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Machine-learning-based non-Newtonian fluid model with molecular fidelity
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We introduce a machine-learning-based framework for constructing continuum a non-Newtonian fluid dy-
namics model directly from a microscale description. Dumbbell polymer solutions are used as examples to
demonstrate the essential ideas. To faithfully retain molecular fidelity, we establish a micro-macro correspon-
dence via a set of encoders for the microscale polymer configurations and their macroscale counterparts, a
set of nonlinear conformation tensors. The dynamics of these conformation tensors can be derived from the
microscale model, and the relevant terms can be parametrized using machine learning. The final model, named
the deep non-Newtonian model (DeePN2), takes the form of conventional non-Newtonian fluid dynamics models,
with a generalized form of the objective tensor derivative that retains the microscale interpretations. Both the
formulation of the dynamic equation and the neural network representation rigorously preserve the rotational
invariance, which ensures the admissibility of the constructed model. Numerical results demonstrate the accuracy
of DeePN2 where models based on empirical closures show limitations.
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I. INTRODUCTION

Accurate modeling of non-Newtonian fluid flows has
been a long-standing problem. Existing hydrodynamic models
have to resort to ad hoc assumptions either directly at the
macroscale level when writing constitutive laws or as closure
assumptions when deriving macroscale models from some
underlying microscale description. A variety of empirical con-
stitutive models [1,2] of both integral and derivative types
have been developed, including Oldroyd-B [3], Giesekus [4],
finite extensible nonlinear elastic Peterlin (FENE-P) [5,6],
and Rivlin-Sawyers [7]. These models are designed such
that proper frame indifference is satisfied but are otherwise
left with few physical constraints. Despite their broad appli-
cations, the robustness and universal applicability of these
models are still in doubt. In principle, viscoelastic effects are
determined by the polymer configuration distribution, which
can be obtained by directly solving the microscale Fokker-
Planck equation coupled with the macroscale hydrodynamic
equation [8]. However, the cost of such an approach be-
comes prohibitive for large-scale simulations due to the high
dimensionality of the Fokker-Planck (FK) equation. Semiana-
lytical closures [9–13] based on moment approximations of
the configuration distribution were developed for dumbbell
systems. Applications to nonsteady flows [9,10] and more
complex intramolecular potential [11–13] remain largely open
due to the high dimensionality of the configuration space.
Several alternative approaches [14–16] based on sophisticated

*leihuan@msu.edu
†weinan@math.princeton.edu

coupling between the micro- and macroscale models have
been proposed. However, the efficiency and accuracy of these
approaches rely on a separation between the relevant macro-
and microscales, something that does not usually happen in
practice.

Motivated by the recent successes in applying machine
learning (ML) to construct reduced dynamics of complex
systems [17–24], we aim to learn accurate and admissible
non-Newtonian hydrodynamic models directly from a mi-
croscale description. However, we note that directly applying
ML to construct such first-principled based fluid models is
highly nontrivial. The major challenge lies in how to formu-
late the micro-macro correspondence in a natural way, such
that the constructed macroscale model can faithfully retain the
viscoelastic properties on the molecular-level fidelity. More-
over, the deep neural network (DNN) representations need
to rigorously preserve the physical symmetries. Second, to
construct the governed reduced dynamics, most of the cur-
rent ML-based approaches rely on the time-series samples
and the various delicate numerical treatments to evaluate
the time derivatives (e.g., see discussion [25]). However,
the microscale simulation data of non-Newtonian fluids are
often limited by the affordable computational resource and
superimposed with noise (e.g., due to thermal fluctuations).
It is generally impractical to obtain the accurate macroscale
time derivative information from the training data. Moreover,
the objective tensor derivative in existing models is chosen
empirically, e.g., upper-convected [3], covariant [3], and cor-
rotational [26], to ensure the rotational symmetry constraint.
Such ambiguities will be inherited if we directly learn the dy-
namics from the time-series samples. A third challenge is the
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model interpretability, a well-known weakness of ML-based
models.

In this study, we present a ML-based approach, the
deep non-Newtonian model (DeePN2), for learning the non-
Newtonian hydrodynamic model directly from the microscale
description. To address the aforementioned challenges, in
DeePN2, we learn a set of encoder functions directly from
microscale simulation data, which can be used to extract the
“features” of subgrid polymer configuration. Such features
are essentially the macroscale conformation tensors which are
used in the construction of the constitutive laws. To retain
the molecular-level fidelity, the second idea is to formulate
the ansatz of reduced dynamics directly from the microscale
Fokker-Planck equation. The learning with the ansatz requires
only the microscale configuration samples without the need of
the time-series training data. Third, to ensure the model ad-
missibility, we propose a general symmetry-preserving DNN
structure to represent the terms in the reduced dynamics.

All these are done in an end-to-end fashion, by simulta-
neously learning the microscale encoders, the polymer stress,
and the evolution dynamics of the macroscale conformation
tensors. The constructed model takes a form similar to the
traditional hydrodynamic model and retains clear physical
interpretations for individual terms. The conformation tensors
are a natural extension of the end-end orientation tensor used
in classical rheological models. An objective tensor derivative
naturally arises in this way. It takes a different form from the
current choices in those empirical macroscale models. It has
a unique microscale interpretation and can be systematically
constructed without ambiguity. Numerical results demonstrate
the accuracy of this ML-based model as well as the crucial
role of the constructed tensor derivatives encoded with the
molecular structure.

II. MACHINE-LEARNING BASED NON-NEWTONIAN
HYDRODYNAMIC MODEL

A. Generalized hydrodynamic model

Let us start with the continuum level description of the
dynamics of incompressible non-Newtonian flow in the fol-
lowing generalized form:

∇ · u = 0,

ρ
du
dt

= −∇p + ∇ · (τs + τp) + fext,
(1)

where ρ, u, and p represent the fluid density, velocity, and
pressure field, respectively. fext is the external body force and
τs is the solvent stress tensor with shear viscosity ηs, which
is assumed to take the Newtonian form τs = ηs(∇u + ∇uT ).
τp is the polymer stress tensor whose constitutive law is
generally unknown. To close Eq. (1), traditional models, e.g.,
Oldroyd-B, Giesekus, and FENE-P, are generally based on the
approximation of τp in terms of an empirically chosen confor-
mation tensor (e.g., the end-end orientation tensor), along with
some heuristic closure assumption for the dynamics of such a
tensor.

To map the microscopic model to the continuum model
(1), we assume that (1) the polymer solution can be treated
as nearly incompressible on the continuum scale and (2) the

polymer solution is semidilute, i.e., the polymer stress τ p is
dominated by intramolecular interaction Vb(r), where r = |r|
and r is the end-end vector between the two beads of a
dumbbell molecule. The form of Vb(r) will be specified later.
The current approach can be applied to more complicated sys-
tems; see Appendix C for results of the three-bead suspension
model. Theoretically, the instantaneous τ p can be determined
by the probability density function ρ(r, t ). In DeePN2, instead
of directly constructing ρ(r, t ), we seek a micro-macro corre-
spondence that maps the polymer configurations to a set of
conformation tensors, by which we construct the stress model
and the evolution dynamics:

τ p = G(c1, c2, . . . , cn), (2a)

Dci

Dt
= Hi(∇u, c1, . . . , cn), (2b)

where ci ∈ R3×3 represents the ith conformation tensor of
the polymer configurations within the local volume unit. It
represents the macroscale features by which we construct the
polymer stress τp and the evolution dynamics. The detailed
formulation will be specified later. In particular, if we choose
n = 1, c1 the orientation tensor, and approximate G(c1) with
the linear or the mean-field approximation, (2a) recovers the
empirical Hookean and FENE-P model. Moreover, we em-
phasize that {ci}n

i=1 are not the standard high-order moments
for the closure approximations of the microscale configuration
density ρ(r, t ) (e.g., see Refs. [9–13]). They are the nonlin-
ear conformation tensors directly learnt from the microscale
samples for the approximation of stress τp, rather than the
recovery of the high-dimensional distribution ρ(r, t ).

In principle, with certain preassumptions about the for-
mulation of ci, a straightforward approach is to learn (2)
on the macroscale level as a “black-box” using time-series
samples from microscale simulations. However, this requires
the explicit form of the objective tensor derivative Dci

Dt , as
well as the accurate evaluation of time derivatives from the
time-series samples. Unfortunately, both conditions become
impractical for the microscale non-Newtonian fluid simula-
tions Alternatively, we employ ML to establish a micro-macro
correspondence and derive the ansatz of (2) directly from the
microscale descriptions.

B. Modeling ansatz derived from the microscale description

To faithfully retain the microscale molecular fidelity, we
construct {ci}n

i=1 by directly learning a set of encoders from
microscale samples:

ci = 〈Bi(r)〉, Bi = fi(r)fT
i (r), i = 1, 2, . . . , n, (3)

where Bi is a microscale encoder function that maps the mi-
croscale polymer configuration to the macroscale feature ci. It
has an explicit microscale interpretation—the average of the
ith second-order tensor Bi with respect to the encoder vector
fi(r) : R3 → R3.

One reason for the choice of Bi(r) as a second-order tensor
is as follows. The stress model G(·) needs to retain the rotation
symmetry. As the input of the stress model G(·), Bi(r) needs
to retain rotational symmetry in accordance with the polymer
configuration r. For example, the vector form of Bi(r) needs
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to satisfy Bi(Qr) = QBi(r) for any unitary matrix Q. This
yields 〈Bi(r)〉 ≡ 0 (see Appendix A 1). A simple nontrivial
choice is a second-order tensor taking the form of Eq. (3), so
that Bi(r) satisfies Bi(Qr) = QBi(r)QT and rotational sym-
metry of G(·) can be imposed accordingly.

Models (2) and (3) aim at extracting a set of configura-
tion “features,” represented by the microscale encoder {fi}n

i=1
and the macroscale conformation tensor {ci}n

i=1, such that the
polymer stress −〈r∇Vb(r)T 〉 can be well approximated by
G(·) and the evolution of {ci}n

i=1 can be modeled by {Hi(·)}n
i=1

self-consistently. As a special case, if n = 1 and f1(r) = r, c1

recovers the end-end orientation tensor and the stress model
recovers the aforementioned rheological models under special
choices of G(·). In practice, to accurately capture the nonlin-
ear effects in Vb, multiple nonlinear conformation moments
are needed.

To learn G(·) and H(·), one important constraint comes
from rotational symmetry. Let r̃ = Qr, where Q is unitary.
We must have

fi (̃r) = Qfi(r), (4a)

G(̃c1, . . . , c̃n) = QG(c1, . . . , cn)QT , (4b)

Hi (̃c1, . . . , c̃n) = QHi(c1, . . . , cn)QT , (4c)

where c̃i = QciQT . For the tensor derivative Dci/Dt , we
should have

D̃ci

Dt
= Q

Dci

Dt
QT , i = 1, 2, . . . , n. (5)

This constraint is satisfied by the various objective tensor
derivatives in most existing rheological models, such as the
upper-convected [3], the covariant [3], and the Zaremba-
Jaumann [26] derivatives, but these forms are not suitable
for us since they lack the desired accuracy. Fortunately these
constraints are satisfied automatically if we formulate our
macroscale model based on the underlying microscale model.

We start from the Fokker-Planck equation [27],

∂ρ(r, t )

∂t
= −∇ ·

[
(κ · r)ρ − 2kBT

γ
∇ρ − 2

γ
∇Vb(r)ρ

]
, (6)

where kBT is the thermal energy, γ is the solvent friction
coefficient, and κ := ∇uT is the strain of the fluid. Instead
of solving (6), we consider the evolution of ci,

d

dt
ci − κ : 〈r∇r ⊗ Bi(r)〉 = 2kBT

γ

〈∇2
r Bi(r)

〉
+ 2

γ
〈∇Vb(r) · ∇rBi(r)〉, (7)

where : is the double-dot product. We can prove that Eqs. (6)
and (7) are rotationally invariant. In particular, the combined
left-hand-side terms of (7) satisfy the symmetry condition in
(5) (see proof in Appendix A 1). Therefore, the combined
terms establish a generalized objective tensor derivative. It
takes a different form from the ones [3,26] in existing models
and rigorously preserves the rotational symmetry condition
(5). Accordingly, the hydrodynamic model (2) takes the fol-

lowing ansatz:

Dci

Dt
= d

dt
ci − κ : Ei, (8a)

Hi = 2kBT

γ
H1,i + 2

γ
H2,i. (8b)

Each term of (8) has a microscale correspondence:

Ei(c1, . . . , cn) = 〈r∇r ⊗ Bi(r)〉,
H1,i(c1, . . . , cn) = 〈∇2

r Bi(r)
〉
,

H2,i(c1, . . . , cn) = 〈∇Vb(r) · ∇rBi(r)〉,
(9)

where Ei is a fourth-order tensor function and H1,i, H2,i are
second-order tensor functions. They will be approximately
represented by DNNs. To collect the training data, we use
microscale simulations to evaluate these terms; no time-series
samples are needed.

Note that Dci/Dt depends on Ei, which encodes some
microscale information from Bi(r). Different from the com-
mon choices of the objective tensor derivatives in existing
models, it takes a more general formulation and has a clear
microscale interpretation without the conventional ambigui-
ties. It recovers the standard upper-convected derivative under
special case. To the best of our knowledge, this is the first
study that establishes such a direct microscale linkage for
the objective tensor derivative in the non-Newtonian fluid
modeling. The present form is different from the common
choices of the objective tensor derivatives in existing models.
As shown later, such a formulation that faithfully accounts
for the microscale polymer configuration is crucial for the
accuracy of the constitutive model for ci.

C. Symmetry-preserving DNN representations

Special rotation-symmetry-preserving DNNs are needed
for the encoder functions {fi}n

i=1, the second-order tensors G
and {H1,i, H2,i}n

i=1 and the fourth-order tensors {Ei}n
i=1 such

that the symmetry conditions (4) and (5) are satisfied. For
Eq. (4a) to hold, one can show that fi(r) has to take the form

fi(r) = gi(r)r, (10)

where gi(r) is a scalar encoder function (see Appendix A 1).
We always set g1(r) ≡ 1, yielding G ∝ H2,1.

To construct the DNNs for G and {H1,i, H2,i}n
i=1 that satisfy

Eq. (4c), we can transform {ci}n
i=1 into a fixed frame for the

DNN input. One natural choice is the eigenspace of the con-
formation tensor c1 = 〈rrT 〉. Let V be the matrix composed
of the eigenvectors of c1. Define

H j,i(c1, . . . , cn) = VĤ j,i (̂c1, . . . , ĉn)VT ,

ĉi = VT ciV, j = 1, 2 i = 1, . . . , n,
(11)

where ĉ1 is a diagonal matrix composed of the eigenvalues of
c1. The DNNs will be constructed to learn Ĥ j,i.
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FIG. 1. Quasiequilibrium relaxation process of a dumbbell suspension obtained from direct MD simulation, the present DeePN2, canonical
Hookean, and FENE-P model. Left: Encoder function g(r); middle: evolution of τp; right: evolution of c1 = 〈rrT 〉. Two parameter sets of the
FENE-P model are examined: (1) the initial conditions of both c1 and τp are consistent with MD and (2) the initial and final conditions of c1

are consistent with MD. The Hookean model parameters are set following (1).

The learning of the fourth-order tensors {Ei}n
i=1 is based on

the following decomposition:

Ei(c1, . . . , cn) = 〈gi(r)2r∇r ⊗ rrT 〉

+
6∑

k=1

E(k)
1,i (c1, . . . , cn) ⊗ E(k)

2,i (c1, . . . , cn).

(12)

E1,i, E2,i ∈ R3×3 are second-order tensors satisfying the rota-
tional symmetry condition similar to Eq. (4c):

E1,i(c̃1, . . . , c̃n) = QE1,i(c1, . . . , cn)QT ,

E2,i(c̃1, . . . , c̃n) = QE2,i(c1, . . . , cn)QT .
(13)

It is shown in Appendix A 2 that this decomposition satisfies
Eq. (5). Accordingly, Ei can be constructed by a set of second-
order tensors E1,i and E2,i, which can be constructed similar
to Eq. (11). Note that with this form, the first term in the RHS
of Eq. (12) becomes κci + ciκ

T similar to the upper-convected
derivative. In summary, the DNNs are designed to parametrize
{gi(r)}n

i=2, {Ĥ1,i, Ĥ2,i, Êi}n
i=1.

Finally, the DNNs are trained by minimizing the loss

L = λH1 LH1 + λH2 LH2 + λELE , (14)

where LH1 , LH2 , and LE are the empirical risk associated with
{H1,i}n

i=1, {H2,i}n
i=1, and {Ei}n

i=1, respectively. λH1 , λH2 , and
λE are hyperparameters (see Appendix D). Note that the en-
coders {gi(r)}n

i=2 do not explicitly appear in L; they are trained
through the learning of Ĥ and E .

D. DeePN2

The DeePN2 model is made up of Eqs. (1), (2), and (8).
Note that the model takes the form of classical empirical mod-
els. The only differences are that some conformation tensors
and an objective tensor derivative are introduced, and some
of the equation terms are represented as function subroutines
in the form of NN models. The latter is no different from the
situation commonly found in gas dynamics [28], where the
equations of state are given as tables or function subroutines.
Also, we note that such conformation tensors are learned from
the microscale simulations for the best approximation of the
polymer stress and constitutive dynamics. This allows us to
bypass the evaluation of the polymer configuration distribu-
tion by directly solving the high-dimensional FK equation

or coupling the microscale simulations. Meanwhile, the mi-
croscale viscoelastic effects can be faithfully captured beyond
the empirical closures based on the linear and mean-field
approximations.

III. NUMERICAL RESULTS

To demonstrate the model accuracy, we consider a poly-
mer solution with polymer number density np = 0.5. The
bond potential Vb(r) is chosen to be FENE, i.e., Vb(r) =
− ks

2 r2
0 log [1 − r2

r2
0
], where ks is the spring constant and r0 is

the maximum bond extension. The continuum model is con-
structed using n = 3 encoder functions. We also experimented
with larger values of n but did not see appreciable improve-
ment. That been said, the choice of n needs to be looked into
more carefully in the future.

Figure 1 shows the encoder functions g(r) with r0 =
2.4, ks = 0.1. To validate the DeePN2 model, we consider
a quasiequilibrium dynamics of the polymer solution with
kBT = 0.25, while the initial polymer configuration is taken
from the equilibrium state with kBT = 0.6. The relaxation
process is simulated using both MD and DeepN2. Figure 1
shows the evolution of the trace of c1 and τp. The predictions
from DeePN2 agree well with the MD results. In contrast, the
predictions from Hookean and FENE-P model show apparent
deviations.

Next, we consider the nonequilibrium process of a reverse
Poiseuille flow (RPF) in a domain [0, 40] × [0, 80] × [0, 40]
(reduced unit), with periodic boundary condition imposed in
each direction. Starting from t = 0, an external field fext =
( fb, 0, 0) is applied in the region y < 40 and an opposite
field fext = (− fb, 0, 0) is applied in the region y > 40. Fig-
ure 2 shows the instantaneous velocity profiles with r0 =
3.8 and fb = 0.02. The predictions from DeePN2 agree well
with MD, while FENE-P yields apparent deviations. For
the velocity evolution at y = 6 and y = 14, the predictions
from the Hookean and FENE-P models show pronounced
overestimations on both the magnitude and duration of the
oscillation behavior. Such limitations of the FENE-P model
have already been noted in Ref. [14]. From the microscopic
perspective, the discrepancy arises from the mean field ap-
proximation, τp ≈ c/[1 − Tr(c)/r2

0 ]. Such an approximation
cannot capture the nonlinear response when the individual
polymer bond length approaches r0. In contrast, DeePN2
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FIG. 2. Evolution of the reverse Poiseuille flow of a dumbbell
suspension obtained from MD and various models. Left: velocity
profiles at t = 20, 60, 220; right: velocity evolution at y = 6 and y =
14. The parameters of the Hookean and FENE-P model are chosen
such that the equilibrium bond length matches the MD results.

can capture such microscale “bond length dispersion” via
the additional macroscale nonlinear conformation tensors
c2, . . . , cn.

Shown in Fig. 3(a) is the evolution of c1 at y = 6. The
DeePN2 faithfully predicts the responses of the polymer con-
figurations under the external flow field. The instantaneous
τp is also accurately predicted by the conformation tensors,
as shown in Figs. 3(b) and 3(c). The responses can also be
examined by the shear-rate-dependent viscosity. As shown in
Fig. 3(d), predictions by DeePN2 agree well with the MD
results. In contrast, the FENE-P model yields apparent devia-
tions.

Besides the first-principle-based stress model and dynamic
closure, another distinctive feature of the DeePN2 model is the

FIG. 3. The micro-macro correspondence during the evolution of
the reverse Poiseuille flow of the dumbbell suspension presented in
Fig. 2 with the same line scheme. (a) Evolution of c1 at y = 6; (b, c)
Normal stress difference τpxx − τpyy and shear stress τpxy at y = 6
(upper lines) and y = 14 (lower lines). (d) Shear-rate-dependent
viscosity. The predictions by Hookean model show large deviations
from the MD results and are not shown in (a), (c), and (d) for
visualization purposes.

FIG. 4. The effectiveness of the objective tensor derivative con-
structed by (15). The additional source term plays a vital role in
the accurate modeling of the fluid systems. The model that uses
the canonical upper-convected derivative shows apparent deviations
from the MD results for the evolution of the velocities (left) and c1

(right) at y = 6.

generalized objective tensor derivative Dci/Dt :

Dci

Dt
= �

ci − κ :

[
6∑

k=1

E(k)
1,i (c1, . . . , cn) ⊗ E(k)

2,i (c1, . . . , cn)

]
,

(15)

where
�
ci is the standard upper-convected derivative and the

second term arises from the source term 〈r∇rg(r)2 ⊗ rrT 〉 in
Eq. (7). Therefore, the second term of Dci/Dt is embedded
with the nonlinear response to external field κ, inherited from
the encoder gi(r). As a numerical test, we use the present
model to simulate the RPF, where Dci/Dt is chosen to be the

upper-convected derivative
�
ci and other modeling terms re-

main the same. Figure 4 shows the evolution of the velocities
and c1. By ignoring the second term in Eq. (15), the pre-
dictions show apparent deviations from the MD results. This
indicates that the empirical choices of the objective tensor
derivative are not accurate. To achieve the desired accuracy,
these derivatives have to retain some information from the
specific conformation tensor.

IV. DISCUSSION

The present DeePN2 directly learns the stress model and
constitutive dynamics from the microscale simulation data
and avoids dealing with the high-dimensional microscale con-
figuration density function ρ(r, t ). A main observation is that
the explicit knowledge of ρ(r, t ) is a sufficient but not a neces-
sary condition for constructing the full constitutive equation.
We note that DeePN2 differs from the previous moment-
closure studies [9,10,29] based on empirical approximations
of ρ(r, t ). In these semianalytical studies [9,10,29], the
steady-state FK solution ρs(r) of a dumbbell is approximated
by series expansion, yielding the stress-strain relationship
only for equilibrium [27]. In Refs. [12,13,30], a set of high-
order moments are proposed to capture the peak regime of
the ρ(r, t ), yielding good predictions for the two-dimensional
dumbbell system. However, it is not straightforward to gen-
eralize such approximations for complex systems due to the
lack of general relationship between these moments and the
stress tensor τp. On the other hand, the conformation tensors
constructed in the present DeePN2 are not the standard mo-
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ments for the approximation of ρ(r, t ); they are directly learnt
from the microscale samples that best capture the dynamics
of τp, rather than recover the high-dimensional ρ(r, t ). As
a numerical example, we employ DeePN2 to a three-bead
suspension with intramolecular interactions governed by both
the bond and angle potentials; see Appendix C. Generalization
of the learning framework for complex polymer fluids will be
conducted and presented in following studies.

V. SUMMARY

In this study, we presented a ML-based approach for con-
structing hydrodynamic models for polymer fluids, DeePN2,
directly from the microscale descriptions. While this is only
the first step in a long program, the results we obtained
have already demonstrated the potential of such an approach
for achieving accuracy and efficiency at the same time. The
construction is based on an underlying microscale model. It
respects the symmetries of the underlying physical system. It
is end-to-end and requires little ad hoc human intervention.
Contrary to conventional wisdom on ML models, the model
obtained here is quite interpretable and in fact shows quite
some physical insight. It has already demonstrated much bet-
ter accuracy than existing hydrodynamic models in several
tests.

Different from the common ML-based approaches for
learning the reduced dynamics of complex systems, the
present approach does not require the time-series samples and
provides a generalized form of the objective tensor derivative
with clear microscale interpretation. This enables us to avoid
the heuristic choices on the objective tensor derivative and the
“black-box” representations by the numerical evaluation of
the time derivatives. These unique features are well suited for
the multiscale fluid systems where accurate time-series sam-
ples from the microscale simulations are often limited. While
we focused on polymer solutions, the form of the objective
tensor derivative and the present learning framework are quite
general and can be adapted to other systems of complex fluids
and soft matter.

It should also be noted that what we discussed is only a first
step towards constructing accurate and robust hydrodynamic
models for non-Newtonian fluids. Admittedly, dumbbell sus-
pensions are polymer models with simplified intramolecular
potential and viscoelasticity; applications to more realistic
microscale models will be carried out in future work. Among
the other issues that remain to be addressed, let us mention
coupling the training process with the adaptive selection of the
training data as was done in MD [31], the automatic choice of
the model complexity (e.g., the choice of n), the improvement
of the underlying microscale model [32], and the enhancement
of the microscale sampling efficiency. While some of these
will take time, there is no doubt that ML, used in the right way,
can help us to tackle the long-standing problem of developing
truly reliable hydrodynamic models for complex fluids.
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APPENDIX A: ROTATIONAL SYMMETRY OF THE
MODEL ANSATZ AND THE DNN REPRESENTATION

In this section, we show that both the modeling ansatz
and the DNN representation of the DeePN2 model satisfy the
rotational invariance condition.

1. Rotational invariance from the continuum and microscopic
perspective

Let us consider a symmetric tensor c ∈ R3×3 in two differ-
ent coordinate frames. Frame 1 is a static inertial frame. We
let x̃, ṽ := ṽ(x̃, t ), c̃ := c̃(x̃, t ), the position, velocity and c in
frame 1. Framework 2 is a rotated frame which is related to
frame 1 by a unitary matrix Q(t ). We denote x, v(x, t ), c(x, t )
the position, velocity and c in frame 2. Accordingly, x, c, and
v follow the transformation rule:

x̃ = Qx,

ṽ = Qv(x, t ) + Q̇QT x̃,

c̃ = Qc(x, t )QT . (A1)

To construct the dynamics of c, we need to choose an objective

derivative
Dc
Dt

which retains proper rotational symmetry:

Dc̃
Dt

∣∣
frame1 = Q(t )

Dc
Dt

∣∣
frame2Q(t )T . (A2)

For an introduction, we choose D/Dt to be the material

derivative of the vector form, i.e.,
d

dt
:= ∂

∂t
+ v · ∇. Accord-

ingly, Eq. (A2) cannot be satisfied, since

Dc̃
Dt

∣∣
frame1 = Q̇cQT + QcQ̇T + Q

dc
dt

∣∣
frame 1QT

= Q̇cQT + QcQ̇T + Q
Dc
Dt

∣∣
frame 2QT . (A3)

Compared with Eq. (A2), two additional terms appear in the
last equation. The second identity follows from

dc
dt

∣∣
frame 1 = ∂c(QT x̃, t )

∂t
+ ṽ · ∇x̃c(QT x̃, t )

= ∂c(x, t )

∂t
+ (

Q̇T x̃ · ∇x
)
c

+ [
Qv(x, t ) + Q̇x

] · ∇x̃c

= ∂c(x, t )

∂t
+ v(x, t ) · ∇xc

= dc
dt

∣∣
frame 2.

Alternatively, if we choose D/Dt to be the objective
tensor derivatives coupled with κ := (dv)T , e.g., the upper-

convected
�
c = dc

dt − κc − cκT , covariant derivative
�
c = dc

dt +
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κT c + cκ, the Jaumann derivative
◦
c = 1

2 (
�
c + �

c), Eq. (A2) is
satisfied. For example,

�
c
∣∣
frame 1 = Q̇cQT + QcQ̇T + Q

dc
dt

∣∣
frame 2QT

− (QκQT + Q̇QT )QcQT − QcQT (QκT QT + QQ̇T)

= Q
dc
dt

∣∣
frame 2QT − QκcQT − QT cκT Q

= Q
�
c
∣∣
frame 2QT .

On the other hand, this analysis does not provide us con-
crete guidance to construct Dc

Dt , since multiple choices such

as
�
c,

�
c, and

◦
c all satisfy Eq. (A2). To address this issue, we

look for a microscale perspective based on the Fokker-Planck
equation to understand the rotational invariance and construct
Dc
Dt .

Let us consider the Fokker-Planck equation of a dumbbell
polymer with end-end vector r coupled with flow field v. By
ignoring the external field, the evolution of the density ρ(r, t )
is governed by

∂ρ(r, t )

∂t
= −∇ ·

[
(κ · r)ρ − 2kBT

γ
∇ρ − 2

γ
∇Vbρ

]
, (A4)

where γ is the friction coefficient of the solvent and Vb(r) is
the intramolecule potential energy.

Proposition A.1. Equation (A4) retains rotational invari-
ance under the transformation by Eq. (A1):

ρ̃ := ρ(r̃, t )
∣∣
frame 1 ≡ ρ(r, t )

∣∣
frame 2.

Proof.

∂ρ̃

∂t
+ ∇r̃ · [(κ̃ · r̃)ρ̃]

∣∣
frame 1

= ∂ρ

∂t
+ Q̇T r̃ · ∇rρ + ∇r̃ · [(

QκQT + Q̇QT
) · Qρ

]
= ∂ρ

∂t
+ Q̇T Qr · ∇rρ + ∇r · (κ · rρ) + ∇r · (

QT Q̇rρ
)

≡ ∂ρ

∂t
+ ∇r · (κ · rρ)

∣∣
frame 2,

where we have used the fact that Q̇T Q is antisymmetric. In
addition, it is straightforward to show that the terms ∇2ρ and
∇ · ∇Vb(r) are invariant. Therefore we have (A5).

Accordingly, if we define c to be the mean value of a
second-order tensor B(r) : R3 → R3×3, the dynamics follows

d

dt
〈B(r)〉 = κ : 〈r∇r ⊗ B〉 + 2kBT

γ

〈∇2B
〉 + 2

γ
〈∇Vb · ∇B〉.

(A5)
Proposition A.2. If B(r) obeys rotational symmetry B̃ :=

B(QT r) = QBQT , then so does (A5).
Proof. Using Eq. (A3), the individual terms in frame 1

follow

d

dt

〈
B̃

〉∣∣
frame 1 = Q̇〈B〉QT + Q〈B〉Q̇T

+ Q
d

dt
〈B〉∣∣

frame 2Q̇T . (A6)

Note that

κ̃ :
〈
r̃∇r̃ ⊗ B̃

〉∣∣
frame1

= [(
QκQT + Q̇QT

) · Qr
] · Q∇r

(
QBQT

)
= (κ · r) · ∇r

(
QBQT

) + (QT Q̇r) · ∇r
(
QBQT

)
= Q(κ · r) · ∇rBQT + Q

(
QT Q̇B + BQ̇T Q

)
QT , (A7)

where we have used the relation

(Ar) · ∇B = AB + BAT , (A8)

if B is a rotational symmetric tensor and A = QT Q̇ is an
antisymmetric tensor.

By Eqs. (A6) and (A7), we see that

d

dt

〈
B̃

〉∣∣
frame 1 − κ̃ :

〈
r̃∇r̃ ⊗ B̃

〉∣∣
frame 1

≡ Q
[ d

dt
〈B〉∣∣

frame 2 − κ : 〈r∇r ⊗ B〉∣∣
frame 2

]
QT .

The rotational symmetry of the other terms follows similarly.
The above analysis shows that, from the perspective of

the Fokker-Planck equation, the evolution dynamics retains
the rotational symmetry. In particular, the term d

dt 〈B̃〉 −
κ̃:〈r̃∇r̃ ⊗ B̃〉 provides a microscopic perspective for under-
standing the objective tensor derivative DB

Dt , which we use to
construct the DNN representation of the constitutive models.

2. DNN representation

Next we establish a micro-macro correspondence via a set
of encoder {gi(r)}n

i=1 (see Proposition A.4 for details) and,
accordingly, a set of microscale tensor Bi and ci:

Bi(r) = [gi(r)r][gi(r)r]T , ci = 〈Bi〉.
We will use {ci}n

i=1 to construct the evolution dynamics (A5)
via some proper DNN structure which retains the rotational
invariance. In particular, we consider the fourth-order tensor
〈r∇r ⊗ B〉 and show that the following DNN representation
[see also Eq. (12)] ensures the rotational symmetry of DB

Dt . For
simplicity, the subscript i is ignored, and we use c to denote
the set of conformation tensor {ci}n

i=1.
Proposition A.3. The following ansatz of 〈r∇r ⊗ B〉 en-

sures that the dynamic of evolution of c retains rotational
invariance:

〈r∇r ⊗ B〉 = 〈
g(r)2r∇r ⊗ rrT

〉 + 6∑
i=1

E(i)
1 (c) ⊗ E(i)

2 (c),

where E1 and E2 satisfy

Ẽ1 := E1(c̃) = QE1QT , Ẽ2 := E2(c̃) = QE2QT .

Proof. Without loss of generality, we represent the fourth-
order tensor by the following two bases:

F1(c) ⊗ F2(c) ⊗ F3(c) + F1(c) ⊗ [F2(c) ⊗ F3(c)]T{2,3},

E1(c) ⊗ E2(c),

F1, F3 ∈ R3, F2 ∈ R3×3, E1, E2 ∈ R3×3,

where the superscript T{2,3} represents the transpose between
the second and third indices; also F1, F2, F3, E1, and E2 satisfy
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the symmetry conditions

F1(c̃) = QF1, F3(c̃) = QF3,

E1(c̃) = QE1QT , E2(c̃) = QE2QT , F2(c̃) = QF2QT .

For the term E1(c) ⊗ E2(c), we have

κ : E1(c) ⊗ E2(c)
∣∣
frame2 = Tr(κE1)E2

and

κ̃ : Ẽ1(c) ⊗ Ẽ2(c)
∣∣
frame1

= (
QκQT + Q̇QT

)
:
(
QE1QT ⊗ Ẽ2

)
= Tr(κE1)Ẽ2 + Tr

(
Q̇QT QE1QT

)
Ẽ2

= Tr(κE1)Ẽ2

≡ Q
[
κ : E1(c) ⊗ E2(c)

∣∣
frame2

]
QT ,

(A9)

where we have used Tr(Q̇QT ) ≡ 0.
For the term F1(c) ⊗ F2(c) ⊗ F3(c) + F1(c) ⊗

(F2(c) ⊗ F3(c))T{2,3} , we have

κ : F1(c) ⊗ F2(c) ⊗ F3(c)
∣∣
frame2 = FT

2 κF1FT
3

and

κ̃ : F̃1(c) ⊗ F̃2(c) ⊗ F̃3(c)
∣∣
frame1

= QFT
2 κF1FT

3 QT + QFT
2 QT Q̇F1FT

3 QT .

On the other hand, note that

dB̃
dt

∣∣
frame1 = Q̇BQT + QBQ̇T + Q

dB
dt

∣∣
frame 2QT . (A10)

To ensure the rotational symmetry of DB
Dt , we have

F2 ≡ I,
K1∑

i=1

F(i)
1 ⊗ I ⊗ F(i)

3 = 〈g(r)r ⊗ I ⊗ g(r)r〉. (A11)

Hence, we have

d

dt
c̃ − κ̃ :

[
K1∑

i=1

F̃(i)
1 ⊗ F̃(i)

2 ⊗ F̃(i)
3

+F̃(i)
1 ⊗ (

F̃(i)
2 ⊗ F̃(i)

3

)T{2,3}
]∣∣

frame1

≡ Q

{
d

dt
c − κ :

[
K1∑

i=1

F(i)
1 ⊗ F(i)

2 ⊗ F(i)
3

+F(i)
1 ⊗ (

F(i)
2 ⊗ F(i)

3

)T{2,3}
]∣∣

frame2

}
QT . (A12)

Furthermore, using Eq. (A11), we obtain

K1∑
i=1

F(i)
1 ⊗ F(i)

2 ⊗ F(i)
3 + F(i)

1 ⊗ (
F(i)

2 ⊗ F(i)
3

)T{2,3}

= 〈
g(r)2r∇r ⊗ rrT

〉
. (A13)

Accordingly, the remaining part of 〈r∇r ⊗ B〉 is expanded by

〈
r∇rg(r)2 ⊗ rrT

〉 =
K2∑

i=1

E(i)
1 (c) ⊗ E(i)

2 (c), (A14)

where K2 = 6 due to the tensor index symmetry of 1 and 2, as
well as 3 and 4.

Combining Eqs. (A12), (A13), and (A14), we conclude
that the decomposition

〈r∇r ⊗ B〉 = 〈
g(r)2r∇r ⊗ rrT

〉 + 6∑
i=1

E(i)
1 (c) ⊗ E(i)

2 (c)

ensures the rotational invariance in the dynamic equation of c.
Finally, we show that the encoder fi(r) takes the form

gi(|r|)r [see also Eq. (10)].
Proposition A.4. If f (r) : R3 → R3 satisfies

f (Qr) = Qf (r)

for an arbitrary unitary matrix Q ∈ R3, then f (r) must take the
form f (r) = g(r)r, where g(r) : R → R is a scalar function
and r = |r|.

Proof. Let e1, e2 and e3 the basis vectors of the Cartesian
coordinate space. In particular, we consider r = re1 and de-
note f (r) by ( f1(r), f2(r), f3(r)). By choosing Q to be of the
form

Q =
(0 cos θ sin θ

1 0 0
0 − sin θ cos θ

)
,

we have

f (Qr) =
( f1(re2)

f2(re2)
f3(re2)

)
=

( f2(re1) cos θ + f3(re1) sin θ

f1(re1)
− f2(re1) sin θ + f3(re1) cos θ

)
.

In particular, by choosing θ = 0 and θ = π , respectively, we
get f2(re1) = f3(re1) = 0, i.e., f (re1) = ( f1(re1), 0, 0).

APPENDIX B: THE MICROSCALE MODEL OF THE
DUMBBELL SUSPENSION

The polymer solution is modeled by suspensions of
dumbbell polymer molecules in explicit solvent. The bond
interaction is modeled by the FENE potential,

Vb(r) = −ks

2
r2

0 log

[
1 − r2

r2
0

]
,

where ks is the spring constant and r = |r| and r is the end-
end vector between the two beads of a polymer molecule.
In addition, pairwise interactions are imposed between all
particles (except the intramolecular pairs bonded by Vb) under
dissipative particle dynamics [33,34],

Fi j = FC
i j + FD

i j + FD
i j,

FC
i j =

{a(1.0 − ri j/rc)ei j, ri j < rc

0, ri j > rc
,

FD
i j =

{−γwD(ri j )(vi j · ei j )ei j, ri j < rc

0, ri j > rc
,

FR
i j =

{
σwR(ri j )ξi jei j, ri j < rc

0, ri j > rc
,

where ri j = ri − r j , ri j = |ri j |, ei j = ri j/ri j , and vi j = vi −
v j , ξi j are independent identically distributed (i.i.d.) Gaus-
sian random variables with zero mean and unit variance. FC

i j ,
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TABLE I. Parameters (in reduced unit) of the microscale model
of the polymer solution

a γ σ k rc

S-S 4.0 5.0 1.58 0.25 1.0
S-P 0.0 40.0 4.47 0.0 1.0
P-P 0.04 0.01 0.071 0.5 3.5

FD
i j , FR

i j are the total conservative, dissipative, and random
forces between particles i and j, respectively, and rc is the
cutoff radius beyond which all interactions vanish. The coef-
ficients a, γ , and σ represent the strength of the conservative,
dissipative, and random force, respectively. The last two coef-
ficients are coupled with the temperature of the system by the
fluctuation-dissipation theorem [35] as σ 2 = 2γ kBT . Similar
to Ref. [36], the weight functions wD(r) and wR(r) are defined
by

wD(ri j ) = [wR(ri j )]
2,

wR(ri j ) = (1.0 − ri j/rc)k .

We refer to Ref. [37] for the details of the reverse Poiseuille
flow simulation and the calculation of the shear rate dependent
viscosity. In all the numerical experiments, the number den-
sity of the solvent particle ns is set to be 4.0, and the number
density of the polymer molecule np is set to be 0.5. Other
model parameters are given in Table I.

The training data set is collected from microscale shear
flow simulations of the polymer solution in a domain [0, 20] ×
[0, 20] × [0, 20], with periodic boundary condition imposed
in each direction. The Lees-Edwards boundary condition [38]
is used to impose the shear flow rates γ̇ . The simulation is run
for a production period of 5 × 104 with time step 10−3. We
collected 36 000 samples of the polymer configurations with
γ̇ uniformly selected between [0, 0.06]. Here 32 000 samples
are used for training, and the remaining ones are used for
testing.

APPENDIX C: NUMERICAL RESULTS OF A
THREE-BEAD SUSPENSION

To demonstrate the present DeePN2 method can be applied
to systems with high-dimensional configuration space, we
consider a suspension of three-bead polymer molecule with
the intramolecular potential Vp(r1, r2) governed by

Vp(r1, r2) = Vb(r1) + Vb(r2) + Va(r1, r2),

where Vb is the FENE bond potential similar to the dumbbell
system, Va is the angle potential defined by

Va(r1, r2) = 1
2 ka(θ − θ0)2,

where θ = cos−1(r1 · r2/|r1| · |r2|) is the angle between the
two bonds, ka = 2kBT and θ0 = 2π/3.

We define the generalized conformation tensors

ci = 〈Bi〉 := 〈
gi(|r1|, |r2|, |r12|)2r′

ir′′T
i

〉
,

where r′
i and r′′

i are chosen to be either r1 or r2. Similar
to the dumbbell model, we set c1 = 〈r1rT

1 〉, c2 = 〈r1rT
2 〉, and

FIG. 5. Comparison of the time evolution of reverse Poiseuille
flow of a three-bead suspension obtained from direction MD simula-
tion, DeePN2, and Hookean model. The parameters of the Hookean
model are chosen such that the polymer average bond length matches
the MD results. Left: Velocity at y = 6 and 14; right: average value
of cos θ at y = 6.

choose the eigenspace of c1 as the reference frame for the
training process. We employ the constructed model to sim-
ulate the reverse Poiseuille flow. The setup is similar to the
dumbbell suspension. Figure 5 shows the evolution of the
velocity profile and the mean cosine value [i.e., Tr(c2)/Tr(c1)]
with the body force fext = 0.0066. Predictions from DeePN2

agree well with the MD results. In contrast, predictions from
the Hookean model show apparent deviations.

This numerical example shows that the present DeePN2

method is not limited by the high dimensionality of the
polymer configuration space, in contrast with the previous
approaches based on the direct approximation of the probabil-
ity density ρ(r, t ). A more sophisticated learning framework
applicable to the general multibead polymer suspension with
complex intramolecular potential requires further investiga-
tions and will be presented in following works.

APPENDIX D: TRAINING PROCEDURE

The constructed DeePN2 model is represented by various
DNNs for the encoders {g j (r)}n

j=1, stress model G, evolution
dynamics {H1, j}n

j=1, {H2, j}n
j=1, and the fourth-order tensors

{E j}n
j=1 of the objective tensor derivatives. In particular, by

choosing g1(r) ≡ 1, G ∝ H2,1 we do not need to train G
separately. The loss function is defined by

L = λH1 LH1 + λH2 LH2 + λELE ,

where λH1 , λH2 , and λE are hyperparameters specified later.
For each training batch of m training samples, LH1 , LH2 , LE of
the dumbbell system are given by

LH1 =
m∑

i=1

n∑
j=1

∥∥V(i)Ĥ1, j
(̂
c(i)

1 , . . . , ĉ(i)
n

)
V(i)T

−〈∇2
r B j (r)

〉(i)∥∥2
,

LH2 =
m∑

i=1

n∑
j=1

∥∥V(i)Ĥ2, j
(̂
c(i)

1 , . . . , ĉ(i)
n

)
V(i)T

−〈∇Vb(r) · ∇rBi(r)〉(i)
∥∥2

,
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LE =
m∑

i=1

n∑
j=1

∥∥∥∥∥∑
k

V(i)Ê(k)
1, j

(̂
c(i)

1 , . . . , ĉ(i)
n

)
V(i)T

⊗ V(i)Ê(k)
2, j

(̂
c(i)

1 , . . . , ĉ(i)
n

)
V(i)T − 〈

r∇rg(r)2 ⊗ rrT
〉(i)∥∥2

,

where ‖ · ‖2 denotes the total sum of squares of the entries in
the tensor. V(i) is the matrix composed of the eigenvectors of
c1 = 〈rrT 〉 of the ith sample.

Furthermore, we note that c, H1, H2, E1, and E2 are
all symmetric. Accordingly, the DNN inputs are composed
of the upper-triangular parts of the c, and the outputs are
the upper-triangular parts of the representation tensors.
Specifically, {g j}n

j=1, {H1, j}n
j=1, {H2, j}n

j=1, {E1, j, E2, j}n
j=1

are represented by the eight-layer fully connected
DNNs. The number of neurons in the hidden layers
are set to be (120, 120, 120, 120, 120, 120), (300, 300,

400, 400, 300, 300), (400, 600, 600, 600, 600, 400),
(300, 300, 300, 300, 300, 300), respectively. The activation
function is taken to be the hyperbolic tangent.

The DNNs are trained by the Adam stochastic gradient
descent method [39] for 400 epochs, using 75 samples per
batch size. The initial learning rate is 1.8 × 10−4, and the
decay rate is 0.8 per 9000 steps. The hyperparameters λH1 ,
λH2 , and λE are chosen in the following two ways. In the
first setup, we set them to be constant throughout the training
process, e.g., λH1 = λH2 = λE = 1/3. In the second setup, the
hyperparameters are updated every Nλ epochs by

λH1 = L̃H1

L̃H1 + L̃H2 + L̃E
, λH2 = L̃H2

L̃H1 + L̃H2 + L̃E
,

λE = L̃E

L̃H1 + L̃H2 + L̃E
,

where L̃(·) denotes the mean of the loss during the past Nλ

epochs. For the present study, both approaches achieve a loss
L smaller than 1 × 10−4 and the root of relative loss less than
1.6 × 10−2. More sophisticated choices of λH1 , λH2 , and λE as

TABLE II. Computational cost (in CPU-second) using the MD
model and the continuum DeePN2, FENE-P, and Hookean models.

MD DeePN2 FENE-P Hookean

Quasiequilibrium 2.35 × 104 4.1 0.56 0.51
RPF (dumbbell) 9.24 × 106 85.6 10.2 9.7

well as other formulations of L will be investigated in future
work.

APPENDIX E: COMPUTATIONAL COST

We consider two dynamic processes: relaxation to
quasiequilibrium and the development of the reverse
Poiseuille flow. For relaxation to quasiequilibrium, the mi-
croscale simulation is conducted in a domain [0, 10] ×
[0, 10] × [0, 10] (in reduced unit), which is mapped into a
volume unit in the continuum DeePN2, Hookean, and FENE-P
models. All simulations are run for a production period of 360
(in reduced unit). For the case of the reverse Poiseuille flow
(RPF), the microscale simulation is conducted in a domain
[0, 40] × [0, 80] × [0, 40]. The simulations of the continuum
DeePN2, Hookean, and FENE-P models are conducted by
mapping the domain into 20 volume units along the y di-
rection. All simulations are run for a production period of
550. The computational cost for both systems is reported in
Table II. All simulations are performed on the Michigan State
University HPCC supercomputer with Intel(R) Xeon(R) CPU
E5-2670 v2.

We note that the size of the volume unit is chosen empiri-
cally in the continuum models of the flow systems considered
in the present work. Our sensitivity studies show that the
numerical results of the DeePN2 model agree well with the
full MD when the average number of polymers within a unit
volume is greater than 200. For all cases, the computational
cost of the DeePN2 model is less than 0.05% of the computa-
tional cost of the full MD simulations and less than 10 times
the cost of empirical continuum models.
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