detected tracks.

A naive Bayesian classifier is a supervised machine learn-
ing classifier that determines the probability of each classifier
Ci fitting to data with features f , P(Ci| f ), using Bayes’s
theorem [20]. In the case of RIDAT, the classifier assumes
a Gaussian probability density function, and classifies a dust
track as either True (corresponding to a likely real track) or
False (corresponding to an erroneous joining of unrelated dust
grains). The features then consist of the following properties
of a potential dust track:

(i) Mean change in position, μδR (px).
(ii) Standard deviation of change in position, σδR (px).
(iii) Mean change in brightness, μδB (normalized).
(iv) Mean change in width, μδw (px).
(v) Mean velocity angle, μθ (◦).
(vi) Mean change in velocity angle, μδθ (◦).
This type of classifier was selected due to its simplicity and

ability to determine not only if a track was correct (True), but
also the likelihood of correctness. Thus, for a given dust grain
in frame N, if there are candidates for the corresponding grain
in frame N+1 and N+2, then this classifier can determine the
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TABLE I. The features of one correct and one incorrect dust track
identified by a user using RIDAT for a shot in Magnum-PSI.

μδR σδR μδB μδw μθ μδθ C

9.5 2.5 0.4 0.4 0.0 0.0 True
26.6 20.5 0.7 0.0 −52.9 48.5 False

most probable correct candidates with a Bayesian probability
over a user-defined threshold TP. The listed features have been
chosen as they are the physical properties intuitively thought
to discriminate dust tracks from other image features. If a dust
grain is traveling at a constant speed, for example, then the
mean change in position should be relatively constant. It is
important to note, however, that this example of a constant
speed is not assumed by the user. In fact, even if all grains
were traveling with a constant three-dimensional (3D) speed,
the projection onto a 2D camera would not be constant. The
only assumption made is that there is some distribution of par-
ticle speed; the machine learning algorithm then determines
the characteristics of this distribution.

Creation of the training data sets was achieved by a training
function that displays three consecutive video frames to the
user. The user can select the correct path in frames 2 and
3 for a given grain in frame 1. The dust track features are
saved, with a classification of True. Because a given grain only
takes one True path, all other potential tracks stemming from
the given frame 1 grain are classified False, which allowed
the creation of large training data sets quickly. Although this
method creates a significant disparity between classifications,
it is a disparity mirrored by reality, as the number of possible
paths for a grain greatly outweighs the one True path. An
example of one True and one False dust track from a training
data set from the linear Magnum-PSI machine is shown in
Table I.

To test the efficacy of the code, RIDAT was applied
to footage from three plasma machines: JET, DIII-D, and
Magnum-PSI (M-PSI). The general process of application
was first to determine parameters to be used in the code, then
to manually create a training data set for each machine, and,
finally, to run the tracking code on one shot at a time. Due
to the high variation in dust abundance, computational time
for tracking varied across machines. The shortest computa-
tion time on a four-core computer was less than 1 min for
a 10-frame shot in JET, with ∼1 grain per frame. The most
computationally expensive run was on a single 1000-frame
batch in M-PSI; taking more than 20 h for ∼20 grains per
frame.

B. Diagnostic setup

Footage from the JET tokamak was captured with a near-
infrared (NIR) Hitachi KP-M1AP protection camera, with a
frame rate of 50 Hz. This camera was part of a safety mon-
itoring system, situated on the top half of JET’s inner wall,
with an angled view toward the divertor [21]. The footage was
from a 2018 campaign, during which W dust was occasionally
mobilized by the restart of the plasma. Typical footage from
the NIR camera is shown in Fig. 2.

FIG. 2. (a) A 3D reconstruction of JET’s NIR camera view using
the tokamak viewing software Calcam [22]. (b) A still image taken
from the same NIR camera.

In addition to JET, footage was collected from the toka-
mak DIII-D [3]. The camera used for this experiment was
a CIDTEK 3710D camera with a frame rate of 5 kHz and
a spectral width dependent on the filter applied [23]. The
camera was part of a Divertor Material Evaluation Station
(DiMES), which has a vertical view of the divertor [24]. This
top-down divertor view can be seen in Fig. 3. Shots from DIII-
D were captured during an experimental campaign studying
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FIG. 3. (a) A 3D Calcam reconstruction of the DiMES view in
DIII-D [22]. The gray tiles indicate the divertor viewed from above.
(b) A still image taken from the DiMES visible camera.

turbulent transport and ELM control [25]. Dust grains ob-
served in these videos were most likely composed of intrinsic
graphite, as this is the main material used for PFCs in DIII-D.

The final machine used for experimental data was M-PSI,
a linear plasma generator located in the Dutch Institute for
Fundamental Energy Research. Camera footage collected was
from a Phantom V12.1 visible fast imaging camera located in
one of the side camera ports of the cylindrical housing, shown
in Fig. 4. Footage was collected from over a dozen shots
with a frame rate spanning from 400 Hz to 1 kHz [26]. The
footage for this research was captured during an experimental
campaign in 2018 in which dust was dropped vertically into
the target chamber with a plasma beam flowing through it.
The dust was composed of 5- and 9-μm monodisperse W and
was shaken through sieves before entering the chamber. The
dust was initially dropped with no plasma present, and then
a cylindrical plasma beam was generated with magnetic field
values of 0.1, 0.2, 0.3, and 0.4T .

III. RESULTS AND ANALYSIS

RIDAT’s machine learning algorithm was trained sepa-
rately with JET, DIII-D, and M-PSI footage. The training
datasets were randomly segmented from the image data, and
the traning set sizes were 365 tracks for JET, 597×103 for
DIII-D, and 230×103 for M-PSI. The settings used for train-

FIG. 4. (a) A Calcam reconstruction of the plasma target cham-
ber located in the Magnum-PSI machine [22]. (b) A typical still
image taken by the Phantom visible fast imaging camera in Magnum-
PSI. The illuminated section is the plasma beam.

ing and tracking were optimized in a number of preliminary
runs. During these runs the change in brightness variable was
removed from the machine learning feature set. This was
because only the brightest and easiest to identify grains were
used in training. Thus, a bias was created for brighter dust
grains in training, which extended to a bias in tracking when
the brightness feature was active. The settings with which
RIDAT was run for each machine are shown in Table II.

A. JET

Each of the three trained algorithms were applied back to
their corresponding machines to detect and track dust. For
JET, over 30 dust tracks were identified over 34 different
shots. An example track overlaid on a summed image from the
divertor camera is shown in Fig. 5. From Fig. 5 it is clear to see
that the RIDAT predicted track follows the bright streak of the
physical dust grain well. This demonstrates RIDAT’s ability to
accurately and automatically track a dust grain across multiple
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TABLE II. A table displaying the run settings for RIDAT applied
to each plasma machine, where TB is the threshold brightness, TP is
the threshold Baysian probability, Streak determines whether grains
are treated as single grains or traveling streaks, and size is the number
of datapoints used for training the machine learning classifier.

Machine TB TP Streak Size

JET 15 0.84 True 363
DIII-D 30 0.97 False 597×103

M-PSI 8 0.97 True 230×103

frames in video footage. However, the track shown in Fig. 5
is also incomplete, as the code has failed to track the first
and last frames of the grain’s path. This may be due to the
significant variation in track direction at the start (top) and tail
(bottom left) end of the path. This deviation in track features,
coupled with the small (363 track) training data set for JET,
could have been sufficient to incorrectly label the tail ends of
the path as false. This issue may be resolved by using a larger,
more varied training data set or by more carefully optimizing
brightness and probability thresholds.

After the JET dust tracks were generated, the classifica-
tion accuracy of the tracks was determined. This was done
by overlaying detected tracks with camera footage and man-
ually determining whether the track positions follow their
real counterparts (similarly to the example in Fig. 5). The

FIG. 5. The pixel positions of a RIDAT-generated dust track from
JET. Positions were overlaid onto a combined still from JET’s NIR
camera, found by summing the image data of every frame in this
shot.

FIG. 6. The pixel positions of a random set of five RIDAT-
generated tracks from shot 167345-11198 in DIII-D, overlaid on a
still image from the same shot.

classification accuracy of RIDAT applied to JET was cal-
culated to be 65%. This is lower than the value predicted
by the Bayesian probability cutoff of 84%. The reason this
classification accuracy is so low is most likely due to the qual-
ity of the JET footage, as the 35% of incorrect identifications
were mostly camera noise or plasma emission. Additionally,
the rapid deviation in track features mentioned earlier can be
partially attributed to the JET camera’s long integration time.
Thus, for footage similar to the NIR camera in JET, RIDAT
may be used as a first step in track generation; followed by
more rigorous manual vetting.

B. DIII-D

RIDAT’s application to DIII-D footage generated 925 dust
tracks across two shots. Five example tracks are shown over-
laid on an image from the DiMES camera in Fig. 6. The
RIDAT generated dust tracks were again manually compared
against camera data, and a classification accuracy of 99%
was found. This high classification accuracy further demon-
strates RIDAT’s ability to generate high-quality track data
from camera footage. Moreover, a large database of 925 tracks
indicates RIDAT can successfully produce statistically signif-
icant datasets automatically. As such, it seems RIDAT is best
suited to the type of data collected from DIII-D, in which there
were large quantities of separated, bright, and consistent dust
grains.

C. M-PSI

When applied to M-PSI, RIDAT produced over 1500 dust
tracks across 18 shots. Five example tracks are shown in
Fig. 7, overlaid on of a still image from the phantom cam-
era. On manual inspection, the classification accuracy of the
RIDAT tracks was determined to be 74%. This classification
accuracy initially appears low. However, the majority of RI-
DAT’s inaccurate classifications for the M-PSI dust grains was
because RIDAT could not distinguish between two very simi-
lar dust tracks. This was exacerbated by M-PSI’s particularly
bright background seen in Fig. 7. Thus, the performance of
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FIG. 7. The pixel positions of a random set of five RIDAT-
generated tracks from the 0.4T Plasma data set of Magnum-PSI,
overlaid on a still image from the same camera. To distinguish the
trajectories of overlapping tracks, a linear fit has been applied to each
track.

RIDAT could be improved by more carefully selecting im-
age processing parameters; parameters such as the threshold
brightness and the number of frames over which a background
is averaged.

IV. CONCLUSIONS

The RIDAT algorithm was designed and applied to camera
footage from JET, DIII-D, and the linear plasma generator
Magnum-PSI with varying levels of success. In JET, RIDAT
detected over 30 dust tracks across 34 camera shots with
a classification accuracy of 65% and incorrectly discounted
sections of some correct tracks. In DIII-D, 925 dust tracks
were generated from two camera shots, with an adequate
classification accuracy of 99%. For Magnum-PSI over 1500
tracks were created with a classification accuracy of 74%. The
issues of low classification accuracy and the misidentification
of correct track sections highlight the drawbacks of RIDAT.
However, these may be improved on by creating more robust

training data, accounting for biases, and by more carefully
selecting RIDAT parameters.

RIDAT could be used for a number of applications in the
future. These include grain lifetime and splitting analysis,
as well as 3D track reconstruction using dual stereoscopic
camera systems such as those currently employed in the Mega
Ampere Spherical Tokamak and TEXTOR [27,28]. For effec-
tive use, however, the code should be improved. Specifically
by applying more optimized image processing techniques,
such as those used in particle tracking for image microscopy
[29]. In addition to significant algorithm improvements for the
code, fine-tuning of the input parameters should also be per-
formed for each future application. For example, increasing
the algorithm’s rolling frame window from three to four could
result in more accurate classifications.
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