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Generalized potential theory for close-range acoustic interactions in the Rayleigh limit

Shahrokh Sepehrirhnama and Kian-Meng Lim *

Mechanical Engineering Department, National University of Singapore, Singapore 117575

(Received 25 July 2020; accepted 17 September 2020; published 12 October 2020)

Under an external acoustic field, particles experience radiation forces that bring them to certain trapping
locations, such as pressure or velocity nodes for the case of plane standing wave. Due to acoustical interactions,
particles form clusters on reaching those trapping locations. In this work, by using the far-field evaluation of
scattered fields, a generalized force potential is formulated that gives both the primary and interaction forces for
particles with size much smaller than the wavelength (Rayleigh limit). The generalized potential for the primary
force is the same as the Gorkov’s potential. The interaction potential and forces between a pair of particles at the
zero-primary-force locations are studied for the two cases of planar and nonplanar (Bessel) standing waves. It
was found that the interaction forces are predominantly dependent on the product of the external acoustic field
and the scattered fields from the adjacent particles. Besides the line formation, other cluster shapes are shown to
be plausible for three solid particles agglomerating under a plane standing wave. The mutual interaction force
between particles of different material properties was found to be not equal and opposite in general, suggesting
that they do not form an action and reaction pair. From the interaction patterns due to the nonplanar field of a
Bessel standing wave, it is inferred that many cluster configurations are possible since particles near the stable
trapping locations attract each other from more than one direction. The advantage of using the generalized force
potential is that it provides physical insight for the acoustical manipulation of small particles in any external field
with arbitrary wave front, such as those used in acoustic holography.
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I. INTRODUCTION

Ultrasound manipulation of particles relies on the acoustic
radiation forces that is exerted on each individual particle
that scatters the external sound field [1–5]. Acoustic radiation
forces have two distinct types. The first one is usually referred
to as the primary radiation force and originates from the
nonlinear stresses entirely due to the external pressure field
[1–3,5–14]. The second type is the so-called secondary radi-
aiton force that arises from the stresses due to cross-product
of background field and scattered fields of neighboring ob-
jects incident on the target particle. Hence, the secondary
force is commonly regarded as an indicator of the interaction
between particles, and alternatively called the acoustic inter-
action force, and only exists for more than two particles in the
sound field [4,11,15–25].

In the applications of the ultrasound particle manipulation,
also known as acoustophoresis, agglomeration is highly likely
to occur, specially when the interparticle distances are compa-
rable to their characteristic size, since the acoustic interaction
force is inversely proportional to the interparticle distance.
Such agglomerations could occur during the particles’ journey
toward or on arriving at the trapping locations, such as nodal
planes in a plane standing wave. At the vicinity of the trapping
locations where the primary force is negligible, the entire dy-
namics of the particle system is determined by the secondary
forces. Hence, understanding acoustical interaction patterns is
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imperative to analyze, describe, and potentially control such
agglomerations under different types of external sound fields.

Acoustical interaction under plane standing wave has been
reported extensively [4,11,15–20,23,26]. In the view of recent
studies of acoustic Bessel beams and their pull-in effects on
particles of size larger than the wavelength [12,27–29], it is
interesting to examine the changes in acoustical interaction
patterns under such nonplanar fields. Furthermore, manipula-
tion of the external sound field in applications such as acoustic
holography [30] will allow controlling particle agglomeration
behavior to some extent. Thus, a simple and straightforward
theoretical formulation of acoustic interaction forces that al-
lows predicting complicated interactions under an arbitrary
nonplanar incident field is important for developing novel
acoustophoresis applications.

There are two analytical approaches for calculating the ra-
diation forces. Following the work of King [1], the first one is
based on using the partial-wave expansion, also known as the
multipole expansion, for solving the scattering problem and
evaluating the surface integral to derive a series expression
for the radiation forces. The second approach, introduced by
Gorkov, was based on the far-field evaluation of the force inte-
gral by employing the conservation of the radiated momentum
[3]. In this approach, the force is expressed as the gradient
of a scalar potential field. The two approaches will give the
same formula for the primary radiation force. The interaction
force was studied by using the first approach in the form of
a series expansion [16,18,20]. Attempts were made to find an
analytical formula for the interaction force, similarly to the
one for the primary force, by using the second approach [19].
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However, there was a large discrepancy, around 50%, between
its results and those obtained by the first approach [23]. The
main reason for such difference is addressed in this work
and by combining the two approaches a more comprehensive
derivation will be presented.

In many practical acoustophoretic applications, the particle
size is much smaller than the wavelength [17,23,26,31–36].
This size condition is also referred to as the Rayleigh limit, at
which the scattering behavior of particles can be accurately es-
timated by monopole-dipole scattering fields. For a particle in
the Rayleigh limit with arbitrary shape, the acoustic radiation
forces can be fairly estimated by using an equivalent sphere
with the same volume. Furthermore, hundreds or thousands
of such small particles are present in practical applications,
even though the occupied volume of their population is much
smaller, as compared to the host fluid. This means close-range
interactions are very likely to occur during ultrasound ma-
nipulation; it is more sensible to use multiparticle interaction
model rather than single-particle analysis to simulate their
collective behavior.

In this work, the theory of acoustic radiation force is
revisited. Following Gorkov’s approach, a generalized force
potential is introduced from which the expressions for the pri-
mary and secondary radiation forces are derived. To focus on
the overall interaction patterns, we assume that the host fluid
is lossless and hydrodynamic effects of the acoustic stream-
ing are negligible. The force potential is used to investigate
the radiation forces induced by standing waves of plane and
Bessel types. Subsequently, particle interaction under each of
these external fields is discussed by using the force potential
and its gradient. We aim to demonstrate how the interaction
patterns depend on particles’ material, size, and the choice
of the external field by using the generalized potential. This
will provide a better physical insight for designing particle
manipulation processes by using ultrasound waves. The pre-
sented formulation can be further developed for the case of
nonspherical particles and study of acoustic radiation torque.

II. POTENTIAL THEORY OF ACOUSTIC
RADIATION FORCE

The governing equation of acoustic waves, derived from
the first-order approximation of Navier-Stokes equations, is
expressed as

∇2 p = 1

c2
f

∂2
t p, (1)

where p is the acoustic pressure. The acoustic velocity v, den-
sity ρ, velocity potential φ, and their relations to the pressure
are as follows:

v = ∇φ, p = −ρ f ∂tφ,

∂tρ = −ρ f ∇ · v, p = c2
f ρ, (2)

where ∂t denotes partial differentiation with respect to time t ,
c f denotes the speed of sound in the fluid medium, ρ f and κ f

are the undisturbed fluid density and compressibility, respec-
tively, and c2

f = 1/(ρ f κ f ). The acoustic fields are assumed to
be time harmonic,

v = Ve−iωt , p = Pe−iωt , φ = �e−iωt , (3)

with ω being the circular frequency and i = √−1.

A. Acoustic radiation force

By neglecting the viscosity of the fluid medium, the time-
averaged second-order acoustic stresses 〈σ〉 are expressed as
follows [5,7]:

〈σ〉 = [ 1
2κ f 〈p2〉 − 1

2ρ f 〈v · v〉]I + ρ f 〈vv〉, (4)

where I is the identity tensor. The acoustic radiation force
acting on an object in the sound field is obtained as follows:

F = −
∫

�

〈σ〉 · nd� = −
∫

�

{[
1

2
κ f 〈p2〉 − 1

2
ρ f 〈v · v〉

]
I

+ ρ f 〈vv〉
}

· nd�, (5)

where � is the surface of the object and n is the outward
normal vector to surface �. The time-averaging over one cycle
of oscillation is denoted by 〈·〉, and 〈FG 〉 = 1

2 Re[FG ∗] with
∗ denoting the complex conjugate operator. The first two terms
on the right-hand side of Eq. (4) are commonly known as the
radiation pressure that is derived from the second-order ap-
proximation of Navier-Stokes equations [5,37]. The last term
represents the Reynolds stress that arises from the surface
oscillations [5]. The velocity potential, for the case of N-body
scattering and an external acoustic wave, is written as

φ = φ0 +
N∑

n=1

φn, (6)

where subscript 0 denotes the external field and n denotes the
scattered field from the nth object. Substituting Eq. (6) into
(4), the quadratic terms can be expanded in terms of incident
and scattered variables, for instance,

p2 = p0 p0 +
N∑

n=1

pn pn +
N∑

n=1

pn

⎛
⎜⎜⎜⎝2p0 +

N∑
m = 1
m �= n

pm

⎞
⎟⎟⎟⎠. (7)

The product or cross-term of the external field with itself, such
as p0 p0 from Eq. (7) and similar terms from the expansions of
〈v · v〉 and 〈vv〉, do not contribute to the force as the external
field has no singularity in the domain [7,18,37]. The force due
to the cross-term of the scattered field from the target particle
itself 〈pn pn〉 is negligible in the Rayleigh limit, since it has
been shown to be of the order of O ([ka]6), while the rest of
the acoustic forces are of the order of O ([ka]3) [1,3,8,37].
Considering the remaining terms in Eq. (7), the partial stresses
obtained from the product of incident field and the scattered
field of sphere n becomes

〈σn〉 = [κ f 〈pn p̂n〉 − ρ f 〈vn · v̂n〉]I + 2ρ f 〈vnv̂n〉

p̂n = p0 +
N∑

m = 1
m �= n

pm v̂n = v0 +
N∑

m = 1
m �= n

vm, (8)

where p̂n and v̂n denote the incident pressure and velocity
on sphere n that consist of the sum of the external field and
the scattered fields from other particles (m �= n). Adopting the
far-field approach [3,19,37], the force acting on sphere n is
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FIG. 1. Ensemble of N particles in an external acoustic field and
the illustration of near-field and far-field regions.

written as

Fn = −
∫

�∞
〈σn〉 · nd�. (9)

By substituting Eq. (8) into (9), applying the divergence theo-
rem to transform the surface integral into a volume integral,
and using the relation between acoustic fields as stated in
Eq. (2), one can write

Fn = −
∫

	

ρ f {〈v̂n�φn〉 + 〈vn�φ̂n〉}d	, (10)

where � = ∇2 − 1
c2

f
∂2

t denotes the wave operator and 	 de-

notes the volume that is enclosed by �∞. For the derivation
details of Eq. (10) from (9), please refer to Eqs. (13a) to (13f)
in Ref. [37]. When we consider the force on individual spheres
one after another, the singularity of the scattered field φn needs
to be handled only while calculating the force on sphere n. For
the calculation of the force on sphere n, the incident field φ̂n

is regular everywhere and �φ̂n = 0. Then Eq. (10) becomes

Fn = −
∫

	

ρ f 〈v̂n�φn〉d	

= −
∫

	

ρ f

〈
v0�φn +

N∑
m = 1
m �= n

vm�φn

〉
d	, (11)

From the first-order scattering theory [3,8,37], the far-field
approximation of the scattered potential φn in terms of the
acoustic density ρ̂n and velocity v̂n fields incident on the nth
particle is written as follows:

φn = −αn
a3

n

3ρ f
∂t ρ̂n

eikrn

rn
− βn

2
a3

n∇ ·
(

v̂n
eikrn

rn

)
,

ρ̂n = ρ0 +
N∑

m = 1
m �= n

ρm v̂n = v0 +
N∑

m = 1
m �= n

vm, (12)

where rn is the radial distance from the center of sphere n
(with radius an) located at xn, as shown in Fig. 1. The terms αn

and βn denote monopole and dipole coefficients, respectively,
associated with sphere n. By applying the wave operator,
Eq. (12) gives

�φn = αn
4πa3

n

3ρ f
∂t ρ̂nδ(rn) + βn2πa3

n∇ · (v̂nδ(rn))

n = 1, 2, . . . , N, (13)

where δ denotes the Dirac delta function. The acoustic sources
of order O (r−3

n ) and beyond are neglected in the far-field
approximation. By using Eq. (13), the volume integral in
Eq. (10) reduces to

Fn = 2πa3
nρ f 〈βnv̂n · ∇v̂n〉x=xn − 4πa3

n

3
〈αnv̂n∂t ρ̂n〉x=xn , (14)

which can be further simplified by using 〈F∂tG 〉 =
−〈G ∂tF 〉 and ∇ p̂n = −ρ f ∂t v̂n, to give

Fn = 2πa3
nρ f 〈βnv̂n · ∇v̂n〉x=xn − 4πa3

n

3
κ f 〈αn p̂n∇ p̂n〉x=xn .

(15)

For the derivation details of Eq. (15) from (11), please see
Eqs. (14) to (15d) from Ref. [37]. Finally, Fn can be expressed
as the gradient of the generalized potential by factoring out the
gradient operator in Eq. (15), as follows:

Fn = −∇Gn(xn)

Gn = 	n

[
κ f

2
〈αn p̂n p̂n〉 − 3ρ f

4
〈βnv̂n · v̂n〉

]
, (16)

where Gn denotes the generalized potential associated with

sphere n and 	n = 4πa3
n

3 denote the volume of the target
sphere n.

B. Primary and secondary radiation forces and potentials

One may attempt to split the force acting on sphere n into
the primary force and secondary force (or interaction force).
We expand the product term as follows:

p̂n∇ p̂n =

⎛
⎜⎜⎜⎝p0 +

N∑
m = 1
m �= n

pm

⎞
⎟⎟⎟⎠∇

⎛
⎜⎜⎜⎝p0 +

N∑
l = 1
l �= n

pl

⎞
⎟⎟⎟⎠ = p0∇p0 + p0

N∑
l = 1
l �= n

∇pl +
N∑

m = 1
m �= n

pm∇p0 +

⎛
⎜⎜⎜⎝

N∑
m = 1
m �= n

pm

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎝

N∑
l = 1
l �= n

∇pl

⎞
⎟⎟⎟⎠

= p0∇p0 + ∇

⎛
⎜⎜⎜⎝p0

N∑
m = 1
m �= n

pm

⎞
⎟⎟⎟⎠+

N∑
m = 1
m �= n

⎡
⎢⎢⎢⎣pm∇pm +

N∑
l = 1

l �= n, l > m

(pm∇pl + pl∇pm)

⎤
⎥⎥⎥⎦
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= p0∇p0 +
N∑

m = 1
m �= n

∇(p0 pm) +
N∑

m = 1
m �= n

⎡
⎢⎢⎢⎣pm∇pm + 1

2

N∑
l = 1

l �= m, n

∇(pm pl )

⎤
⎥⎥⎥⎦. (17)

The second and third terms in the second line are combined to form the second term in the third line, and the last term in the
second line is expanded to isolate the self-interaction term pm∇pm. Applying a similar expansion to the velocity product term,
we split the total force acting on sphere n into two parts:

Fn =F0
n +

N∑
m = 1
m �= n

Fm
n , (18)

F0
n =2πa3

nρ f 〈βnv0 · ∇v0〉x=xn − 4πa3
n

3
〈αn p0∇p0〉x=xn , (19)

Fm
n = 2πa3

nρ f

〈
βn

[
∇(vm · v0) + vm · ∇vm + 1

2

N∑
l = 1

l �= m, n

∇(vm · vl )

]〉
x=xn

− 4πa3
n

3

〈
αn

[
∇(p0 pm) + pm∇pm + 1

2

N∑
l = 1

l �= m, n

∇(pm pl )

]〉
x=xn

, (20)

where F0
n denotes the primary radiation force that is expressed entirely in terms of the external field (p0 and v0), according to

Gorkov’s theory, and
∑N

m = 1
m �= n

Fm
n denotes the interaction force acting on sphere n. We have isolated the partial force terms F m

n

that can be attributed to the product of the external field and scattered field of sphere m [for example, ∇(p0 pm)]. However, the
last term in the expression for F m

n with sum of terms over the other spheres indicates that this partial force is actually coupled
with all spheres present in the system. Finally, the primary and secondary forces are expressed as the negative of the gradient of
potential fields, as follows:

F0
n = − ∇G0

n G0
n = 	n

〈
κ f

2
αn p2

0 − 3

4
ρ f βnv

2
0

〉
,

Fm
n = − ∇Gm

n Gm
n = 	n

〈
κ f αn

(
pm p0 + 1

2
p2

m + 1

2

N∑
l = 1

l �= m, n

pm pl

)
− 3

2
ρ f βn

(
vm · v0 + 1

2
v2

m + 1

2

N∑
l = 1

l �= m, n

vm · vl

)〉
, (21)

where G0
n denotes the primary force potential that is actually

the Gorkov’s potential. The partial interaction potential, de-
noted by Gm

n , depends on the external and scattered fields from
other spheres, and αn and βn, which are the monopole and
dipole scattering coefficients of the target sphere n. The main
advantage of the presented formulation is that the acoustic
radiation forces are evaluated directly from the solution of
the multibody scattering problem for a given external pressure
field p0.

C. Multibody scattering at Rayleigh limit ka � 1

Using the partial-wave expansion of the velocity potentials
up to dipole around the center of sphere n,

φ0 = e−iωt
1∑

ν,μ=0

A(n)
νμ jν (krn)Y μ

ν (θn, ϕn)

φn = e−iωt
1∑

ν,μ=0

B(n)
νμhν (krn)Y μ

ν (θn, ϕn)

φn = e−iωt
1∑

ν,μ=0

C(n)
νμ jν (knrn)Y μ

ν (θn, ϕn), (22)

where
∑1

ν,μ=0 =∑1
ν=0

∑ν
μ=−ν , (rn, θn, ϕn) are the spherical

coordinates with respect to the center of sphere n; φn denote
the refracted velocity potential inside the particle with kn

being the wave number inside the volume of sphere n; A(n)
νμ,

B(n)
νμ , and C(n)

νμ are constant coefficients; and jν and hν denote
spherical Bessel function and Hankel function of the first kind,
respectively. Y μ

ν denotes spherical harmonics that is expressed
as follows:

Y μ
ν (θn, ϕn) =

√
2ν + 1

4π

√
(ν − μ)!

(ν + μ)!
Qμ

ν (cos θn)eiμϕn , (23)
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where Qμ
ν is the associated Legendre polynomials of order ν

and degree μ.
The boundary conditions are the continuity of the normal

velocity and pressure on the surface of the particles [2], which
is written as follows:

p0 + pn = pn, (v0 + vn) · nn = (un + vn) · nn, (24)

where un denotes the rigid-body oscillation velocity and nn

is the outward normal unit vector to the surface of sphere
n. Substituting series expansions from Eq. (22) into (24) and
using orthogonal properties of spherical harmonics, the Bνμ

coefficients are obtained from the following coupled system
of equations:

B(n)
00

A(n)
00 + B(n)

00

= − ρ f kn j1(knan) j0(kan) − ρnkh0(knan) j1(kan)

ρ f kn j1(knan)h0(kan) − ρnk j0(knan)h1(kan)

B(n)
1μ

A(n)
1μ + B(n)

1μ

= − ρ f kn j′1(knan) j1(kan) − ρnkh1(knan) j′1(kan)

ρ f kn j′1(knan)h1(kan) − ρnk j1(knan)h′
1(kan)

μ = − 1, 0, 1, (25)

where B(n)
νμ =∑N

m = 1
m �= n

∑∞
νμ T μμ

νν (kdnm)B(m)
νμ with T μμ

νν being

the multipole translation operator as given in Eq. (2.8) in
Ref. [16].

In Eq. (25), the fraction on left-hand side represents the
ratio of scattered field from sphere n over the incident field on
it. In the Rayleigh limit, Eq. (25) can be simplified further by
using the near-zero asymptotic form of the spherical Bessel
and Hankel functions as follows:

B(n)
00

A(n)
00 + B(n)

00

≈ −i
(kan)3

3

(
1 − κn

κ f

)
= −i

(kan)3

3
αn

B(n)
1μ

A(n)
1μ + B(n)

1μ

≈ i
(kan)3

6

(
2ρn − 2ρ f

2ρn + ρ f

)
= i

(kan)3

6
βn. (26)

The monopole coefficient αn was found to be equal to 1 −
κn/κ f by applying the balance between the scattered and inci-
dent mass rates [3,37]. The dipole coefficient βn only depends
on the density ratio ρn/ρ f since dipole scattering is related to
the rigid-body oscillation [3,37]. While the coefficients αn and
βn are directly calculated from the ratios of density and speed
of sound between fluid and particle, the field coefficients B(n)

νμ

are coupled through the multipole translation operator T μμ

νν

that depends on the interparticle distances. The solution of
the fully coupled multibody scattering problem is needed to
obtain the actual scattered pressure and velocity fields. These
scattered fields are subsequently used for evaluating the inter-
action potential Gm

n , as stated in Eq. (21).

III. RESULTS

In this section, we investigate the interaction patterns un-
der planar and nonplanar standing waves. Zero-order Bessel
standing wave (BSW) is considered for studying the effects
of nonplanar fields on the interaction forces. It is assumed
that the standing waves are in the z direction. We consider
spherical polystyrene (PS) beads with ka = 0.0314 � 1 in
water with density ratio of 1.050 and speed-of-sound ratio of

1.567. The results are presented in terms of the normalized
potential g and normalized force S, which is a vector quantity.
They are expressed as follows:

g = G

	E0
, S = F

πa2E0
, 	 =

N∑
n=1

	n, E0 = 1

4
κ f |A|2,

(27)

where 	 denote the total volume occupied by the system of
N particles, E0 is the acoustic energy density, and A is the
pressure magnitude of the external field. We also use the sub-
scripts “pr” and “in,” to denote the quantities associated with
the primary and interaction forces, respectively, for presenting
the results in the this section, instead of the notation used
in Sec. II, to avoid numbering the spheres. The normalized
force S is a generalization of the contrast factor that indicates
the direction of the acoustic force. Finally, the multibody
scattering problem is solved as a coupled system by finding
the scattering coefficients B(n)

νμ for all the spherical particles
simultaneously from Eq. (25) to account for the strong inter-
action among the spheres when they are placed close to each
other.

A. Plane standing wave

The interaction force was calculated by taking the gradient
of the corresponding potential, using the central finite-
difference method. The results match very well (relative
difference of less than 1%) with those obtained from inter-
action force series in Ref. [16] for two compressible spheres
of the same size that are positioned symmetrically on the two
sides of the pressure node at interparticle distances 2a and 3a.
The plane standing wave with a pressure node at kz = 0 was
considered for the following numerical investigation.

1. A pair of spheres

The interaction potential between a pair of spheres of the
same size is mapped out and presented in Fig. 2. The source
sphere is placed on the pressure node kz = 0, while the probe
sphere is moved over the region of interest. The x-z projec-
tion of the potential field within a 4λ × 4λ region is shown
on the left panel. The zero-potential contour lines demonstrate
the ripple patterns in the interaction potential at large interpar-
ticle distances, implying the change in the force direction. The
local maxima and minima occur within the regions between
the zero-potential lines. The middle panel shows the potential
field in a smaller area of one-wavelength size around the
source sphere. The minimum potential occurs on the kz = 0
line within the horizontal and narrow strip with darker blue
shade. This one-wavelength area is of particular interest since,
in some practical acoustophoresis applications, particle ma-
nipulation is performed around a single pressure nodal plane
within the fluid domain [32–34,38,39].

The interaction potential within a four-radius area is shown
on the right panel of Fig. 2. The absolute maximum of the
interaction potential occurs at the poles of the source sphere
along the kz axis. Since the interaction force acts in the oppo-
site direction of the potential gradient, as stated in Eq. (21),
the target sphere is repelled by the source sphere if it ap-
proaches these polar regions. Around the equator, the source

043307-5



SHAHROKH SEPEHRIRHNAMA AND KIAN-MENG LIM PHYSICAL REVIEW E 102, 043307 (2020)

FIG. 2. The normalized interaction potential gin in the x-z plane for a sphere pair with the same size and the source sphere located at the
origin of the coordinate system on the pressure nodal plane, denoted by P.N.

sphere attracts the probe sphere, which results in forming a
dumbbell-shaped configuration on the pressure nodal plane.
This interaction behavior has been widely accepted as the the-
oretical explanation of the pearl-chain agglomeration pattern,
observed in some of the particle-separation applications [32].

From Eq. (21), the partial interaction potential Gm
n can be

split into three parts, based on the subscripts that corresponds
to the products of the external field and the scattered fields
from the other spheres. We investigate the contribution of
these terms to the interaction potential, as shown in Fig. 3.

a

s

p

P.N.
a

s

p

P.N.

ap

s

p

P.N. as

ap

s

P.N. as

p
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FIG. 3. Projection of the normalized interaction potential gin for the probe sphere on the x-z plane for a pair of spheres under a plane
standing wave. Panels (a) and (c) show the contribution from the product of incident field and the scattered field of the source particle, denoted
by [0, s], in Eq. (21). The contributions from the self-product term, denoted by [s, s], are shown in panels (b) and (d).
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FIG. 4. Magnitude and direction angle of the interaction forces acting on the probe and source spheres, placed in the x-z plane. Panels
(a) and (b) show the forces for the case of two solid spheres, while (c) and (d) show the case of solid-bubble interactions. The probe sphere is
shifted along a path parallel to the nodal plane at a distance of 3a from the plane.

In the case of a pair of spheres with the same radius a, the
interaction potential for the probe sphere is evaluated while
the source sphere lies on the nodal plane. The contributions of
the first part from pm p0 and vm · v0 terms (denoted by [0, s])
and the second part from p2

m and v2
m terms (denoted by [s, s])

in Eq. (21) are shown in Figs. 3(a) and 3(b), respectively.
Comparing the range of values, the [s, s] contribution is con-
sistently smaller than that of [0, s] by at least three orders of
magnitude. Thus, the second part [s, s] can be neglected with-
out significant loss of accuracy in calculating the interaction
potential and forces; hence,

Gm
n ≈ 	n

〈
κ f αn p0 pm − 3

2ρ f βn(v0 · vm)
〉
. (28)

The third part of the interaction potential is only present when
there are more than two spheres, and thus it evaluates to zero
for this case of two spheres. The same difference between
[0, s] and [s, s] parts was observed from Figs. 3(c) and 3(d),
when the source sphere has double the volume of the probe
sphere, as/ap ≈ 1.3. This implies that the [s, s] contribution
is negligible compared to [0, s] regardless of the relative size
of the spheres.

To investigate the mutual acoustic interaction forces, we
consider two cases of solid-solid (two PS beads in water) and
solid-gas (PS bead and air bubble in water) interactions. In
this study, the source sphere is placed at the pressure node,
while the probe sphere is moved over a horizontal line along

the x axis from x = −5a to 5a. The magnitude and polar angle
of the normalized forces (denoted by |S| and θS , respectively)
are obtained. For the solid-solid case, the interaction forces
were found to be equal and opposite, within the accuracy
of the numerical calculations, as shown in the first row of
Fig. 4. It is inferred that for a homogeneous population of
particles of the same material, the interaction forces balances
out each other and the resultant force acting on the cluster
is the sum of the primary forces. For the case of solid-gas,
as shown in the second row of Fig. 4, the mutual interaction
forces are distinctly different. The air bubble, used as the
source sphere, exhibits a strong monopole scattering, while
the scattered field of the PS bead is dominated by dipole
scattering. This difference in the scattering patterns accounts
for the unequal interaction forces. It was observed that the
interaction force acting on the air bubble is larger than the
force acting on the PS bead by one to two orders of magnitude.
The air bubble is consistently pushed out of the nodal plane
along the wave direction, while the force acting on the PS
sphere changes direction significantly from θS = 24◦ to 180◦.
When the spheres are along the wave direction, both interac-
tion forces act in the same direction. Hence, the notion that
interaction forces being an equal and opposite pair (similarly
to Newton’s third law) is not valid here. This is due to the
break in symmetry in the scattering patterns of two particles
of different properties. This implies that the resultant acoustic
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FIG. 5. Projection of the normalized interaction potential gin for the probe sphere on the x-z plane for three spheres with the same size
under a plane standing wave. The panels in the last column show the contribution from the cross products of the scattering fields from the two
source spheres, denoted by [s1, s2] and [s2, s1], to the partial interaction potential due to each source sphere, as expressed in Eq. (21).

interaction acting on a heterogeneous population of particles
is generally nonzero, and the interactions need to be included
in the study of ultrasound particle agglomeration.

2. Three spheres

The interaction potential for the probe sphere due to two
source spheres in contact on the nodal plane is shown by
parts in Fig. 5. Figures 5(a), 5(b), and 5(c) show the partial
interaction potential due to source sphere s1. It was observed
that [0, s1] contribution is about two to three orders of mag-
nitude larger than the contributions from [s1, s1] and [s2, s1].
Similarly to the case of two spheres, the contributions of the
parts with the product of the scattered fields are negligible,
and Eq. (28) gives an accurate estimate of the interaction
potential for the case of three spheres. Figures 5(c), 5(d), and
5(e) show the results for [0, s2], [s2, s2], and [s1, s2]. From
the similarity between these panels in the two rows, it was
concluded that the interaction potential can be studied in a
pairwise manner for larger population of particles. Hence, the
insights from the study of two spheres are of a great impor-
tance to understand the mechanisms of close-range acoustic
interactions.

To investigate the agglomeration of particles under plane
standing wave (PSW), we use the same case of three spheres.
Since the primary force is negligible in the vicinity of the pres-
sure node, the probe sphere is only moved within this region.
The interaction force field for this case is shown in Fig. 6.
The length of the vectors are normalized while their colors
indicate the force magnitude. These normalized vectors Sin

provide a generalization of the the concept of contrast factor,
as they indicate the direction of the interaction force in the

three-dimensional space. In this case where both interacting
fields are nonplanar, the interaction force is not one dimen-
sional. The pressure node is shown by a transparent gray plane
at kz = 0. Three slices of the force field at y = 0,±5a, are
presented to visualize the spatial behavior of the interaction
force field. If the probe sphere is in the same vertical plane
y = 0 as the source spheres, then it is generally repelled in
the z direction and pushed toward either side of the source
particles where they form a pearl-chain configuration along
the x axis. For the exceptional case of the probe sphere being
positioned initially on the z axis and already in contact with
the other two, it experiences a strong attraction and is pulled
in between the source particles, forming a pearl-chain config-
uration again. It is noted that when the probe sphere is in the
same plane as the source spheres, the interaction force has no
out-of-plane component.

When the probe sphere is placed on the planes at y = ±5a,
the z component of the interaction force pushes it toward the
pressure node. If the initial position of the probe sphere is far
from the pressure node, then the x and y components of the
interaction force would push it away from the source spheres
while the z component brings it closer to the nodal plane.
This will change when the probe sphere gets close to the
nodal plane within a threshold distance of about 2.5a. In this
case, the x and y components of the interaction force drive the
probe sphere toward the source spheres while the z component
continues to bring it toward the nodal plane. Once the probe
sphere is on the nodal plane, the z component becomes zero
and it moves toward the two source spheres along the nodal
plane. In this case, it is possible to see either a triangle or a
pearl-chain configuration, depending on direction of approach
of the probe sphere.
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FIG. 6. Contrast factor of the interaction force Sin acting on a target sphere from the two touching source spheres on the pressure nodal
plane.

B. Bessel standing wave

A zero-order BSW with its axis being in the z direction and
cone angle γ is expressed as follows:

p = AJ0(kRR) cos(kzz + π/2)e−iωt , (29)

where J0 denotes the cylindrical Bessel function of order zero;
A is the wave magnitude; kz and kR are the partial wave
numbers in the beam axis (z axis) and transverse direction (R
axis), respectively; R =

√
x2 + y2; and kR = k sin γ . For this

numerical study, we consider a BSW with γ = π/3, at which
the transverse and longitudinal wavelengths are comparable
and the effects of the nonplanar wave front become relatively
significant.

Before studying the particle interactions, it is important
to investigate the difference between the effects of PSW and
BSW on particles with different material properties in terms
of the primary radiation force. Under a PSW, the nodal planes
along the wave direction are the particle trapping locations
due to the action of the primary force [1,2,8]. While under a
zero-order BSW, the particles tend to migrate toward certain
rings on the nodal planes. These rings are the intersections
of the nodal planes with the cylindrical zero-pressure and
zero-velocity surfaces with radii approximately equal to the
roots of J0 and J1, respectively.

To further investigate the impact of the particle’s material,
we studied the magnitude of the primary force from BSW and
PSW for a wide range of c/c f and ρ/ρ f values, as shown
in Fig. 7. The primary force is zero in both cases when the
particle’s material is the same as the host fluid, as marked by
(1,1) on the graphs. It was found that there are other combina-
tions of material properties that also give zero primary force.
Particles with the density and speed of sound ratios (ρ/ρ f and
c/c f ) that fall below the zero-force line move toward velocity
nodes (V.N.). Those with ratios above the zero-force threshold
migrate toward the pressure node (P.N.) under both BSW and
PSW. Using water as the host fluid, we marked four points for
the cases of air bubbles, hexane droplets, solid polystyrene,

and Pyrex spheres, to illustrate particles above and below
the zero-force line. In practical applications with water, the
range of possible values for density and speed of sound ratios
fall within the shaded area. Considering this narrow region
from the graph, it was found that there exists some material
choices, marked with the white circle on the right panel, that
enable the particle to migrate toward the pressure node under
BSW, opposite to their behavior of toward velocity node in
PSW. These results show that, for some particle materials in
a given host fluid, there is a choice of planar or nonplanar
standing waves to achieve different outcomes of separating or
clustering particles of different material types. The reversal
of the primary force component in the wave direction when
the external field is changed (from PSW to BSW) shows that
the usual formula for contrast factor, Eq. (30c) in Ref. [37],
to determine the force direction is limited to cases with plane
external field. In the presence of nonplanar field, the normal-
ized force vector Spr should be used as a generalization of the
contrast factor that accounts for the shape of the external field.

Next, in Fig. 8, we look at the interaction behavior of a
pair of solid spheres at kR = 0, 2.78 and 4.42 on the pressure
node (kz = 0). It is assumed that the source sphere is already
at a location where the primary force is zero. By plotting
the [0, s] and [s, s] parts of the interaction potential for the
probe sphere, we found that the [s, s] contribution is about two
to three orders of magnitude smaller than [0, s] contribution,
which is similar to the case of PSW. This shows that Eq. (28)
provides an accurate approximation of the interaction poten-
tial regardless of the profile of the external acoustic field. The
interaction force profiles at kR = 0 and 4.42 are also similar,
differing only in magnitude. These two locations are the stable
trapping locations for solid particles, while kR = 2.78 is an
unstable equilibrium location.

The interaction forces acting on the probe sphere due to
the source sphere located at kz = 0 and kR = 0, 2.78, and
4.42 are shown in Fig. 9. As expected, the interaction force
field at kR = 0 and 4.42 have similar patterns but different
magnitude. At the unstable equilibrium location kR = 2.78,
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FIG. 7. Contrast factor of the primary force Spr with respect to the material properties of particles at (kz = π/4, R = 0), where the force
is nonzero and acts only in the wave direction (z axis). The results for PSW and BSW with γ = π/3 are shown in the left and right panels,
respectively.

the interaction forces are weaker by at least two orders of
magnitude as compared to the fields at kR = 0 and 4.42. The
x-y projection of the interaction forces at kR = 0 and 4.42
shows that the probe particle gets attracted by the source
particle from all directions. Whereas, from the x-z projection,
it was found that the probe particle tends to migrate to the
side of the source particle on the nodal plane due to their
close-range interaction. The interaction behavior is more com-
plicated at kR = 2.78 since the two spheres could either form

a dumbbell-shaped cluster in x or z direction; nevertheless,
such an interaction can be neglected due to the unstable equi-
librium at kR = 2.78.

Finally, to investigate the balance between the primary and
interaction forces acting on the probe sphere, the total acoustic
force is plotted in Fig. 10 for the above three locations. In
the x-y plane, the interaction force reinforces the primary
force in the same direction at kR = 0 and kR = 4.42, meaning
that the probe sphere gets attracted and pushed toward the
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FIG. 8. The [0, s] and [s, s] contributions to the interaction potential under a BSW for a pair of spheres with the source sphere being located
at the intersection of the pressure nodal plane at kz = 0 and kR = 0, 2.78, and 4.42.
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FIG. 9. The x-y and x-z projections of the contrast factor of the interaction force under a BSW for a pair of spheres with the source sphere
being located at the intersection of the pressure nodal plane at kz = 0 and kR = 0, 2.78, and 4.42. The vectors length are normalized and their
magnitude is shown by the background contours.

source sphere together with the primary force effort. This is
not the case at kR = 2.78 since the interaction force is in the
opposite direction as the primary force; however, it is three
orders of magnitude smaller than the primary force and can

be neglected. In the x-z plane, the interaction force becomes
dominant at the vicinity of the source sphere for the two cases
of kR = 0 and kR = 4.42. The probe sphere will be brought
to the vicinity of the source sphere by the primary force,
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FIG. 10. Contrast factor of the total force for a pair of solid spheres with different locations for the source sphere at kR = 0, 2.78, and
4.42 on the pressure nodal plane at kz = 0. The force vectors are normalized while the background colors show their magnitude.

and then, under the action of the interaction force, it gets
attracted and attached to the source sphere to form a dumbbell
configuration. At kR = 2.78, the interaction force is negligible
in the x-z plane, and the primary force is dominant in this
unstable equilibrium location.

IV. DISCUSSION

The present formulation is an improvement over the ear-
lier work of Silva and Bruus [19]. In their formulation, the
scattered wave was calculated from the external wave, as they
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FIG. 11. Comparison of the theoretical estimation of acoustic
interaction force for a pair of PS beads in water from the experiments
in Ref. [23]. The shaded band shows the area of experimental data
points. The results of the present model are shown with a blue dashed
line with square markers.

argued that the scattered wave that undergone a single prior
scattering of the external wave is dominant. This avoided the
need to solve for a fully coupled multibody scattering prob-
lem. The formulation in Ref. [19] was also simplified with
one dipole coefficient for cases exhibiting symmetry, such
as spheres directly opposite the nodal plane. As the spheres
approach each other from an arbitrary direction, the full set of
dipoles must be used. Also, when the separation between the
spheres is small, the scattered field coefficients will interact
and a coupled system, such as Eq. (25), needs to be solved
to ensure accurate results. It was reported that the estimated
force by using the formula in Ref. [19] gives around 50%
error for close-range interactions within two diameters of the
interacting spheres [23]. Figure 11 shows a comparison of the
interaction force results from the present model, indicated by
blue dashed line with square markers, with previous results.
The experimental measurements in Ref. [23] fall in a band
indicated by the shaded area. The present results match well
with those obtained from complete multipole series method
with the cut-off order of five, confirming that the self-product
terms ([s, s]) are negligible. These results also fall on the
lower edge of the experimental data, while the results from
Ref. [19] are lower by 50%.

In the present formulation, the scattered wave is approxi-
mated by monopole and dipole coefficients. This formulation
could be improved by increasing the number of multipoles in
the representation of the scattered potential, which is neces-
sary for larger particles outside of the Rayleigh limit. If one
includes the quadrupole terms, then it will increase both the
number of coefficients to be solved in the coupled multiscat-
tering problem and the number of terms in the force potential.

Until this idea is formulated mathematically, readers are en-
couraged to use a direct partial-wave series expansion method
for large particles outside of the Rayleigh limit [16,18,20]. A
proper convergence study is required to determine the mini-
mum number of terms to evaluate the force accurately using
this expansion series.

Our analysis of interaction force field in a PSW showed
that a triangle-shaped cluster of three particles is plausible
when all are within the nodal plane during agglomeration.
This is in addition to the pearl-chain configuration. The
likelihood of the triangle-shaped clusters emerging in ex-
periments is high since particles tend to move to the nodal
plane first under the strong primary force field before inter-
action forces become dominant. Therefore, it is expected to
observe such two-dimensional (2D) configuration along side
with the line formation. However, most of the experimental
observations showed the pearl-chain agglomeration in a PSW
[23,32,33,39]. This means that there may be additional forces
in the fluid domain, which drives particles to line up on
the nodal plane. These forces could be generated by weak
acoustic fields that emerge from the boundaries of the fluid
domain, in addition to the applied PSW. The presence of such
secondary acoustic fields was noticed during experimental
measurement of the interaction forces [23]. Nonetheless, it is
suggested that various types of forces in an acoustophoretic
application could be identified by observing the agglomera-
tion patterns and simulating them by using theoretical particle
tracing.

V. CONCLUSION

In this study, we presented the formulation for a gener-
alized potential for acoustic radiation forces, including that
for interparticle force. By using the generalized potential, the
close-range interactions among spheres were investigated in
the vicinity of the stable equilibrium locations, where the
primary force is negligible. For a general 3D sound field,
the normalized force which is a vector quantity should be
used to indicate the particle’s direction of motion. This is
a generalization of the scalar contrast factor used for plane
waves. The interaction potential was shown to be dominated
by the product of the external field and the scattered fields
from other spheres, with the product terms of scattered fields
being insignificant. The interaction forces in a heterogeneous
population of particles are generally not equal and opposite.
Furthermore, based on a three-sphere interaction case under
plane standing wave, it was concluded that formation of tri-
angular cluster on the nodal plane is equally likely to the
well-known pearl-chain configuration. Both configurations
can be expected in practical applications, unless there are
other forces that prevent the triangular clustering or the initial
arrangement of the spheres was controlled in a certain way.

The nonplanar standing wave may achieve different out-
comes (separation or clustering particles of different types
of materials) as compared to the plane standing wave, pro-
viding an additional parameter for design of acoustofluidic
devices. For a plane standing wave, strong acoustic interaction
occurs at interparticle distances of within 5 times the sphere
diameters; however, for the nonplanar Bessel standing wave,
such interaction occurs at much smaller interparticle distances
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of around 1.25 times of the sphere diameters. Finally, by
analyzing the total force induced by Bessel standing wave,
we showed that the interparticle force strongly determines the
agglomeration pattern of the spheres as they get closer to each
other. The present method of generalized potential is a promis-
ing model, providing a simple and insightful method to study
the radiation forces in an acoustic field. This method will be
useful in applications such as acoustic holography, where a
spatially complex sound field is generated and utilized.

The data that support the findings of this study are available
from the corresponding author on reasonable request.
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