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High-order kinetic flow solver based on the flux reconstruction framework
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The goal of this paper is to develop a high-order numerical method based on the kinetic inviscid flux (KIF)
method and flux reconstruction (FR) framework. The KIF aims to find a balance between the excellent merits
of the gas-kinetic scheme (GKS) and the lower computational costs. The idea of KIF can be viewed as an
inviscid-viscous splitting version of the gas-kinetic scheme, and Shu and Ohwada have made the fundamental
contribution. The combination of totally thermalized transport (TTT) scheme and kinetic flux vector splitting
(KFVS) method are achieved in KIF. Using a coefficient which is related to time step and averaged collision
time, KIF can adjust the weights of TTT and KFVS flux in the simulation adaptively. By doing the inviscid-
viscous splitting, KIF is very suitable and easy to integrate into the existing framework. The well-understood FR
framework is used widely for the advantages of robustness, economical costs, and compactness. The combination
of KIF and FR is originated by three motivations. The first purpose is to develop a high-order method based on the
gas-kinetic theory. The second reason is to keep the advantages of GKS. The last aim is that the designed method
should be more efficient. In present work, we use the KIF method to replace the Riemann flux solver applied
in the interfaces of elements. The common solution at the interface is computed according to the gas-kinetic
theory, which makes the combination of KIF and FR scheme more reasonable and available. The accuracy and
performance of present method are validated by several numerical cases. The Taylor-Green vortex problem has
been used to verify its potential to simulate turbulent flows.

DOI: 10.1103/PhysRevE.102.043306

I. INTRODUCTION

The gas-kinetic scheme (GKS) developed by Xu [1,2] is
based on the idea of Bhatnagar et al. [3]. In recent years,
GKS is on the way to become the preferred numerical method
in the fluid dynamics. Compared with the traditional Navier-
Stokes numerical method, GKS is of high spatial and temporal
accuracy. The advantages of GKS have been recognized in the
simulation of turbulent flows [4–8], shock-boundary interac-
tion, hypersonic flows [2,9], and nonequilibrium simulations
[10,11]. A series of studies based on the GKS has been con-
ducted on the immersed boundary method [12–14], implicit
temporal marching [15], and dual-time strategy [16] for un-
steady flows.

In the field of computational fluid dynamics (CFD), a nu-
merical algorithm can be classified as a low- or high-order
method according to the numerical accuracy approached. For
the features of robustness and economical costs, the low-order
methods are still popular in the aeronautical industry. Com-
pared with the low-order method, the high-order method is
more accurate, which has the potential of providing more de-
tails of the flow fields [17,18]. However, using the high-order
method in real industry is still a challenge, which has attracts
the interest of many researchers from all over the world. The
development of high-order GKS can be traced back to the
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study of Q. Li [19]. J. Luo [20], G. Zhou [21], L. Pan [22–24],
X. Ji [25,26], and F. Zhao [27] have made great contributions
to the high-order gas-kinetic scheme.

Although the high-order gas-kinetic scheme has been stud-
ied quite well, the development of the high-order gas-kinetic
scheme has never stopped. In present work, we focus on
the combination of the kinetic inviscid flux (KIF) and flux
reconstruction (FR) methods. The combination of KIF and
FR is originated by three motivations. The first purpose is to
develop a high-order method based on the gas-kinetic theory.
The second reason is to keep the advantages of GKS. The
last aim is that the designed method should be more efficient.
In order to find a balance between the advantages of the
gas-kinetic scheme and lower computational costs, KIF was
proposed by S. Liu [28]. The KIF scheme is a combination of
the totally thermalized transport (TTT) scheme and the kinetic
flux vector splitting method (KFVS). The TTT scheme, which
does not introduce extra artificial viscosity in a smooth flow
area, can approach the boundary layer accurately. TTT has a
property similar to central schemes, so it also cannot capture
the discontinuity properly. The KFVS is a shock capturing
scheme with good robustness. The combination is a good idea,
which means that we use the TTT scheme where the flow is
smooth and the KFVS method where discontinuity exists. The
kernel of the KIF method is to adjust the weights of the TTT
and KFVS in the simulation automatically.

To develop a high-order kinetic flux solver, it is critical to
adopt the advantages from the traditional high-order method
based on the Navier-Stokes equation. Since the late 1990s, the
high-order numerical method is one of the research hotspots
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in the field of CFD. Many of researchers have devoted their at-
tention to such a challenge, and a large numbers of high-order
numerical methods have been developed under the frame-
works of the finite-volume method, finite-difference method,
and finite-element method. Some of the schemes have notable
features and have been used widely. For example, we have
the k-exact method [29], essentially nonoscillatory (ENO)
method [30–33], weighted ENO (WENO) method [34–36],
discontinuous Galerkin (DG) method [37], radial basis func-
tion method [38], compact least-squares (CLS) reconstruction
method [39,40], and variational reconstruction method [41].
An excellent review of the high-order methods is presented
by Z. Wang [42].

The flux reconstruction method, first proposed by H. T.
Huynh [43,44], aims to be more popular in both the research
and real industry fields. The designed features of robustness,
economical costs, and compactness make it well understood
and available. A particular FR scheme depends on three
factors [45], namely the distribution of solution points, the
Riemann flux solver applied at the interfaces, and the choice
of the correction functions G and H. It has been proved that
the flux reconstruction method can recover the simplified DG
and staggered grid scheme with specific factors, and the con-
servation also has been proved in Ref. [43]. Based on the study
of Jameson [46], a class of energy stable flux reconstruction
method was proposed by Vincent, Castonguay, and Jameson
(VCJH) [45]. The VCJH scheme was used for triangular ele-
ments [47]. Until now, the VCJH correct function has played
an important role in the FR framework.

In the present work, the combination of KIF and FR is
achieved by (a) replacing the Riemann solver applied on
the interface of elements with KIF, (b) using the gas-kinetic
theory to compute the common solution on the interface,
and (c) implementing the inviscid-viscous splitting strategy in
the simulation. The present paper is organized as follows. In
Sec. II, the KIF method and the flux reconstruction framework
are introduced. Several numerical tests are set up in Sec. III,
and the numerical accuracy of the present method is validated.
The last section of paper is a short conclusion.

II. NUMERICAL METHOD

The FR method, which takes advantage of DG and the
staggered grid scheme [48,49], was first developed by H.
T. Huynh [43,44]. It focuses on the features of robustness,
economical costs, and compactness. The flux reconstruction
method has attracted attention because it is well understood
and widely available. In this section, the high-order kinetic
flux solver based on the flux reconstruction framework will be
introduced.

A. Governing equation

For a one-dimensional problem, the Bhatnagar-Gross-
Krook (BGK) model [3] in the x direction is

ft + u fx = g − f

τ
, (1)

where u is the particle velocity, f represents the gas distri-
bution function, g denotes the equilibrium state approached
by f , and τ is related to the averaged collision time. The

equilibrium state is known as a Maxwellian distribution and
reads as follows:

g = ρ
( λ

π

) K+1
2

e−[(u−U )2+ξ 2], (2)

where ρ is the density and U is the macroscopic velocity. λ,
which reads as λ = m/(2kT ), is related to the temperature T
of gas, m represents the molecular mass, and k denotes the
Boltzmann constant. The total number of degrees of freedom
K in ξ equals (5 − 3γ )/(γ − 1) + 2, γ is the ratio of specific
heat, and ξ2 = ∑K

i=1 ξ 2
i .

According to the kinetic theory of gases, both the distri-
bution function f and the equilibrium state g are functions of
particle velocities u, space x, and time t . Taking the moments
of distribution function f , the macroscopic conservative vari-
able w can be obtained as follows:

w =
(

ρ

ρU
E

)
=

∫
ψ f d�, ψ =

(
1, u,

1

2
(u2 + ξ2)

)T

, (3)

where d� = du(
∏K

i=1 dξi ). In order to obtain the spatial dis-
cretization in the flux reconstruction framework, we take
moments of ψ in Eq. (1) and integrate it with d� in phase
space, ∫

( ft + u fx )ψd� = −
∫

f − g

τ
ψd�. (4)

Using the compatibility condition∫
g − f

τ
ψd� = 0, (5)

we can get the following formula:

wt + Gx = 0, G =
∫

u f ψd�, (6)

where G is the flux corresponding to conservative variables w

along the x direction. Then we can solve the Eq. (6) within
the flux reconstruction framework, and the flux G can be
computed using KIF.

B. Kinetic Iinviscid flux

The Riemann flux solver employed at the interfaces is one
of the three critical factors of flux reconstruction method. In
the present work, we implement the kinetic inviscid flux to
determine the common flux at the interface of elements. The
motivation of our work is to reach a compromise between
good performance of the gas-kinetic scheme and lower com-
putational costs. The KIF is a kind combination of the TTT
scheme and the KFVS method.

The TTT scheme has been discussed by Xu in Ref. [50].
The first step of the TTT scheme is to get the Maxwellian
distribution on both sides of the surface,

gl =
{
ρ

(
λ

π

) K+1
2

e−[(u−U )2+ξ 2]

}
l

,

gr =
{
ρ

(
λ

π

) K+1
2

e−[(u−U )2+ξ 2]

}
r

. (7)
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FIG. 1. The discontinuous solution polynomials and interface
common solutions within elements 	i−1, 	i, and 	i+1.

The subscripts l and r represent the state based on the macro-
scopic variables from the left and right sides of the interface,
respectively. The second step is to make particles cross the
interface collide sufficiently. The new Maxwellian distribution
g0 is assumed to have the following form:

g0 =
{
ρ

(
λ

π

) K+1
2

e−[(u−U )2+ξ 2]

}
0

,

w0 =
∫

g0ψd� =
∫

[(1 − H (x)]gl + H (x)gr )ψd�, (8)

where H (x) is the Heaviside function,

H (x) =
{0, x < 0,

1, x � 0.
(9)

Finally, the flux of the TTT scheme reads as

FTTT =
∫

ug0ψd�. (10)

The TTT scheme has a property similar to the central scheme,
which does not introduce extra artificial viscosity in smooth
flow area and can capture the boundary layer accurately. How-
ever, it cannot deal with shock wave, because it lacks artificial
viscosity.

The equilibrium flux method (EFM) [51] and KFVS [52]
are similar, and we just call it KFVS here. KFVS is another
kinetic scheme and is a shock capturing method. After get-
ting the Maxwellian distribution beside the interface using
Eq. (7), KFVS gives flux by calculating particles across the

interface as

FKFVS =
∫

u>0
uglψd� +

∫
u<0

ugrψd�. (11)

KFVS has the properties of good robustness and positiv-
ity preservation [53], which make the scheme suitable for
capturing the discontinuity. However, it introduces enormous
artificial viscosity, and the essential problem, which is ana-
lyzed in Ref. [50], is that the equation solved at interface is
the collisionless Boltzmann equation.

Combination is a good idea, which means that we use TTT
in the smooth flow area and KFVS in the flow field where
shock wave exists. The idea of KIF can be viewed as an
inviscid-viscous splitting version of the gas-kinetic scheme,
and Shu [54] and Ohwada [55] have made the fundamental
contribution. The most significant difference between KIF
[28] and the works of Shu and Ohwada is the weight of
TTT and KFVS. Reference [28] adopted the philosophy of
direct modeling [56] and constructed two kinds of KIF method
(namely the KIF1 method from the GKS strategy [1] and the
KIF2 method from the DUGKS strategy [57]). In the present
work, we adopt the KIF1 method in the simulations. The KIF1
method can be expressed as

F =
{

τ

δt
(1 − e−δt/τ )

}
FKFVS +

{
1 − τ

δt
(1 − e−δt/τ )

}
FTTT,

(12)

δt = rτ = τ

max
	

[ |pl −pr |
|pl +pr | , max(Mal , Mar )

] , (13)

where δt is the observation timescale and is measured in mean
collision time (or the relaxation time τ ) in discontinuities. For
details of the KIF1 method, see Ref. [28].

In other words, KIF is a kind of balance between the kinetic
scheme and the traditional macroscopic numerical method.
In recent years, kinetic schemes have made a significant de-
velopment [57–61] that mainly aims at nonequilibrium flow.
With a view at equilibrium state, KIF replaces the compli-
cated nonequilibrium part with the traditional central viscosity
scheme. One motivation is to find a balance between advan-
tages and efficiency, while another is to be suitable and easy
to integrate into the existing framework.

(a) (b)

FIG. 2. The demonstration of solution correction: (a) Corrected solution beside the interface and (b) the solution correction within
element 	i.
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(a) (b)

FIG. 3. The demonstration of flux correction: (a) Corrected flux beside the interface and (b) the flux correction within element 	i.

C. Spatial discretization in flux reconstruction framework

In this section, the FR framework used to solve Eq. (6) is
introduced. For the one-dimensional problem, the computa-
tional domain 	 can be divided into N subdomains,

	 = {	i|i = 0, 1, . . . , N − 1},
	i = [xi, xi+1], x0 < x1 < · · · < xN . (14)

Within the element 	i, the solution points are set as xi,k

(k = 0, 1, 2, . . . , P). It is obvious that the number of solution
points within a standard elements is P + 1, and P is related
with the accuracy order of the numerical method. The set
xi,k can be chosen as Gauss, Radau, Lobatto, or equidistant
points. It has been proved in Refs. [43,44] by H. T. Huynh that
Fourier stability and accuracy analysis of the FR framework
are independent of the type of solution points.

Since dealing with every elements 	i is very tedious, all
the element 	i should be mapped into the same standard
element 	s = {ξ |ξ ∈ [−1, 1]} to simplify the implementation
of the algorithm. The mapping function θ (ξ ) can be expressed
as

x = θi(ξ ) =
(1 − ξ

2

)
xi +

(1 + ξ

2

)
xi+1. (15)

In order to be consistent with the existing literature of the FR
framework, the denotation of flux G in Eq. (6) is replaced by
f . In present work, we apply KIF to compute the total flux f .
For the inviscid problem, f is computed using Eq. (12). For
the viscous problem, the total flux f can be expressed as

f = f c + f v, (16)

TABLE I. L2 normal of density for the advection of density
problem.

N L2 Order

10 2.711254 × 10−5 –
20 1.004359 × 10−6 4.754614
40 5.789748 × 10−8 4.116630
80 3.339470 × 10−9 4.115809
160 2.089252 × 10−10 3.998561
320 1.310146 × 10−11 3.995187
640 8.208407 × 10−13 3.996481

where f c is computed using Eq. (12), and the viscous part f v

has the following form:

f v = f v,1 + f v,2 + f v,3, (17)

where

f v,1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0,

σxx

σxy

σxz

Uiσix − qx

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, f v,2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0,

σyx

σyy

σyz

Uiσiy − qy

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

f v,3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0,

σzx

σzy

σzz

Uiσiz − qz

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (18)

The viscous stress reads

σi j = μ

(
∂Ui

∂x j
+ ∂Uj

∂xi

)
− 2

3
μδi j

∂Uk

∂xk
, (19)

where δi j is the Kronecker symbol, U is the macroscopic
velocity, and the heat fluxes are defined as

qi = −k
∂T

∂xi
, (20)

where

k = Cpμ

Pr
, T = p

ρR
. (21)

TABLE II. L2 normal of density for the isentropic vortex problem.

N L2 Order

10 4.342904 × 10−3 –
20 2.410620 × 10−4 4.171184
40 1.488880 × 10−5 4.017105
80 9.680808 × 10−7 3.942956
160 7.091912 × 10−8 3.770881
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(a) (b)

(c) (d)

FIG. 4. The h criterion grid refinement tests for Sod shock tube problem: (a) density, (b) u-velocity, (c) pressure, and (d) temperature
distributions at t = 0.2.

(a) (b)

(c) (d)

FIG. 5. The results of Sod shock tube problem with different values of s0 + κ: (a) density, (b) u-velocity, (c) pressure, and (d) temperature
distributions at t = 0.2. The length scale h is set as 1/64.
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(a) (b)

(c) (d)

FIG. 6. The comparison between FRKIF and second-order gas-kinetic scheme: (a) density, (b) u-velocity, (c) pressure, and (d) temperature
distributions at t = 0.2.

Pr represents the Prandtl number, Cp denotes the specific heat
at constant pressure, and R is the gas constant.

With the mapping expressed as Eq. (15), the evolution of
macroscopic variables w within each 	i can be transformed
as the Eq. (22) within the standard element,

ŵt + 1

Jn
f̂ ξ = 0, (22)

where

ŵ = w(θi(ξ ), t ) in 	i, (23)

f̂ = f (θi(ξ ), t ) in 	i, (24)

Jn = ∂x

∂ξ
in 	i. (25)

The FR framework for solving the Eq. (22) within the
standard element 	s consists of seven subsequent steps. In
the first step, the solution polynomial ŵδ

i (ξ ) can be obtained
through the macroscopic variable ŵi,k at the solution points
ξk ,

ŵδ
i (ξ ) =

P∑
k=0

ŵi,kφk (ξ ), (26)

where the symbol δ denotes the solution polynomial, which is
always discontinuous at the element interface. φk (ξ ) is the 1D
Lagrange polynomial equal to 1 at the kth solution point and

0 at the others,

φk (ξ ) =
P∏

l=0,l �=k

ξ − ξl

ξk − ξl
. (27)

Figure 1 shows the solution polynomials at element 	i

and the neighbors in the physical space. Take the interface
xi+1/2 as an example; wδ

i (xx+1/2) and wδ
i+1(xx+1/2) represent

the macroscopic variables at the interface from 	i (left)
and 	i+1 (right), respectively. Generally speaking, wδ

i (xx+1/2)
and wδ

i+1(xx+1/2) are not equal. Since ξ belongs to the

FIG. 7. The zoom in view of density distribution shown in
Fig. 6(a).
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(a) (b)

(c) (d)

FIG. 8. The h criterion grid refinement tests for Lax problem: (a) density, (b) u-velocity, (c) pressure, and (d) temperature distributions at
t = 0.14.

interval [−1, 1] in the standard element 	s, wδ
i (xx+1/2) and

wδ
i+1(xx+1/2) equal ŵδ

i(1) and ŵδ
i+1(−1) respectively. It is

natural that ŵδ
i(1) does not equal ŵδ

i+1(−1) in most of cases,
which is the “Discontinuous” at the interfaces of element.

In the second step, we must determine the common solu-
tion ŵCI at the boundaries of standard element, i.e., ξ = ±1.
The common solution ŵCI at the interface is used to make the

FIG. 9. Shu-Osher problem: The distribution of density-wave at
t = 1.8.

solution within the standard element to feel the effect of the
boundaries, so the superscript C also has the meanings “cor-
rected” and “continuous.” In the present scheme, the common
solution ŵCI is computed using the following expression:

ŵCI
i+1/2 =

∫
u>0

glψd� +
∫

u<0
grψd�, (28)

where gl and gr , which correspond to ŵi(1) and ŵi+1(−1),
are the Maxwellian distributions at the left and right sides of

FIG. 10. Shock vortex interaction problem: The computational
domain and the boundary conditions. In the simulation, Cartesian
grid is used, and the element length scale of mesh h equals 1/100.
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FIG. 11. Shock vortex interaction problem: (a) The initial status and (b) the contour of pressure at t = 0.3.

an interface. ŵδ
i (1) and ŵδ

i+1(−1) can be obtained easily using
Eq. (26). The demonstration of ŵCI is shown in Fig. 1.

It must be noted that if the jumps at boundaries of element
are ignored, then the solution within the element cannot feel
the effect of the boundaries and the evolution of scheme must
get an erroneous result. Thus, the third step is to construct the
corrected (or continuous) solution polynomial in the standard
element. As shown in Fig. 1, the common solutions at the two
end points of the element of 	i are ŵCI

i,L and ŵCI
i,R, respec-

tively. The corrected solution polynomial within the element
is named ŵC

i (ξ ) and has the following features:

ŵC
i (−1) = ŵCI

i−1/2 = ŵCI
i,L, ŵC

i (1) = ŵCI
i+1/2 = ŵCI

i,R. (29)

The corrected solution polynomial ŵC
i (ξ ) is assumed to have

the following form:

ŵC
i (ξ ) =

P∑
k=0

ŵi,kφk (ξ ) + [
ŵC

i (−1) − ŵδ
i (−1)

]
GL(ξ )

+ [
ŵC

i (1) − ŵδ
i (1)

]
GR(ξ ). (30)

GL(ξ ) and GR(ξ ) are the correct functions related with the left
and the right end points of the element, and GL(ξ ) and GR(ξ )
should satisfy the following conditions:

GL(−1) = 1, GL(1) = 0, GR(−1) = 0, GR(1) = 1.

(31)

The correct function is one of the critical factors of the FR
framework. For more details and introductions of correct
function, see Refs. [43,44]. Now that the corrected solution
polynomial is computed, the corrected solution derivatives

polynomial dŵC
i (ξ )

dξ
can be obtained directly,

dŵC
i (ξ )

dξ
=

P∑
k=0

ŵi,k
dφk (ξ )

dξ
+ [

ŵC
i (−1) − ŵδ

i (−1)
]dGL(ξ )

dξ

+ [
ŵC

i (1) − ŵδ
i (1)

]dGR(ξ )

dξ
. (32)

The correction procedure can be seen in Fig. 2 briefly.
The fourth step is to compute the flux f̂ i,k at the solution

point ξk . f̂ i,k can be evaluated by the macroscopic variables

ŵi,k and the corrected derivatives dŵC
i

dξ
(ξk ), and dŵC

i
dξ

(ξk ) is

computed from Eq. (32). To compute f̂ i,k , a KIF flux solver is
used. After the fluxes at solution points have been computed,
the flux polynomial within the element can be obtained,

f̂
δ

i (ξ ) =
P∑

k=0

f̂ i,kφk (ξ ). (33)

f̂
δ

i means that the flux polynomial is always discontinuous at
the boundaries of elements.

The fifth step focuses on the common flux f̂
CI

at the two
end points of the element. The fluxes across the boundaries
of elements are always discontinuous. To make the fluxes
within an element feel the effect of the boundaries, it is very
important to compute the continuous (or common) fluxes at
the interface to get the accurate results. The common fluxes
at boundaries of elements is another critical factor of the
FR framework. Take the flux f̂

CI
i+1/2 as an example; f̂

δ

i (1),

f̂
δ

i+1(−1), and ŵCI
i+1/2 are needed. f̂

δ

i (1) and f̂
δ

i+1(−1) are
evaluated using Eq. (33). In our present work, the KIF method

is applied to compute f̂
CI
i+1/2.

FIG. 12. Shock vortex interaction problem: (a) The contours of pressure at t = 0.6 and (b) the contours of pressure at t = 0.8.
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The sixth step is to correct the fluxes using the common
fluxes at the interfaces. The procedure of flux correction is
very similar to solution correction, and Fig. 3 exhibits the
procedure primitively. The corrected flux polynomial reads

f̂
C
i (ξ ) =

P∑
k=0

f̂ i,kφk (ξ ) + [
f̂

C
i (−1) − f̂

δ

i (−1)
]
HL(ξ )

+ [
f̂

C
i (1) − f̂

δ

i (1)
]
HR(ξ ), (34)

where H is the correction function, which is similar to the G
used in the correction procedure of solution polynomial and
HL(ξ ) and HR(ξ ) should satisfy the following conditions:

HL(−1) = 1, HL(1) = 0, HR(−1) = 0, HR(1) = 1.

(35)

The final step is to compute the divergence of the corrected
fluxes at the solution points. Since the corrected flux polyno-
mial is expressed as Eq. (34), the divergence of the corrected
flux at the solution point ξk can be obtained directly,

f̂ ξ,i,k = d f̂
C
i

dξ
(ξk ) =

P∑
k=0

f̂ i,k
dφk

dξ
(ξk )

+ [
f̂

C
i (−1) − f̂

δ

i (−1)
]dHL

dξ
(ξk )

+ [
f̂

C
i (1) − f̂

δ

i (1)
]dHR

dξ
(ξk ). (36)

By now, all the preconditions of using Eq. (22) to update the
macroscopic variables at the solution points are completed for
the 1D advection problem.

D. VCJH scheme

The correction function is critical for the flux reconstruc-
tion method. G and H have a great effect on the accuracy
and stability. The VCJH scheme developed by Vincent [45]
is used in our work. The correction function of VCJH scheme
is defined as

GL = (−1)P

2

[
ΨP −

(
ηPΨP−1 + ΨP+1

1 + ηP

)]
, (37)

and

GR = 1

2

[
ΨP +

(
ηPΨP−1 + ΨP+1

1 + ηP

)]
, (38)

where

ηP = ε(2P + 1)(aPP!)2

2
, aP = (2P)!

2P(P!)2 , (39)

where P is the order of polynomial and ΨP is the P order
Legendre polynomial. In order for the scheme to be stable,
the parameter ε must be within the range ε_ < ε < ∞, where

ε_ = −2

(2P + 1)(aPP!)2 . (40)

The VCJH scheme has been proved as an energy sta-
ble scheme, and it can be recovered to a particular existing
scheme, such as nodal DG (ε = 0). The correction function H
is similar to G.
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FIG. 13. The computational domain and boundary conditions
used in the simulation of supersonic flow past a circular cylinder.

E. Time marching method

In terms of time integration, an explicit Runge-Kutta
method [62] is used in the present work. Equation (22) can
be rewritten as

ŵt = − 1

Jn
f̂ ξ = L(ŵ). (41)

The time marching method is expressed as

ŵ(1) = ŵ(0) + 1

2
�tL(ŵ(0) ),

ŵ(2) = ŵ(0) + 1

2
�tL(ŵ(1) ),

ŵ(3) = ŵ(0) + �tL(ŵ(2) ),

ŵ(4) = 1

3
[−ŵ(0) + ŵ(1) + 2ŵ(2) + ŵ(3)] + 1

6
�tL(ŵ(3) ),

(42)
where ŵ(0) = ŵn and ŵ(4) = ŵn+1.

F. Extension to multidimensional problem

Extension to quadrilateral and hexahedral elements are
straightforward [43,44]. Take the hexahedral elements as ex-
ample; the interpolation polynomial of solution is obtained by
tensor products of the one-dimensional interpolation basis,

ŵδ (ξ, η, ζ ) =
P∑

i=0

P∑
j=0

P∑
k=0

ŵi, j,kφi(ξ )φ j (η)φk (ζ ), (43)
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FIG. 14. Numerical results of the supersonic flow over a circular cylinder: (a) density and (b) pressure.

where i, j, and k are the indexes along the three axis, re-
spectively. The interpolation polynomial of flux is as same as
solution polynomial.

For triangles [47,63] and tetrahedra [64], they are more
complicated in algorithm and implementation. But the pro-
cedure is analogous to FR in one dimension.

The correction function for hexahedral elements is as sim-
ilar as Eq. (43), which can be written as

G(ξ, η, ζ ) =
P∑

i=0

P∑
j=0

P∑
k=0

Gi, j,kφi(ξ )φ j (η)φk (ζ ). (44)

For details on extension to multiple dimensions, see Ref. [43].

G. Shock capturing method

Robust shock capturing is a main difficulty for the high-
order FE-type CFD method. In the vicinity of discontinuities,
the smooth indicator [65–67] is used to detect the disconti-
nuity. Once the shock has been sensed, the shock capturing
method is applied on the elements. In the present work, we
follow the idea of Sheshadri and Jameson [67]. We use two
parameters s0 and κ to decide whether the shock capturing
method should be applied. For the determination of values s0

and κ , see Refs. [68,69]. In the present paper, we set s0 + κ

around the value 0.01. We find that this setting can keep the
scheme robust and accurate.

TABLE III. The details of the grids used in the laminar boundary
layer case.

Grid size Number of elements in boundary layer

Grid 1 4876 25
Grid 2 2336 6

III. NUMERICAL TEST CASES

In this section, numerical tests are set up for the valida-
tion of present method. The accuracy order, shock capturing
method, viscous flow problem, and various boundary condi-
tions are all validated in the section. Finally, the potential of
present scheme to simulate the turbulent flow is verified in the
Taylor-Green vortex problem.

Our algorithmic code is deployed on the HiFiLES open-
source platform [70]. It should also be noted that the
polynomial order p = 3 is used in this section. Several one-
dimensional problems are simulated using multidimensional
code in the present paper. The upper and bottom bounds of
the computational domain are treated as periodic boundaries
in these cases.

A. Accuracy tests

In this case, the advection of density perturbation problem
[19] is presented to validate the accuracy of our method on
Cartesian grid. The initial condition is given as

ρ(x) = 1 + 0.2sin(πx), u(x) = 1, v(x) = 0,

p(x) = 1, (45)

and the analytic solution at the time t can be expressed as

ρ(x, t ) = 1 + 0.2sin(π (x − t )), u(x, t ) = 1,

v(x, t ) = 0, p(x, t ) = 1. (46)

The case is a one-dimensional problem, and we simulate it
using a two-dimensional solver on the Cartesian grid. The
computational domain is

{(x, y)|x ∈ [0, 1], y ∈ [0, 4h]}, (47)

where the length scale h equals 1/N . N is the number of
elements along the x direction. Table I gives the L2 normal
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FIG. 15. The sensor values in the simulation of supersonic flow over a circular cylinder: (a) full domain and (b) zoom in view.

of density distribution. The numerical results are obtained at
t = 2, and the time step is set as �t = 0.05/N . It can be
concluded from Table I that the accuracy order is reached
quite well.

The second case is the isentropic vortex problem, which
is a two-dimensional problem always used to validate the
accuracy of high-order method. The computational domain is
a [−5, 5] × [−5, 5] square. The periodic boundary is applied
on the four bounds of the square. The diagonal uniform form
flow, (ρ, u, v, p) = (1, 1, 1, 1), is initialed in the flow field.
Then a small perturbation is added to the center of the square,

(δu, δv) = ε

2π
e(0.5(1−r2 ))(−y, x), (48)

δT = − (γ − 1)ε2

8γπ2
e(1−r2 ), δS = 0. (49)

where

r2 = (x2 + y2).

Since the vortex is moved along the diagonal line with the
time marching in the case, the numerical results is obtained
at t = 10. The vortex is just back to the origin position at
the moment. The triangular grid, which is similar to the grid
shown in Fig. 17, is used in the simulation. The time step is set
as �t = 0.01/N . N is the number of elements on the bound.
Table II gives the L2 normal of density. The designed accuracy
order can be clearly seen in the table.

B. One-dimensional Riemann problem

The first one-dimensional Riemann problem is the Sod
shock tube problem [71], which is always used to validate
the ability of numerical schemes to capture the discontinuity.
The computational domain is (x, y) ∈ [0, 1] × [0, 4h], and the
Cartesian grids with different length scale h are used in the

approach. The initial condition reads

(ρ, u, v, p) =
{(1, 0, 0, 1), 0 < x < 0.5,

(0.125, 0, 0, 0.1), 0.5 � x � 1.
(50)

Figure 4 shows the density, velocity, pressure, and temperature
distributions at t = 0.2. The numerical results have a good
accordance with the exact solution, and it can be obviously
seen that the accuracy is improved with the h criterion grid
refinement. For the shock capturing method used in the
present work, the value of s0 + κ has a great effect on the
numerical accuracy. It is well known that when we set s0 + κ

to a larger value, we obtain greater accuracy. Figure 5 plots
the simulation with different values of s0 + κ . It is evident
that the higher accuracy can be obtained with the larger value
of s0 + κ .

Figure 6 shows the comparison between present method
and second-order gas-kinetic scheme. For the present method,

FIG. 16. The pressure coefficient on the surface of circular
cylinder.
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FIG. 17. The triangular grid used in the simulation of lid-driven
cavity flow (816 triangular elements).

the numerical results is obtained using the grid with h = 1/64.
Compared with the data computed using GKS with the same
grid (h = 1/64) and refined grid (h = 1/128), the present
method can approach the exact solution more accurately. The
accuracy of present method has been confirmed. It also can be
seen from the Fig. 6 that the oscillation near the discontinuity
is suppressed very well. Figure 7 shows the zoom in view of
density distribution. It is clear that the discontinuity can be
captured very well within three points.

The second one-dimensional Riemann problem is the Lax
problem [72]. Compared with Sod shock tube problem, the
Lax problem has a much stronger discontinuity. The compu-
tational domain is (x, y) ∈ [0, 1] × [0, 4h], and the Cartesian
grids with different length scale h are used in the approach.
The value of s0 + κ is set as 0.01 in the computation.

The initial condition is expressed as

(ρ, u, v, p) =
{(0.445, 0.698, 0.0, 3.528), 0 < x < 0.5,

(0.5, 0.0, 0.0, 0.571), 0.5 � x � 1.

(51)

Figure 8 shows the density, velocity, pressure, and temper-
ature distributions at t = 0.14. The numerical results have a
good accordance with the exact solution. The little oscillation
can be seen nearby the discontinuity, and it is because that the
shock is not captured very well. The shock capturing method
is an open question needed to be further studied.

C. Shu-Osher problem

The problem of Shu-Osher [72] describes the interaction
of a sinusoidal density wave with a Mach 3 normal shock.
The purpose of this case is to validate the behavior of our
method on the shock-wave interaction problem. The shock
capturing method is also examined in the case, and s0 + κ is
set as 0.01 in the simulation. The computational domain used
in the simulation is taken as [0, 10] × [0, 4h]. The Cartesian
grid is used in the simulations, and the length scale of the grid
is h = 1/20, 1/40. The upper and the bottom boundaries are
set as the periodic boundary, and the left and right sides are set
as the nonreflecting boundary. The initial condition is given as

(ρ, u, v, p) =
{(3.857143, 2.629369, 0.0, 10.33333), 0 � x < 1,

(1 + 0.2sin(5(x − 4)), 0.0, 0.0, 1.0), 1 � x � 10.
(52)

Figure 9 shows the density distribution at t = 1.8, and the
zoom in view near the high-frequency wave is also exhibited.
Because the exact solution of this problem cannot be com-
puted directly, the solution of fourth-order WENO method
with 10 000 grid points in one dimension is taken as the
exact result. It can be seen in Fig. 9 that the performance
is improved with increasing mesh resolution. The discon-
tinuity is captured well, and the ability of present scheme
to capture the frequency wave is also be verified in the
case.

D. Shock vortex interaction problem

The shock vortex interaction problem [35] is always used
to validate the performance of the high-order method. Com-
pared to the lower-order method, the high-order scheme has
the advantage of resolving the vortex and interaction.

In the simulation, a stationary normal shock and a small
perturbation are initialed in the flow field. A Mach 1.1 normal
shock wave is located at the position x = 0.5. The left-side

state (Ma = 1.1) of the shock wave is given as follows:

(ρ, u, v, p) = (Ma2,
√

γ , 0.0, 1.0), T = p/ρ,

S = ln(p/ργ ). (53)

A small and weak vortex is superposed to the left side
of the normal shock. The center of the vortex is (xc, yc) =
(0.25, 0.5). The perturbation is given as

(δu, δv) = κηeμ(1−η2 )(sinθ,−cosθ ), (54)

δT = − (γ − 1)κ2

4μγ
e2μ(1−η2 )(sinθ,−cosθ ), δS = 0, (55)

where

κ = 0.3, μ = 0.204, η = r/rc,

rc = 0.05, r =
√

(x − xc)2 + (y − yc)2. (56)

The computational domain and boundary conditions are
exhibited in the Fig. 10. In the simulation, the Cartesian
grid is used and the grid size h is 1/100. To capture the
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(a) (b)

FIG. 18. The velocity profile of the lid-driven cavity flow at Re = 400: (a) u-velocity profiles at x = 0.5 and (b) v-velocity profiles at
y = 0.5.

(a) (b)

FIG. 19. The velocity profile of the lid-driven cavity flow at Re = 1000: (a) u-velocity profiles at x = 0.5 and (b) v-velocity profiles at
y = 0.5.

(a) (b)

FIG. 20. The velocity profile of the lid-driven cavity flow at Re = 3200: (a) u-velocity profiles at x = 0.5 and (b) v-velocity profiles at
y = 0.5.
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FIG. 21. The “Grid 2” used in the simulation of laminar flow over a flat plate.

discontinuity, the coefficient s0 + κ is set as 0.01. The initial
status at t = 0 and the contour plots at t = 0.3, t = 0.6, and
t = 0.8 are shown in Fig. 11 and Fig. 12. The perturbation
is initialed at t = 0, and then the vortex moves from left to
right across the shock. The profile of vortex varies with the
movement, and the interaction of shock and vortex can be
seen obviously in the Fig. 11 and Fig. 12. The plots show
that our present method can capture the shock and vortex
interaction with enough resolution, and the vortex is recov-
ered well. It also shows clearly in Fig. 12 that the shock
bifurcations reaches to the top boundary, and the reflection is
evident.

E. Supersonic flow past a circular cylinder

The supersonic flow past a circular cylinder is used to
validated proposed method for the two-dimensional com-
pressible flow with shock wave. In the simulation, the Mach
number of free stream flow is 1.7, and the Reynolds number
is 2.0 × 105. The diameter of the cylinder is D = 1. The
computational domain and boundary conditions are shown in

Fig. 13. The quadrilateral mesh is used in the simulation, and
the shock wave region is refined to capture the bow shock
wave. The cell number of the grid is 9638 and the minimum
distance to the surface of cylinder is 0.0008.

The free stream flow encounters a bow shock wave ahead
of the cylinder. The shock wave is located at x/D ≈ −1.5 in
front of the cylinder. In Fig. 14 the contours of density and
pressure of the flow field are shown. The shock wave can be
seen clearly in the figure, and the position of the shock wave
is identical to the Ref. [73]. To capture the shock wave, the
shock capturing technique is adopted. Figure 15 shows the
shock sensor values of elements. It is evident that the shock
sensor can distinguish between shock and smooth region. We
can find from Fig. 15(b) that the shock spreads within three
cells.

Figure 16 shows the pressure coefficient on the surface of
the circular cylinder. The experimental data is extracted from
Ref. [74]. It is obviously that the results of present method
has a good agreement with the results of Tullio et al. [73]
and Li [75]. For the lack of three-dimensional effect, all the
numerical results are a little larger than the experimental data.

(a) (b)

FIG. 22. Blasius incompressible laminar flat plate: (a) u-velocity and (b) v-velocity profiles at x/L = 0.1.
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(a)u profile (b)v profile

FIG. 23. Blasius incompressible laminar flat plate: (a) u-velocity and (b) v-velocity profiles at x/L = 0.3.

F. Lid-driven cavity flow

The lid-driven cavity flow [76] is one of the benchmarks
for validating the performance of the viscous flow solver, and
the aim of this case is also to examine performance of present
method on viscous solid wall. An incompressible flow is ini-
tialed in the computational domain, and the Mach number of
the lid is set as Ma = 0.1. The Reynolds number are Re =
400, 1000, 3200, respectively. The computational domain is
[0, 1] × [0, 1], and both the Cartesian and triangular grids are
used in the computation. Figure 17 shows the triangular grid
used in the case, and the length scale of the triangular grid
is h = 1/16. The u-velocity profiles along the vertical center-
line and the v-velocity profiles along the horizontal center-line
are all compared with the reference data in Figs. 18–20. The
figures exhibit that the present results match quite well with
the data from Ghia [76]. The numerical data extracted from
Ref. [22] at Re = 1000, 3200 on 65 × 65 Cartesian grid are
also shown in the figures. It is obvious that the present method
can reach the same accuracy with fewer mesh nodes.

G. Blasius incompressible laminar flat plate

The incompressible boundary layer flow over a flat plate
is simulated. The Mach number is Ma∞ = 0.15, and the
Reynolds number based on the length of plate is Re∞ = 1 ×
105. The subscript ∞ indicates the state of free stream flow.
The length of the flat plate is L = 100, and the leading edge
of the flat plate is located at x = 0. The computational domain
is [−50, 100] × [0, 100]. The inflow boundary is applied on
the left side of the domain. The upper and right side of the
domain is treated as a subsonic outflow boundary. The viscous
solid wall is used on the flat plate. The symmetric boundary is
implemented at the bottom from the left side to the leading of
the plate. It is known to all that using hybrid grid can reduce
the grid size obviously, and the hybrid grid is much flexible
than structured grid. To show the advantages of hybrid grid,
two hybrid grids are considered in the simulation. The coarser
grid is shown in Fig. 21, and the details of the two grids are
shown in Table III. “Grid 2” has fewer elements than “Grid 1”
in the boundary layer.

(a)u profile (b)v profile

FIG. 24. Blasius incompressible laminar flat plate: (a) u-velocity and (b) v-velocity profiles at x/L = 0.5.
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FIG. 25. Blasius incompressible laminar flat plate: The skin fric-
tion coefficient distribution along the flat plate.

The velocity profiles versus η = y
√

U∞
νx are shown in

Figs. 22–24. It can be seen clearly in the pictures that the
velocity profiles have a good accordance with the Blasius so-
lution at every positions. It is obvious that the present method
can approach boundary layer with very few elements. The
skin friction coefficient is shown in Fig. 25. The numerical re-
sults shows an excellent performance compared with Blasius
solution.

H. Taylor-Green vortex at Re = 1600

The Taylor-Green vortex (TGV) is a simple test case for the
resolution of the small scales of a turbulent flow by a numer-
ical method. The compressible TGV at Re = 1600 was one
of the benchmark problems in the 1st and 2nd International
Workshops on High-Order CFD Methods. The reference so-
lution used in the current paper was obtained by Debonis
[77] using a high-order dispersion-relation-preserving scheme
on a mesh of 5123 elements. The computational domain is a
cubic box of dimensions [0, 2π ]3, and the periodic boundary
is applied on the faces of the cube. In the case, both of the 323

and 643 grids are used.

The initial condition is set as

u(t0) = u0sin(x/L)cos(y/L)cos(z/L),

v(t0) = −u0cos(x/L)sin(y/L)cos(z/L),

w(t0) = 0,

p(t0) = p0 + ρ0V 2
0

16
[cos(2x/L)

+ cos(2y/L)][cos(2z/L) + 2], (57)

where ρ0 = 1, p0 = 100, u0 = 1, and L = 1. The Mach num-
ber is set to 0.08, and the initial temperature is 300 K. The
volume-averaged kinetic energy and the dissipation rate of
the kinetic energy are computed. The volume-averaged kinetic
energy is read as

Ek = k = 1

ρ0	

∫
	

ρ
uiui

2
d	, (58)

and the dissipation rate of the kinetic energy is give by

ε(Ek ) = −dEk

dt
. (59)

The numerical results of averaged kinetic energy and the dis-
sipation rate of kinetic energy shown in Fig. 26 are compared
with reference data from Debonis [77]. The results have a
good accordance with the reference data. The isosurfaces of Q
criterions colored by velocity magnitude at times 3, 5, 7, and
9 are shown in Fig. 27. The evolution of flow structure from
large-scale vortices to small vortices can be clearly seen in the
figure.

IV. CONCLUSION

In the present paper, a high-order numerical scheme is pro-
posed based on the flux reconstruction framework and kinetic
inviscid flux. KIF, which aims to find a balance between the
advantages of gas-kinetic scheme and lower computational
costs, is a combination of TTT scheme and KFVS method.
The FR framework is well understood and available. It has the
properties of robustness and compactness, which are of great
importance for the high-order method. The accuracy order
have been verified using the advection of density perturba-
tion problem and isentropic vortex problem. The results show

(a) (b)

FIG. 26. The kinetic energy and the dissipation rate: (a) Ek and (b) ε(Ek ). nXpY denotes that the grid size is X 3 and the order of polynomial
is Y.
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FIG. 27. Isosurfaces of Q (Q = 0.5) criterion colored by velocity magnitude: (a) t = 3, (b) t = 5, (c) t = 7, and (d) t = 9.

that the accuracy of present method reaches to the designed
order. KIF also can be viewed as an inviscid-viscous splitting
version of the gas-kinetic scheme, and the excellent perfor-
mance of the proposed method can be seen in the simulations
of lid-driven cavity flow and Blasius incompressible laminar
boundary layer. The good numerical results have shown the
success of inviscid-viscous strategy of the gas-kinetic scheme.
The Taylor-Green vortex problem has been used to verify the
potential of present method to simulate turbulent flow, and
excellent results are obtained. The shock capturing technique
is used in the simulation of supersonic flow past a circular
cylinder. The numerical results have a good accordance with

the reference data and the sensor values show that the shock
wave is captured quite well.
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