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Dusty plasma experiments can be performed quite easily in a strong coupling regime. In our previous work
[V. S. Dharodi, S. K. Tiwari, and A. Das, Physics of Plasmas 21, 073705 (2014)], we numerically explored
such plasmas with constant density and observed the transverse shear (TS) waves from the rotating vortex.
Laboratory dusty plasmas are good examples of homogeneous plasmas; however, heterogeneity (e.g., density,
temperature, and charge) may be due to the existence of voids, different domains with different orientations,
presence of external forces like magnetic and/or electric, size or charge imbalance, etc. Here, we examine how
the density heterogeneity in dusty plasmas responds to the circularly rotating vortex monopoles, specifically,
smooth and sharp cutoff. For this purpose, we have carried out a series of two-dimensional fluid simulations in
the framework of the incompressible generalized hydrodynamics fluid model. The rotating vortices are placed
at the interface of two incompressible fluids with different densities. The smooth rotating vortex causes two
effects: First, the regions are stretched to form the spiral density waves; second, there is a shear in flows which
consequently induces the TS waves. The TS waves move slower in the denser side than in the lighter side. The
difference in speeds of the waves induces the net flow of the medium towards the lower density side. We notice
that the spiral density arms are distinguishable in the early time while later they get smeared out. In sharp flows,
the interplay between the TS waves and the vortices of Kelvin-Helmholtz instability distorts the formation of the
regular spiral density arms around the rotor.
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I. INTRODUCTION

A typical fluid or turbulent flow contains a wide vari-
ety of coherent structures [1] like rotating monopoles and
tripoles [2,3] and propagating and merging dipoles [4]. It
becomes important to understand how such types of struc-
tures encounter the density and/or temperature gradient in
a medium, which may cause the formation of different
kinds of waves like acoustic [5–7], shock [8–10], spi-
ral [11,12], and transverse [13–18] and fluid instabilities like
Kelvin-Helmholtz (KH) [19,20] and Rayleigh-Taylor [21,22].
Laboratory dusty plasmas are good examples of homogeneous
plasmas; however, heterogeneity (e.g., density, temperature,
and charge) may be due to the existence of voids, different do-
mains with different orientations, presence of external forces
like magnetic and/or electric, size or charge imbalance, etc.
Our objective here is to understand how the density hetero-
geneity in a strongly coupled state responds to the coherent
structures (here, rotating vortex monopoles). For this purpose
we specifically here consider the case of two-dimensional
(2D) dusty plasmas. The motivational factors that induce us to
choose such 2D plasmas are the following: 2D dusty plasmas
are favored in laboratory experiments [23–29] and simula-
tions [10,30–33], dusty plasmas can exist in strong coupling
states quite easily because of high charged dust particles, and
in dusty plasmas a coherent structure can survive for a longer
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time than in a hydrodynamic fluid (viscosity shows pure
damping effect) because the effect of viscosity gets reduced
due to the presence of elasticity [34]. Thus, in dusty plasmas, a
long-lived coherent structure can act as a driving force in order
to understand its collective response for a long-time duration
without much dissipation.

It is well known that a weakly coupled dusty plasma favors
compressible longitudinal modes with usual viscous damp-
ing effects. However, in a strongly coupled dusty plasma
(SCDP) the strong correlation between the dust grains in-
duces the elasticity to support the incompressible transverse
shear (TS) modes in addition to the compressible longitudinal
modes [35–37]. This suggests that, below the crystallization
limit, a strongly coupled dusty plasma behaves like a vis-
coelastic fluid. Here, we have modeled such a medium using
a well-known phenomenological generalized hydrodynamics
(GHD) fluid model which takes into account both types of
modes [38,39]. It should be noted that a fluid model focuses
on a situation where the spatial scales in dusty plasmas are
supposed to be about an order of magnitude larger than the in-
terparticle distance while it fails as soon as the grainy structure
becomes important. To study the effect of inhomogeneity on
exclusive transverse modes and to avoid the possible coupling
with the longitudinal mode, we consider the incompressible
limit of the dusty plasma. Theoretically, the existence of trans-
verse modes in the dusty plasma medium has been predicted
in [13,14,16]. Schmidt et al. [15] showed such transverse
modes in molecular dynamics (MD) simulations. Nuno-
mura et al. [40], Pramanik et al. [41], and Bandyopadhyay
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et al. [42] have also observed transverse modes in dusty
plasma experiments. Using the GHD model, the shear waves
in a nonuniform dusty plasma have been studied in [43,44].
Apart from the shear waves, a nonuniform dusty plasma under
stretching due to a driving force may support the spiral waves.
Recently, Kumar et al. reported the existence of spiral waves
in a dusty plasma at the particle level using MD simulations
in [45] and at the continuum level using the GHD model
in [46]; in both the studies the medium was driven by an
external rotating electric field. In incompressible fluid simula-
tions, Li et al. [47] found multiarmed spiral waves in a slowly
rotating fluid, driven by a radial unstable temperature gradient.
The existence of spiral waves is observed in various biolog-
ical systems like retinal spreading depression [48], cardiac
muscle [49], and Xenopus oocyte calcium waves [50]. Apart
from biology, the understanding of spiral waves is important
in mathematics and physics, because the spiral wave forma-
tion takes place in nonlinear nonequilibrium systems [51]. A
rotating galaxy is a good example of large scale spirals [52].

In our previous work [53], we explored the constant density
dusty plasmas in an incompressible limit of GHD model and
observed the TS waves due to the shear flow induced from
a rotating monopole vortex. In the current paper, we use the
same model where the smooth and sharp-cutoff rotating vor-
tices are placed at the interface of two incompressible fluids
with different densities. The smooth rotating vortex at the in-
terface causes two effects: First, this rotating vortex convects
material from the higher density part to the lower density
part and vice versa, which leads to the formation of spiral
density waves; second, they locally introduce a shear flow.
This shear flow is the source for the shear waves. These waves
propagate into the surrounding media according to the shear
wave speed where the waves travel a smaller distance in the
higher density part than in the lower density part in the same
time interval. The sharp rotating vortex creates sharp shear
flows which favor the KH instability across their interfaces
along with the TS waves. In such flows, the interplay between
the emitted TS waves and the vortices of KH instability occurs
and consequently distorts the formation of the regular spiral
density waves around the rotor. Because of the incompressible
limit (∇·�vd = 0), to observe the spiral density waves the initial
density profile must have a radially varying component to the
rotating vortex. Here, the density interface has a tangential
discontinuity. This particular situation in 2D dusty plasma
experiments represents the coexistence of different density
domains with different orientations of the dust grains and
the plasmas near the sheath edge or probe, boundary wall,
etc. Moreover, the present results can be easily generalized to
other SCDP experiments having density inhomogeneity, e.g.,
sech type and parabolic type.

This paper is organized as follows. In Sec. II, we dis-
cuss the incompressible GHD (i-GHD) model and drive an
analytical linear wave equation. In Sec. III, we discuss how
the simulations are initialized and analyze the dynamical re-
sponse of the density heterogeneity to the circularly rotating
vortex monopoles, particularly, smooth and sharp cutoff. In
Sec. III A, we numerically observe that a smooth rotating
vorticity profile emits cylindrical TS waves and also causes
rolling up of the densities to form the spiral density waves. In
Sec. III B, for sharp rotating flows, the interplay between the

emitted TS waves and the vortices of KH instability occurs
and that, in turn, causes the distortion of the regular spiral
density waves around the rotor. Finally, in Sec. IV, we discuss
our results and offer concluding remarks.

II. INCOMPRESSIBLE GENERALIZED
HYDRODYNAMICS FLUID MODEL

The generalized hydrodynamic fluid model [38,54] is a
phenomenological model which is used to study the SCDPs
below the crystallization limit, both analytically as well as nu-
merically [38,39,53,55]. The GHD model treats dusty plasma
as a viscoelastic fluid in which the coupling strength is pro-
portional to the ratio of η/τm [34], and viscosity η in the
presence of elasticity τm (relaxation time parameter) con-
tributes to the transverse mode due to the strong correlation
between dust grains. The parameters η and τm are supposed
to be empirically related to each other [38,56]. This model
supports the existence of both incompressible transverse shear
and compressible longitudinal modes. To concentrate on the
incompressible features of this system, we separate out the
compressibility effects altogether. For this purpose, the i-
GHD coupled set of equations has been obtained. In the
incompressible limit the Poisson equation is replaced by the
quasineutrality condition and charge density fluctuations are
ignored. The derivation of the reduced equations has been
discussed in detail in earlier papers [53,55] along with the
procedure of its numerical implementation and validation.
The coupled set of continuity and momentum equations for
the dust fluid can be written as

∂ρd

∂t
+ ∇ · (ρd �vd ) = 0, (1)

[
1 + τm

(
∂

∂t
+ �vd · ∇

)]

×
[
ρd

(
∂�vd

∂t
+ �vd ·∇�vd

)
+ ∇pd + ρc∇φd

]

= η∇2�vd , (2)

respectively, and the incompressible condition is given as

∇·�vd = 0. (3)

Here, ρd = nd md is the mass density of the dust fluid (nd

is the number density of dust fluid) and md is the mass of the
dust particle. The variables ρc, �vd , and φd are the dust charge
density, dust fluid velocity, and dust charge potential, respec-
tively. The pressure pd term in a strongly coupled plasma is
due mainly to the electric field [57]. The time, length, velocity,
and potential are normalized by the inverse of dust plasma
frequency ω−1

pd = [4π (Zd e)2nd0/md0]−1/2 and plasma Debye

length λd = (KBTi/4πZd nd0e2)1/2, λdωpd , and Zd e/KBTi, re-
spectively. The parameters md , Ti, and KB are the dust grain
mass, ion temperature, and Boltzmann constant, respectively.
Zd is the charge on each dust grain with no consideration of
charge fluctuation. The number density nd is normalized by
the equilibrium value nd0.

043216-2



ROTATING VORTICES IN TWO-DIMENSIONAL … PHYSICAL REVIEW E 102, 043216 (2020)

Transverse wave equation

If we take the curl of the above momentum Eq. (2) and
keep the linearized terms only, for the moment, the density
is constant, i.e., ρd (x, y, t ) = ρd , and we immediately get the
equation [

1 + τm
∂

∂t

][
∂�ξ
∂t

]
= η

ρd
∇2�ξ (4)

where �ξ = �∇×�vd is the vorticity, normalized with dust plasma
frequency. In the limit τm

∂
∂t � 1, where the memory effects

are strong, we get

∂2�ξ
∂t2

= v2
p∇2�ξ . (5)

This wave, Eq. (5), suggests that the i-GHD model supports
the transverse waves moving with phase velocity

vp =
√

η/ρdτm. (6)

Equation (5) also makes evident that the form of a wave is
determined by its source. Let us suppose that we have a line
source; the wavefronts will be cylindrical. So, the wave Eq. (5)
in cylindrical coordinates will become

∂2ξz(�r, t )

∂t2
= v2

p

(
∂2ξz(�r, t )

∂r2
+ 1

r

∂ξz(�r, t )

∂r

)
. (7)

Here, r = (x2 + y2)1/2. The solutions are Bessel functions
which for large r approach asymptotically [58] to

ξz(�r, t ) = ξz(�r, ω) ≈ �ξz0√
r

e− jωt . (8)

Here, angular frequency ω = k vp and k is the wave num-
ber. The associated wavefronts are cylindrical and propagate
radially outward at the phase velocity vp = ω/k = √

η/ρdτm,
and their amplitudes decrease as 1/

√
r. If the wavefront

emerging or collapsing from or into a point is spherical, its
amplitude must attenuate as 1/r. A planar source will produce
plane wavefronts traveling with a constant amplitude, i.e.,
the wave does not attenuate. The amplitude scaling of these
wavefronts is related to the energy conservation consideration.
Note that the present simulations have been carried out in
two dimensions (the x-y plane), which is the plane of rotation
for vorticity structures. So, a numerically expected transverse
wave should meet the conditions for the cylindrical case.

III. RESULTS, DISCUSSION, AND NUMERICAL
SIMULATION

For the numerical simulation the generalized momentum
Eq. (2) has been expressed as a set of the following two
coupled convective equations:

ρd

(
∂�vd

∂t
+ �vd ·∇�vd

)
+ ∇pd + ρc∇φd = �ψ, (9)

∂ �ψ
∂t

+ �vd · ∇ �ψ = η

τm
∇2�vd − �ψ

τm
. (10)

For our considered 2D system of equations the above vari-
ables vary in x and y directions, i.e., �ψ (x, y), �vd (x, y), and
ρd (x, y). From Eq. (9) it is clear that the quantity �ψ (x, y) is

the strain created in the elastic medium by the time-varying
velocity fields. Let us take the curl of Eq. (9). As the curl of a
gradient is zero, so the curls of the second and third term (also,
we have assumed constant charge density) vanish. Thus, for
numerical simulations the final set of coupled model equations
(continuity and momentum) becomes

∂ρd

∂t
+ (�vd · ∇ )ρd = 0, (11)

∂ �ψ
∂t

+ (
�vd · �∇) �ψ = η

τm
∇2�vd − �ψ

τm
, (12)

∂ξz

∂t
+ (

�vd · �∇)
ξz = ∂

∂x

(
ψy

ρd

)
− ∂

∂y

(
ψx

ρd

)
. (13)

We have used the LCPFCT method (Boris et al. [59]) to
evolve the coupled set of Eqs. (11), (12), and (13) for various
kinds of density profiles. This method is based on a finite
difference scheme associated with the flux-corrected algo-
rithm. The velocity at each time step has been updated by
using Poisson’s equation ∇2�vd = −∇×�ξ . Poisson’s equation
has been solved by using FISHPACK [60]. It is pointed out
that in this particular limit there is nothing specific which
suggests that the system corresponds to a strongly coupled
dusty plasma. Moreover, it can be applied to other strongly
coupled plasma systems as well. Das and Kaw have used the
GHD fluid model to model the electron-ion plasma in the
context of inertial fusion [61], and Diaw and Murillo applied it
to ultracold plasmas and high-energy-density plasmas in [54].
Thus, the reduced set of equations not only caters to the
strongly coupled incompressible dusty plasma medium but is
also relevant for any other incompressible strongly coupled
system. Numerically, in order to understand the dynamical
response of density inhomogeneous SCDPs, we consider two
cases of a circularly rotating fluid vortex, especially having
(A) a smooth rotating vortex and (B) a sharp cutoff. Boundary
conditions are periodic along the x axis while nonperiodic
along the vertical (y-axis) direction where the effects of per-
turbed quantities die out before hitting the boundary of the
simulation box. For all cases the sharp inhomogeneity in
density has been introduced along the interface y = 0. Here,
it should be noted that this initial condition has nothing to

FIG. 1. The initial smooth vorticity and density profiles.
(a) Smooth rotating vorticity profile given by Eq. (14). (b) Density
profile where the lighter fluid is positioned side by side to the denser
fluid along the y = 0 interface.

043216-3



VIKRAM S. DHARODI PHYSICAL REVIEW E 102, 043216 (2020)

FIG. 2. The inhomogeneous viscoelastic fluid has η=5 and τm=20. (a) Time evolution of a counterclockwise rotating vorticity profile
(�0 = 10) [Fig. 1(a)]; the magenta solid line over the vorticity profile represents the interface of the respective density evolution to the
vorticity; the colorbar indicates the vorticity. (b) Density profile evolution [Fig. 1(b)]; the colorbar indicates the density (see Supplemental
Material [62]).

do with the Rayleigh-Taylor instability as our system has no
density stratification against an accelerating force like gravity.

A. Smooth rotating vortex

In the former case (A), we have considered a system of
length lx = ly = 8π units with a sharp interface of density
heterogeneity shown in Fig. 1(b), where two incompressible
fluids with different constant densities ρl = 1 for −4π � y �
0 (lower half) and ρh = 2 for 0 � y � 4π (upper half) are
positioned side by side along the y = 0 interface.

In the interest of density waves and vorticity evolution,
the sharp density interface of the medium has been perturbed
through a counterclockwise rotating vorticity structure cen-
tered at (x, y) = (0, 0), given by

ξz0(x, y, t0) = �0[1 − (x2 + y2)]exp[−(x2 + y2)], (14)

having the velocity components which satisfy the
condition of incompressibility ∇·�vd = 0 using �ξ = ∇×�vd ,
vdx0(x, y, t0) = −φ0yexp[−(x2 + y2)], and vdy0(x, y, t0) =
φ0xexp[−(x2 + y2)]. Here �0 = 2φ0 is proportional to the
total circulation. This vorticity profile has circular symmetry
[Fig. 1(a)].

1. Transverse shear waves

Figure 2(a) shows the time evolution of the above discussed
smooth vorticity profile (�0 = 10) in an inhomogeneous vis-
coelastic fluid [Fig. 2(b)] which has the coupling parameter
values η = 5 and τm = 20.

From Fig. 2(a), as soon as the vortex starts rotating at the
interface it induces two effects: First, the densities are rolled
up to form the spiral density waves (we will discuss this later);
second, they locally introduce a shear flow. This shear flow is
the source for the radial shear waves. These radial waves travel
a smaller distance in the higher density side (upper half) than
in the lower density side (lower half) in the same time interval

or the waves are slower in the denser side. In the interest
of speed of these outgoing shear waves we have plotted the
position vs time of a particular wavefront in Fig. 3 along the y
axis for x = 0. In Fig. 3, the position-time slope suggests that
the phase velocity (vp) is found to match with Eq. (6), i.e.,
vp ≈ 0.35 for the denser side (η = 5; τm = 20 and ρh = 2 for
y > 0) and in the lighter side vp ≈ 0.5 (η = 5; τm = 20 and ρl

= 1 for y < 0). This confirms that the outgoing waves are the
TS waves.

Figure 4 shows the radial fall of amplitudes of the TS waves
in both halves (denser and lighter) of the density profile. It
is found to match the fall of amplitude with 1/

√|y|, which
meets the requirement of energy conservation for a cylindrical
wave (this has been discussed in Sec. II). This confirms that
the outgoing TS waves have cylindrical shape in both halves.

FIG. 3. Position-time graph of the radially propagating wave-
fronts (along the y axis for x = 0) observed in Fig. 2(a). vp is the
phase velocity (slope of the position-time plot). The radial wave trav-
els faster (vp ≈ 0.5) in the lower half (y < 0) and slower (vp ≈ 0.35)
in the upper half (y > 0) of the medium, which satisfies Eq. (6). It
confirms that the outgoing waves are the transverse shear waves.
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FIG. 4. Amplitude vs square root of the position of a radially
propagating wavefront along the y axis for x = 0 [Fig. 2(a)]. The
amplitude of a wavefront decreases as 1/

√|y|. It confirms that the
emitted TS waves have cylindrical shape.

Hence, both the above observations (Figs. 3 and 4) confirm
that these outgoing waves are the linear cylindrical TS waves
as suggested by analytical Eq. (7) and also indicate the valida-
tion of our numerical code. Figure 5 shows that the late-time
snapshot of a counterclockwise rotating vorticity profile has
the same value of total circulation �0 = 10 in different media;
each has a lower half for −4π � y � 0 and an upper half for
0 � y � 4π . The left and the middle snapshots show the vor-
ticity vortex in the inviscid hydrodynamic (HD) fluid and in
the viscoelastic fluid (η= 5 and τm = 20), respectively; both
have the same density inhomogeneity ρl = 1 for the lower
half and ρh = 2 for the upper half. Radial waves travel faster
in the lower half (ρl = 1) than in the upper half (ρh = 2). This
difference in speeds of the waves induces a net radial flow of
the medium in the downward direction which can be noticed
as a downward shift of the vortex center in Fig. 5(b) while the
HD fluid, on the other hand, does not support any TS wave so
no shifting is observed as shown in Fig. 5(a).

Figure 5(c) represents another viscoelastic fluid (η = 5 and
τm = 20) which has the same density in the lower half as in
Fig. 5(b), i.e., ρl = 1, while the upper half is denser (ρh = 4)
in Fig. 5(c) than ρh = 2 in Fig. 5(b). Thus, the TS waves are
supposed to travel at the same speed in the lower halves of

both fluids while in the upper halves the speed of TS waves is
higher in Fig. 5(b) than in Fig. 5(c). All these observations
suggest that the net flow of the medium is supposed to be
larger in the downward direction in Fig. 5(c) than in Fig. 5(b).
This is observed in terms of the larger shift of the vortex center
in the downward direction in Fig. 5(c) than in Fig. 5(b). A
closer look [Figs. 5(a) and 5(b)] shows that the density gradi-
ent and net relative velocity cause a small horizontal right shift
of the vortex center along with the downward vertical shift.
Furthermore, the density gradient and the unequal velocities
make the cylindrical waves asymmetric to the center of rota-
tion. The coupling strength parameter  for a dusty plasma is
proportional to the cube root of the density [63], which means
the denser side has a larger coupling strength than the lighter
one. This effect can be noticed from Figs. 2(a), 5(b), and 5(c),
where the TS waves get clearer and steeper in the denser side
(upper half) than in the lighter one (lower half).

2. Formation and evolution of spiral density waves

After the confirmation of TS waves, let us focus on the
evolution of the background density profile shown in Fig. 2(b),
where the rotating vortex basically convects material from
the higher denser part to the less dense part and vice versa,
which results in the spiral density arms or waves around the
vortex with time. One of the main advantages of viscoelastic
fluids is that a rotating vortex in such media can drive den-
sity waves for a long-time duration without much dissipation
compared with hydrodynamic fluids. A comparative analysis
of the vorticity evolution in Fig. 2(a) to the density evolution
in Fig. 2(b) shows that the perturbed density region along
the interface y = 0 follows the radially propagating TS waves
and remains confined within the distance traveled by the TS
waves at that moment. To make it more clear we have also
plotted the interface of the respective density profile over the
vorticity using a magenta colored solid line in Fig. 2(a). In
order to substantiate the observation in Fig. 2, we have also
simulated two more cases with the same background density
inhomogeneity: first [Fig. 6(a)] with the same rotation rate
of vorticity (�0 = 10) but with different values of coupling
parameters (η = 2.5; τm = 20), i.e., TS waves travel with
less phase velocity, and second [Fig. 6(b)] with double the

FIG. 5. Late-time snapshots of a counterclockwise rotating vorticity profile (�0 = 10) in different media: Panels (a) and (b) depict density
inhomogeneity, ρl = 1 for −4π � y � 0 and ρh = 2 for 0�y � 4π , while panel (c) depicts the same density value in the lower half as in
panels (a) and (b), i.e., ρl = 1, but the upper half is more dense, i.e., ρh = 4. The shift of the vortex center in the downward direction can be
observed to be larger in panel (c) than in panel (b) because the TS waves are slower in the denser medium. (a) An inviscid HD fluid does not
support any TS wave so no shifting is observed.
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FIG. 6. Time evolution of the rotating vorticity profiles in the viscoelastic fluids with the same density inhomogeneity as in Fig. 2(b),
where the solid line (magenta color) over the rotating vortices represents the evolution of the respective density interface. In panel (a) vorticity
has �0 = 10 and the fluid has the values of coupling parameters η= 2.5 and τm=20, and in panel (b) vorticity has �0 = 20 and the fluid has
the values of coupling parameters η= 5 and τm=20. It is observed that the perturbed density region along the interface follows the radially
propagating TS waves and remains confined within them.

rotation rate of vorticity (�0 = 20) but with the same values
of coupling parameters (η = 5 and τm = 20), i.e., TS waves
travel with the same phase velocity [Fig. 2(a)]. It can be seen
that these two cases too favor our earlier observation that the
perturbed density region along the interface y = 0 follows the
TS waves. This means the spiral waves can be controlled by
tweaking the coupling parameter values.

Some other interesting observations can be visualized more
clearly through the zoomed density contour snapshots shown
in Fig. 7.

Spiral waves have both angular as well as radial velocity
components. A comparison between Fig. 7(a) (�0 = 10) and
Fig. 7(b) (�0 = 20) shows that the expansion rate (radial com-
ponent) is high and the number of turns (angular component)
of the spiral arms is almost double in Fig. 7(b) in compar-
ison to Fig. 7(a) due to the factor 2 angular velocity. Thus,
the conclusion is that the number of turns of spiral arms is
proportional to the amplitude of vorticity. Furthermore, the
spiral arms of both densities (lighter and denser) are distin-
guishable in the early time while later they get smeared out. So

FIG. 7. Time evolution of the sharp density profile for viscoelastic fluid with η = 5 and τm = 20. In panel (a) vorticity has �0 = 10 and
in panel (b) vorticity has �0 = 20. The expansion rate (radial velocity) is high and the number of turns (angular velocity) of the spiral arms is
almost double in panel (b) in comparison to panel (a) due to the factor 2 angular velocity. Furthermore, the spiral arms of both densities (lighter
and denser) are distinguishable in the early time while later they get smeared out.

043216-6



ROTATING VORTICES IN TWO-DIMENSIONAL … PHYSICAL REVIEW E 102, 043216 (2020)

FIG. 8. Four viscoelastic fluids (η = 5 and τm = 20) of different densities over the smooth rotating vortex. (a) Time evolution of vorticity.
It can be noticed that the greater the density/ of the medium the steeper the TS waves; the lighter the density of a medium, the faster the speed
of the TS waves; the speed difference in different quadrants and the density gradient cause the wavefronts to be not cylindrically symmetric;
and there is a shift in the vorticity center towards the low density quadrant; the colorbar designates the rotating vorticity. (b) Time evolution
of four different sharp density profiles: four distinguishable spiral arms for each density are observed in the early time while later they get
smeared out; the colorbar shows the density.

far, we have dealt with a medium having two fluids of different
densities, which results in the formation of two kinds of spiral
arms. A medium in nature can also exist more than two fluids
with different densities. We consider, therefore, that a medium
has four fluids of different densities (ρd = 1, 1.5, 2, and 2.5)
over the rotating coherent structure as shown in Fig. 8. The
boundary conditions have been taken care of by considering
that all the four density quadrants are localized and lie inside
the density region considered in Fig. 1(b).

Figure 8 depicts some of the same observations as made
previously: The greater the density/ of the medium, the
steeper the TS waves; the lighter the density of a medium, the
faster the speed of TS waves; the speed difference in different
quadrants and the density gradient cause the wavefronts to be
not cylindrically symmetric around the center of rotation; and
the shift in the vorticity center follows the density gradient. In
Fig. 8(b) four distinguishable spiral arms for each density are
observed in the early time while later they get smeared out.

Thus, from all the above evolutions of the density profiles
it can be anticipated that the number of spiral arms is propor-
tional to the number of different densities that coexist over the
smooth rotating structure.

B. Sharp rotating vortex

In an earlier subsection, we had specifically avoided the
formation of Kelvin-Helmholtz instability by taking a smooth
flow profile. In this subsection, we consider the vorticity pro-
file B with a sharp cutoff [first snapshot at t = 0 in Figs. 9(a)
and 10(a)], i.e., we set the vorticity ξz0 = 0 beyond r = r0

(= 6.0) and for r � r0 the vorticity is taken to have a constant
value ξz0 = 2φ0 and φ0 = 1. Another possibility which we
explored in our previous paper [53] was the evolution of
the same sharp-cutoff rotating vortex in viscoelastic fluids

with constant background density. In the present paper, we
introduce an additional density inhomogeneity where ρl = 1
(lower half) for −6π � y � 0 and ρh = 2 (upper half) for
0 � y � 6π [first snapshot at t = 0 in Figs. 9(b) and 10(b)].
For the HD system, it is evident from Fig. 9 that in turning
on the vortex the steepness of the vorticity profile generates
a strong rotational sheared flow which results in creation of
small KH vortices across the vorticity interface and after that
as time progresses the merging of these vortices takes place.
This creation and merging process of KH vortices distorts the
rolling process of the background density around the rotor,
which results in formation of deformed spiral density waves
around it.

Based on the observations thus far, we can anticipate that
a rigid rotor in an incompressible viscoelastic fluid, besides
KH instability, would also support the TS wave emission. In
Fig. 10(a) where η = 5 and τm = 20, we observe a pair of in-
going and outgoing wavefronts emanating from the interface
and a concomitant KH destabilization at each of these fronts.
The response of the respective background fluid density to the
rigid rotor [Fig. 10(a)] is shown in Fig. 10(b), where as soon
as the rotor begins to rotate, initially, the fluid within the inner
region (|r| � 6) starts rotating with it, which later undergoes
mixing due to the ingoing wave from the interface, while the
stagnant fluid in the outer region (|r| � 6) undergoes mixing
due to the outgoing wave from the interface. Thus, the TS
waves assist the process of fluid mixing by convecting the
fluids inside and outside the vortex structure. The fluid near
the interface starts binding around it. The interplay between
the ingoing and outgoing wavefronts and KH instability dis-
torts the formation of regular spiral waves around the rotor.
Again, a vorticity vortex shift towards the low density side
is observed while no shifting is observed for hydrodynamic
fluid.
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FIG. 9. An inviscid HD fluid. (a) The time evolution of a sharp counterclockwise rotating vorticity profile (�0 = 2): The steepness of
the vorticity profile generates small KH vortices across its interface. (b) Density evolution: The creation and merging process of KH vortices
distort the formation of the regular spiral waves around the rotor. In panel (a) the magenta solid line over the vorticity profile represents the
interface of the respective density evolution to the vorticity.

In Fig. 11, we have simulated another case of viscoelastic
fluid with the same density inhomogeneity but with different
values of coupling parameters η= 2.5 and τm=20, i.e., TS
waves have less phase velocity than in Fig. 11. A comparative
analysis of Figs. 10 and 11 shows that the higher phase veloc-
ity of the TS waves assists the medium to evolution towards
an isotropic structure much faster, and promotes the mixing
and diffusion processes more quickly.

It should be noted that, in this paper, the HD results are
used only to facilitate the understanding of our observations
of viscoelastic fluids, not for any comparative analysis.

IV. CONCLUSIONS AND OUTLOOK

Strongly coupled dusty plasmas support long-lived co-
herent structures, which can provide a driving force for the
generation of different types of waves and instabilities. Here,
we have examined how density heterogeneity in the incom-
pressible limit of SCDPs responds to the rotating vortex
monopoles, particularly, smooth and sharp cutoff. The SCDPs
have been treated as viscoelastic fluids. Two-dimensional fluid
simulations have been carried out in the framework of the
i-GHD model. The rotating vortices are placed at the interface
of different densities. Some main observations are as follows.

FIG. 10. Viscoelastic fluid with coupling parameters η = 5 and τm = 20. (a) The time evolution of a sharp counterclockwise rotating
vorticity profile (�0 = 2): A pair of ingoing and outgoing wavefronts emanates from the interface and a concomitant KH destabilization
at each of these fronts. (b) Density evolution: The interplay between the ingoing and outgoing wavefronts and KH instability perverts the
formation of regular spiral waves around the rotor. In panel (a) the magenta solid line over the vorticity profile represents the interface of the
respective density evolution to the vorticity.
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FIG. 11. Viscoelastic fluid with coupling parameters η = 2.5 and τm = 20. (a) The time evolution of a sharp counterclockwise rotating
vorticity profile (�0 = 2): A pair of ingoing and outgoing wavefronts emanates from the interface and a concomitant KH destabilization at each
of these fronts. (b) Density evolution: The interplay between the ingoing and outgoing wavefronts and KH instability perverts the formation
of regular spiral waves around the rotor. In panel (a) the magenta solid line over the vorticity profile represents the interface of the respective
density evolution to the vorticity.

(1) A smooth rotating vortex drives the spiral density waves
and shear in flow. The shear flow induces the TS waves into
the surrounding media.

(2) The shear waves move slower in the denser side and
faster in the lighter side. The difference in speeds of the waves
induces a net radial flow of the medium towards the lower
density side, which can be noticed as a shift of the vortex
center in the direction of the density gradient.

(3) The number of spiral arms is proportional to the number
of different densities that coexist over the smooth rotating
structure.

(4) The spiral density waves are distinguishable in the
early time while later they get smeared out. Spiral waves
are observed in many biological, physical, and chemical sys-
tems [64–68].

(5) A sharp rotating vortex favors KH instability across its
interface. In such flows, the interplay between the emitted TS
waves and the vortices of KH instability distorts the formation
of the regular spiral density arms around the rotor.

(6) By tweaking the coupling parameter values, in the case
of a smooth profile the impact of spiral density waves can be
controlled. In the sharp rotating vortex, transport properties
like mixing and diffusion can be controlled.

(7) An inviscid HD fluid does not support any TS wave so
no shifting is observed to the vortex center due to the density
inhomogeneity.

(8) Density inhomogeneity and the speed variation of shear
waves cause asymmetry in the emergent cylindrical wave-
front.

(9) The coupling strength of a dusty plasma is proportional
to the cube root of the density, which means the denser side
has a larger coupling strength than the lighter one. So, in
vorticity plots, the TS waves get clearer and steeper in the
denser side than in the lighter one.

We believe these results can inspire future experiments.
Here, the density inhomogeneity has a tangential discontinu-
ity. This discontinuity is very common in almost all branches
of the physical sciences. This particular situation in 2D dusty
plasma experiments represents the coexistence of different
density domains with different orientations of the dust grains
and the plasmas near the sheath edge or probe, boundary wall,
etc. Moreover, the presented results can be easily generalized
to other SCDP experiments having density inhomogeneity,
e.g., sech type and parabolic type.

In a three-dimensional system the TS waves may be less
effective because the amplitude of an emerging TS wave
from a spherical source will decrease faster (1/r) than in
the present 2D case (here, 1/

√
r). It would also be inter-

esting to see the evolution of such inhomogeneous media
having other types of coherent structures like elliptical, dipole,
and tripole. Furthermore, the inclusion of compressibility in
the present model will make the considered system closer
to a real dusty plasma, where it will be interesting to see
how the energy exchange takes place between both modes
and how the new emerging waves control the expansion and
roll of spiral waves. In single component 2D SCDPs, the
transfer of energy between both the modes has been studied
in [69].

ACKNOWLEDGMENTS

The author would like to thank the Prof. Michael S. Murillo
(CMSE, MSU) for his motivation during the preparation this
manuscript. The author also wish to thank Dr. Deepak Sang-
wan, Dr. Mangilal Choudhary, and Dr. Neeraj Chaubey for
very useful feedback on the manuscript.

043216-9



VIKRAM S. DHARODI PHYSICAL REVIEW E 102, 043216 (2020)

[1] A. Tur and V. Yanovsky, Coherent Vortex Structures in Fluids
and Plasmas (Springer, New York, 2017).

[2] L. F. Rossi, J. F. Lingevitch, and A. J. Bernoff, Quasi-steady
monopole and tripole attractors for relaxing vortices, Phys.
Fluids 9, 2329 (1997).

[3] Z. Kizner and R. Khvoles, The tripole vortex: Experimen-
tal evidence and explicit solutions, Phys. Rev. E 70, 016307
(2004).

[4] T. Leweke, S. Le Dizès, and C. H. K. Williamson, Dynamics
and instabilities of vortex pairs, Ann. Rev. Fluid Mech. 48, 507
(2016).

[5] M. J. Lighthill and J. Lighthill, Waves in Fluids (Cambridge
University, Cambridge, England, 2001).

[6] N. N. Rao, P. K. Shukla, and M. Yu. Yu, Dust-acoustic
waves in dusty plasmas, Planetary and Space Science 38, 543
(1990).

[7] M. Choudhary, S. Mukherjee, and P. Bandyopadhyay, Propa-
gation characteristics of dust–acoustic waves in presence of a
floating cylindrical object in the dc discharge plasma, Physics
of Plasmas 23, 083705 (2016).

[8] J. Grove, The interaction of shock waves with fluid interfaces,
Adv. Appl. Math. 10, 201 (1989).

[9] D. Rotman, Shock wave effects on a turbulent flow, Phys. Fluids
A 3, 1792 (1991).

[10] W. Lin, M. S. Murillo, and Y. Feng, Pressure and energy of com-
pressional shocks in two-dimensional Yukawa systems, Phys.
Rev. E 100, 043203 (2019).

[11] S. Imao, M. Itoh, Y. Yamada, and Q. Zhang, The characteristics
of spiral waves in an axially rotating pipe, Experiments in Fluids
12, 277 (1992).

[12] D. Barkley, Linear Stability Analysis of Rotating Spiral Waves
in Excitable Media, Phys. Rev. Lett. 68, 2090 (1992).

[13] F. M. Peeters and Xiaoguang Wu, Wigner crystal of a screened-
Coulomb-interaction colloidal system in two dimensions, Phys.
Rev. A 35, 3109 (1987).

[14] S. V. Vladimirov, P. V. Shevchenko, and N. F. Cramer, Vibra-
tional modes in the dust-plasma crystal, Phys. Rev. E 56, R74
(1997).

[15] P. Schmidt, G. Zwicknagel, P.-G. Reinhard, and C. Toepffer,
Longitudinal and transversal collective modes in strongly cor-
related plasmas, Phys. Rev. E 56, 7310 (1997).

[16] X. Wang, A. Bhattacharjee, and S. Hu, Longitudinal and Trans-
verse Waves in Yukawa Crystals, Phys. Rev. Lett. 86, 2569
(2001).

[17] M. S. Murillo, Critical Wave Vectors for Transverse Modes in
Strongly Coupled Dusty Plasmas, Phys. Rev. Lett. 85, 2514
(2000).

[18] B. Liu, K. Avinash, and J. Goree, Transverse optical mode in
a one-dimensional Yukawa chain, Phys. Rev. Lett. 91, 255003
(2003).

[19] P. G. Drazin, Kelvin-Helmholtz instability of finite amplitude,
J. Fluid Mech. 42, 321 (1970).

[20] S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability
(Dover, New York, 1981).

[21] L. Rayleigh, Investigation of the character of the equilibrium of
an incompressible heavy fluid of variable density, in Scientific
Papers, Vol.II (Cambridge Univ. Press, 1900), pp. 200–207.

[22] G. I. Taylor, The instability of liquid surfaces when accelerated
in a direction perpendicular to their planes, I, Proc. R. Soc.
London, Ser. A 201, 192 (1950).

[23] H. Thomas, G. E. Morfill, V. Demmel, J. Goree, B. Feuerbacher,
and D. Möhlmann, Plasma Crystal: Coulomb Crystallization in
a Dusty Plasma, Phys. Rev. Lett. 73, 652 (1994).

[24] E. Thomas, Jr., Direct measurements of two-dimensional ve-
locity profiles in direct current glow discharge dusty plasmas,
Physics of Plasmas 6, 2672 (1999).

[25] R. Ichiki, Yu. Ivanov, M. Wolter, Y. Kawai, and A. Melzer,
Melting and heating of two-dimensional Coulomb clusters in
dusty plasmas, Phys. Rev. E 70, 066404 (2004).

[26] Z. Haralson and J. Goree, Laser heating of 2-D dusty plas-
mas using a random arc pattern, IEEE Transactions on Plasma
Science 44, 549 (2015).

[27] Z. Haralson and J Goree, Temperature dependence of viscosity
in a two-dimensional dusty plasma without the effects of shear
thinning, Physics of Plasmas 23, 093703 (2016).

[28] A. Melzer, H. Krueger, S. Schuett, and M. Mulsow, Finite dust
clusters under strong magnetic fields, Physics of Plasmas 26,
093702 (2019).

[29] A. Kananovich and J. Goree, Experimental determination of
shock speed versus exciter speed in a two-dimensional dusty
plasma, Phys. Rev. E 101, 043211 (2020).

[30] A. Piel, V. Nosenko, and J. Goree, Laser-excited shear waves
in solid and liquid two-dimensional dusty plasmas, Physics of
Plasmas 13, 042104 (2006).

[31] Y. Feng, W. Lin, W. Li, and Q. Wang, Equations of state and
diagrams of two-dimensional liquid dusty plasmas, Physics of
Plasmas 23, 093705 (2016).

[32] P. Hartmann, J. C. Reyes, E. G. Kostadinova, L. S. Matthews,
T. W. Hyde, R. U. Masheyeva, K. N. Dzhumagulova, T.
S. Ramazanov, T. Ott, H. Kahlert, M. Bonitz, I. Korolov,
and Z. Donko, Self-diffusion in two-dimensional quasimag-
netized rotating dusty plasmas, Phys. Rev. E 99, 013203
(2019).

[33] W. Lin, M. S. Murillo, and Y. Feng, Universal relationship of
compression shocks in two-dimensional Yukawa systems, Phys.
Rev. E 101, 013203 (2020).

[34] J. Frenkel, Kinetic Theory Of Liquids (Dover, New York, 1955).
[35] S. Nunomura, J. Goree, S. Hu, X. Wang, and A. Bhattacharjee,

Dispersion relations of longitudinal and transverse waves in
two-dimensional screened Coulomb crystals, Phys. Rev. E 65,
066402 (2002).

[36] S. Nunomura, S. Zhdanov, D. Samsonov, and G. Morfill, Wave
Spectra in Solid and Liquid Complex (Dusty) Plasmas, Phys.
Rev. Lett. 94, 045001 (2005).

[37] I. Donkó, Peter Hartmann, and Z. Donkó, Molecular dynamics
simulation of a two-dimensional dusty plasma, Am. J. Phys. 87,
986 (2019).

[38] P. K. Kaw and A. Sen, Low frequency modes in strongly cou-
pled dusty plasmas, Physics of Plasmas 5, 3552 (1998).

[39] P. K. Kaw, Collective modes in a strongly coupled dusty
plasma, Physics of Plasmas 8, 1870 (2001).

[40] S. Nunomura, D. Samsonov, and J. Goree, Transverse Waves
in a Two-Dimensional Screened-Coulomb Crystal (Dusty
Plasma), Phys. Rev. Lett. 84, 5141 (2000).

[41] J. Pramanik, G. Prasad, A. Sen, and P. K. Kaw, Experimental
Observations of Transverse Shear Waves in Strongly Coupled
Dusty Plasmas, Phys. Rev. Lett. 88, 175001 (2002).

[42] P. Bandyopadhyay, G. Prasad, A. Sen, and P. K. Kaw, Driven
transverse shear waves in a strongly coupled dusty plasma,
Phys. Lett. A 372, 5467 (2008).

043216-10

https://doi.org/10.1063/1.869353
https://doi.org/10.1103/PhysRevE.70.016307
https://doi.org/10.1146/annurev-fluid-122414-034558
https://doi.org/10.1016/0032-0633(90)90147-I
https://doi.org/10.1063/1.4960667
https://doi.org/10.1016/0196-8858(89)90011-0
https://doi.org/10.1063/1.857960
https://doi.org/10.1103/PhysRevE.100.043203
https://doi.org/10.1007/BF00187306
https://doi.org/10.1103/PhysRevLett.68.2090
https://doi.org/10.1103/PhysRevA.35.3109
https://doi.org/10.1103/PhysRevE.56.R74
https://doi.org/10.1103/PhysRevE.56.7310
https://doi.org/10.1103/PhysRevLett.86.2569
https://doi.org/10.1103/PhysRevLett.85.2514
https://doi.org/10.1103/PhysRevLett.91.255003
https://doi.org/10.1017/S0022112070001295
https://doi.org/10.1098/rspa.1950.0052
https://doi.org/10.1103/PhysRevLett.73.652
https://doi.org/10.1063/1.873544
https://doi.org/10.1103/PhysRevE.70.066404
https://doi.org/10.1109/TPS.2015.2498526
https://doi.org/10.1063/1.4962512
https://doi.org/10.1063/1.5116523
https://doi.org/10.1103/PhysRevE.101.043211
https://doi.org/10.1063/1.2196327
https://doi.org/10.1063/1.4962685
https://doi.org/10.1103/PhysRevE.99.013203
https://doi.org/10.1103/PhysRevE.101.013203
https://doi.org/10.1103/PhysRevE.65.066402
https://doi.org/10.1103/PhysRevLett.94.045001
https://doi.org/10.1119/10.0000045
https://doi.org/10.1063/1.873073
https://doi.org/10.1063/1.1348335
https://doi.org/10.1103/PhysRevLett.84.5141
https://doi.org/10.1103/PhysRevLett.88.175001
https://doi.org/10.1016/j.physleta.2008.06.051


ROTATING VORTICES IN TWO-DIMENSIONAL … PHYSICAL REVIEW E 102, 043216 (2020)

[43] A. Mishra, P. K. Kaw, and A. Sen, Instability of shear waves in
an inhomogeneous strongly coupled dusty plasma, Physics of
Plasmas 7, 3188 (2000).

[44] G. Sorasio, P. K. Shukla, and D. P. Resendes, Instability of shear
waves in a nonuniform dusty plasma, New Journal of Physics 5,
81 (2003).

[45] S. Kumar and A. Das, Spiral waves in driven strongly coupled
Yukawa systems, Phys. Rev. E 97, 063202 (2018).

[46] S. Kumar, B. Patel, and A. Das, Spiral waves in driven dusty
plasma medium: Generalized hydrodynamic fluid description,
Physics of Plasmas 25, 043701 (2018).

[47] L. Li, X. Liao, K. H Chan, and K. Zhang, On nonlinear mul-
tiarmed spiral waves in slowly rotating fluid systems, Phys.
Fluids 22, 011701 (2010).

[48] N. A. Gorelova and J. Bureš, Spiral waves of spreading depres-
sion in the isolated chicken retina, Journal of Neurobiology 14,
353 (1983).

[49] J. M. Davidenko, A. V. Pertsov, R. Salomonsz, W. Baxter, and
J. Jalife, Stationary and drifting spiral waves of excitation in
isolated cardiac muscle, Nature (London) 355, 349 (1992).

[50] J. Lechleiter, S. Girard, E. Peralta, and D. Clapham, Spiral
calcium wave propagation and annihilation in xenopus laevis
oocytes, Science 252, 123 (1991).

[51] H. Kitahata and M. Tanaka, Mathematical approach to un-
pinning of spiral waves anchored to an obstacle with high-
frequency pacing, Biophysics physicobiology 15, 196 (2018).

[52] D. M. Elmegreen, A near-infrared atlas of spiral galaxies, The
Astrophys. J. Suppl. Ser. 47, 229 (1981).

[53] V. S. Dharodi, S. K. Tiwari, and A. Das, Visco-elastic fluid
simulations of coherent structures in strongly coupled dusty
plasma medium, Physics of Plasmas 21, 073705 (2014).

[54] A. Diaw and M. S. Murillo, Generalized hydrodynamics model
for strongly coupled plasmas, Phys. Rev. E 92, 013107 (2015).

[55] V. S. Dharodi, A. Das, B. G. Patel, and P. K. Kaw, Sub-and
super-luminar propagation of structures satisfying Poynting-
like theorem for incompressible generalized hydrodynamic
fluid model depicting strongly coupled dusty plasma medium,
Physics of Plasmas 23, 013707 (2016).

[56] S. Ichimaru, H. Iyetomi, and S. Tanaka, Statistical
physics of dense plasmas: thermodynamics, transport

coefficients and dynamic correlations, Phys. Rep. 149, 91
(1987).

[57] T. M. Flanagan and J. Goree, Observation of the spatial growth
of self-excited dust-density waves, Physics of Plasmas 17,
123702 (2010).

[58] N. Sekeljic, Asymptotic expansion of bessel functions; appli-
cations to electromagnetics, Dynamics at the Horsetooth, 2A,
2010.

[59] J. P. Boris, A. M. Landsberg, E. S. Oran, and J. H. Gardner,
LCPFCT - A flux-corrected transport algorithm for solving
generalized continuity equations, Technical report No. 93-7192,
Naval Research Lab Washington DC, 1993.

[60] J Adams, P Swarztrauber, and R Sweet, Fishpak: A package of
fortran subprograms for the solution of separable elliptic partial
differential equations, The National Center for Atmospheric
Research, Boulder, CO, 1980, http://www.netlib.org/fishpack.

[61] A. Das and P. Kaw, Suppression of Rayleigh Taylor instability
in strongly coupled plasmas, Physics of Plasmas 21, 062102
(2014).

[62] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevE.102.043216 for a visualization that accom-
panies the static images shown in Fig. 2.

[63] H. Ikezi, Coulomb solid of small particles in plasmas, Phys.
Fluids 29, 1764 (1986).

[64] M. A. Allessie, F. I. M. Bonke, and F. J. G. Schopman, Circus
movement in rabbit atrial muscle as a mechanism of tachycar-
dia. II, Circ Res 39, 168 (1976).

[65] G. T. Gerisch, Stadienspezifische aggregationsmuster
beidictyostelium discoideum, Wilhelm Roux’Archiv fur
Entwicklungsmechanik der Organismen 156, 127 (1965).

[66] E. Bodenschatz, J. R. de Bruyn, G. Ahlers, and D. S. Cannell,
Transitions Between Patterns in Thermal Convection, Phys.
Rev. Lett. 67, 3078 (1991).

[67] M. Net, I. Mercader, and E. Knobloch, Binary fluid convection
in a rotating cylinder, Phys. Fluids 7, 1553 (1995).

[68] K. Agladze and O. Steinbock, Waves and vortices of rust on the
surface of corroding steel, J. Phys. Chem. A 104, 9816 (2000).

[69] A. Gupta and R. Ganesh, Compressibility effects on a shear flow
in strongly coupled dusty plasma. I. A study using computa-
tional fluid dynamics, Physics of Plasmas 25, 013705 (2018).

043216-11

https://doi.org/10.1063/1.874183
https://doi.org/10.1088/1367-2630/5/1/381
https://doi.org/10.1103/PhysRevE.97.063202
https://doi.org/10.1063/1.5018060
https://doi.org/10.1063/1.3276277
https://doi.org/10.1002/neu.480140503
https://doi.org/10.1038/355349a0
https://doi.org/10.1126/science.2011747
https://doi.org/10.2142/biophysico.15.0_196
https://doi.org/10.1086/190757
https://doi.org/10.1063/1.4888882
https://doi.org/10.1103/PhysRevE.92.013107
https://doi.org/10.1063/1.4940328
https://doi.org/10.1016/0370-1573(87)90125-6
https://doi.org/10.1063/1.3524691
http://www.netlib.org/fishpack
https://doi.org/10.1063/1.4881468
http://link.aps.org/supplemental/10.1103/PhysRevE.102.043216
https://doi.org/10.1063/1.865653
https://doi.org/10.1161/01.RES.39.2.168
https://doi.org/10.1007/BF00573870
https://doi.org/10.1103/PhysRevLett.67.3078
https://doi.org/10.1063/1.868542
https://doi.org/10.1021/jp002237n
https://doi.org/10.1063/1.5013058

