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Transport properties of warm dense neon and krypton at high pressures
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The transport properties of warm dense neon (Ne) and krypton (Kr) are studied by combining self-consistent
fluid variational theory (SFVT) with linear response theory (LRT). The components are determined us-
ing the SFVT, and the transport parameters, including the electrical conductivity, thermal conductivity, and
thermopower, are calculated with the LRT. The relevant scattering mechanisms, including electron-ion, electron-
electron, and electron-atom scatterings, are taken into account. An effective potential model in combination with
the Muffin-tin model is introduced to further improve the description for electron-atom scattering, which not
only includes static, exchange, and polarization interactions but also considers the plasma environmental effects.
It is found that for electron-atom scattering, the influence of the plasma density is significant at lower scattering
energies but the effects are different for electron-Ne and electron-Kr scattering. For electron-Kr scattering, a
plasma density-dependent Ramsauer-Townsend minimum is observed. The obtained transport parameters are
compared with the available experiments and other simulations. The plasma phase transition of warm dense Kr
is revisited from multiple perspectives based on the numerical simulation results for the electrical conductivity
and thermopower. These observations may help one to better understand the transport properties of warm dense
noble gases and are an important guide for future experimental designs and theoretical developments.
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I. INTRODUCTION

The high-pressure properties of noble gases under extreme
density and temperature conditions play an important role
in the evolution and dynamics of planets and stars, espe-
cially where they appear in a condensed and purified state.
It is crucial to accurately know the transport coefficients,
equation of state (EOS), and macroscopic and microscopic
physical properties for their constituent materials in the warm
dense matter (WDM) regime. High-pressure techniques, such
as pulsed power- [1,2], laser- [3,4], two-stage light-gas-gun-
[5–7], and explosive-driven facilities [8,9], have been devel-
oped and applied to EOS and transport property studies for
highly compressed materials. Especially, the pulsed power-
driven facility provides a versatile experimental platform for
high energy density and inertial confinement science [10].
Various experiments have been performed to measure the
EOS and electrical conductivity of warm dense neon (Ne) and
krypton (Kr) plasmas [11–14]. Although these experiments
present a series of actual electrical conductivities, there are
still some discrepancies due to the difficulties of diagnos-
tic equipment under extreme conditions. Different models,
including linear response theory (LRT) [15,16], linear mix-
ing rules (LMR) [17], density functional theory (DFT) [18],
Lee-More-Desjarlais (LMD) [19], and quantum Langevin
molecular dynamics (QLMD) simulations [20], have been
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applied to study the electrical conductivity of materials at high
pressures. These theoretical predictions provide an important
reference for the experimental design and optimization of
WDM production and diagnostic techniques. However, for
LRT and LMR, theoretical predictions of the WDM electrical
conductivity require knowledge of the plasma components,
the free electron density, and the relevant scattering cross
sections; however, it is difficult to calculate the free electron
density as there is still no rigorous criterion to divide electrons
into free and bound states [21].

Adams et al. [15] studied the transport properties of dense
noble gas plasmas and calculated their electrical conductiv-
ity using LRT. They used the two numerical codes of SAHA

IV [22] and COMPTRA04 [23], which were developed for
partially ionized plasmas, to provide the required plasma com-
ponents and the momentum transfer cross sections (MTCSs)
for electron-atom scattering based on experimental results
and the polarization potential, respectively. The conductivities
calculated using the components from COMPTRA04 and the ex-
perimental result for the electron-atom cross sections showed
good agreement with available experiments for all noble gases
up to densities of ρ ∼ 1 g/cm3. However, large discrepan-
cies were found between the calculations and experiments
above this density. Adams et al. [15] described two reasons
for these discrepancies. Besides the considerable measure-
ment errors, one is that the species component calculations,
especially for heavier elements (Ar, Kr, and Xe), become un-
reliable for larger densities and for temperatures below ∼104

K. The other is that the experimental MTCSs of electron-atom
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scattering becomes unreliable at higher densities and temper-
atures because the experiments have only observed isolated
scattering events without the effects of a charged surrounding
medium. Thus, an accurate picture of the plasma components
and electron-atom scattering MTCSs under high densities is
crucial for theoretical developments of the WDM transport
properties.

In our previous work, a self-consistent fluid variational the-
ory (SFVT) [24] was presented to improve the plasma com-
ponent calculations for the warm dense noble gases of Ne and
Kr. The components were validated as reliable, even at high
densities, for Ne beyond 3 g/cm3 and for Kr up to ∼7 g/cm3

by comparing the EOS between calculations and experiments
[24,25], as the EOS calculations strongly depend on the
plasma components. Subsequently, we combined the LRT and
the SFVT to calculate the components, EOS, and transport
coefficients of warm dense Ar [26]. The calculated EOS and
electrical conductivities were found to be in good agreement
with the available experimental data up to ∼4 g/cm3, showing
that the combined SFVT and LRT (SFVT + LRT) is a promis-
ing route to study warm dense Ar. In this work, an improved
SFVT + LRT is presented to calculate the transport properties
of warm dense Ne and Kr to test the applicability of the model
as extended into lighter and heavier noble gases. An effective
potential model in conjunction with the Muffin-tin model is
applied to provide an improved description for electron-atom
scattering under warm dense conditions by considering not
only the static, exchange, and polarization interactions, but
also the effects of the plasma environment. Moreover, the
plasma phase transition (PPT) of warm dense Kr is revisited
from multiple perspectives using the numerical simulation
results of the electrical conductivity and thermopower.

The rest of the paper is organized as follows. The outline
of the theoretical method is given in Sec. II. Some results and
discussions are presented in Sec. III. Finally, the conclusions
are given in Sec. IV.

II. OUTLINE OF THE THEORETICAL METHOD

A. Plasma components in SFVT

The SFVT model is used to calculate the plasma compo-
nents, which has been described in our previous paper [24].
Here we briefly summarize the main points to calculate the
components. Following the SFVT model, at relatively high
temperatures and pressures, the possibility of atomic (Kr and
Ne) ionization reaction processes is as follows:

A(k−1)+ � Ak+ + e (A = Ne or Kr, k = 1, 2, . . . , kmax).

(1)

The pressure- and temperature-induced ionization reactions
result in a multicomponent plasma that consists of atoms, free
electrons, and various ion species Ak+. The components of
such a plasma are governed by the above reactions among the
various species. The chemical potentials satisfy the following
relations when ionization equilibrium is reached:

μk + Ie f f
k = μk+1 + μe, k = 0, 1, 2, . . . , kmax, (2)

where Ie f f
k denotes the effective ionization potential, and μk

and μe are the chemical potentials for Ak+ and electrons,

respectively. Within the SFVT framework, the following SAHA

equation, including the particle number density of n = N/V ,
can be derived from the mass action laws together with the
condition of ionization equilibrium:

nk+1

nk
= Uk+1

Uk
exp

(−ξ − βIe f f
k

)
, k = 0, 1, . . . , kmax, (3)

where β = 1/(kBT ) is the inverse temperature, Uk is the
internal partition function of Ak+, ξ = μid

e /kBT is deter-
mined by the Fermi integral Fn(ξ ) = ne�

3
e/2, and �e =

(2π h̄2/mekBT )
1/2

is the thermal de Broglie wavelength for
electrons.

To solve Eq. (3), the following equations that represent
the conservations of mass and charge, respectively, should be
included:

kmax∑
k=0

ni = nH , (4)

ne =
kmax∑
k=0

knk, (5)

where nH denotes the number density of heavy particles,
which is determined by the formula nH = ρ

A NA, with ρ as the
mass density, A as the atomic weight, and NA as Avogadro’s
constant. The components of the plasma can be determined
based on Eqs. (3)–(5). The plasma components can be also
described by the quantities

αe = ne

/(
kmax∑
k=0

nk

)
, αk = nk

/(
kmax∑
k=0

nk

)
, (6)

where αe is the ionization degree, i.e., the average number of
free electrons generated per atom, and k denotes the relative
fraction of the ion species Ak+ with respect to the total number
of atoms and ions.

B. Transport coefficients in LRT

1. Brief outline of LRT

The LRT used here is a general approach to determine
the transport properties, which was originally developed by
Reinholz et al. [27], Redmer et al. [28], Kuhlbrodt et al. [29],
and Adams et al. [15], following the method of Zubarev [30].
Several calculations have shown that the LRT can be applied
over a wide range of densities and temperatures, and from
weakly to strongly coupled plasmas. In the LRT framework,
the electrical conductivity σ , thermopower κ , and thermal
conductivity λ can be given in terms of the Onsager coeffi-
cients Lik as

σ = e2L11, κ = 1

eT

L12

L11
, λ = 1

T

(
L22 − L12L21

L11

)
. (7)

The Onsager coefficients are written in the determinant repre-
sentation within two moment approximations as

Li j = − (−h)i+ j−2

V |D|
∣∣∣∣ 0 j−1

βh N̄1 − N̄0
i−1
βh N1 − N0 D

∣∣∣∣, (8)
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with

Ni =
⎛
⎝Ni0

Ni1

Ni2

⎞
⎠, N̄i = (N0i N1i N2i ),

D =
⎛
⎝d00 d01 d02

d10 d11 d12

d20 d21 d22

⎞
⎠, (9)

where h = 5kBT/2 is the enthalpy per particle and is the nor-
malization volume of the system. The elements of the vectors
Ni and N̄i represent the generalized particle numbers, i.e., the
Kubo products, which are calculated as

Nnm = Ne
�(n + m + 5/2)

�(5/2)

Fn+m+1/2(βμid
e )

F1/2(βμid
e )

. (10)

The elements D in the determinant are the equilibrium
force-force correlation functions that can be given as a sum
of three parts,

di j = dea
i j + dei

i j + dee
i j (11)

and

dea
nm = 4V nena

3β

√
2me

πβ

∫ ∞

0
dxxn+m+2e−xQea

T (x), (12)

dei
nm = 4V ne

3β

√
2me

πβ

∫ ∞

0
dxxn+m+2e−x

(∑
j

√
n jQ

e j
T (x)

)2

,

(13)

dee
nm = 4V n2

e

3β

√
me

πβ

∫ ∞

0
dxx3Rnm(x)Qee

T (x)e−x, (14)

where Rn0(x) = R0n(x) = 0, R11(x) = 1, R21(x) = R12(x) =
7/2 + x2, R22(x) = 77/4 + 7x2 + x4, and x = βEk . The Ek

is the collision energy; Qea
T (x), Qei

T (x), and Qee
T (x) are

the momentum transfer cross sections (MTCSs) for the
electron-atom, electron-ion, and electron-electron scattering,
respectively; and ne, na, and n j are the number density for
free electrons, atoms, and ions, respectively, i.e., the so-called
plasma components. We see that within the LRT frame-
work, the plasma components and MTCSs are required for
the transport coefficient calculations. In the calculations, the
MTCS for electron-atom scattering is calculated using partial
wave decomposition, the MTCSs for electron-electron and
electron-ion scatterings are calculated using the Born approx-
imation (BA), and the plasma components are determined
using SFVT.

2. Potential models

As is well known, the MTCS calculations depend strongly
on the interaction potentials of the different scattering mecha-
nisms. Therefore, appropriate potential models are vital for
the MTCS calculations. We give a brief outline here, with
additional detailed descriptions found elsewhere [31]. For
electron scattering due to charged species in partially ionized
plasmas, the dominant force is Coulombic interactions, which
are screened by the other charged particles in the medium
[15]. Here, we use the screened Coulomb potential (Debye

potential) to describe the electron-ion and electron-electron
interactions as

V ei,ee
SC (r) = −Zi

r
e−r/r0 , (15)

where Zi is the net charge of ions and electrons, r0 =
rD/(1 + v2/v2

T h)1/2 is the dynamic screening radius [32], v

is the relative velocity of the colliding particles, vT h is the
thermal velocity, and rD =

√
kBT/4πe2ne is the Debye length.

In this potential, the Debye length is replaced by the screening
radius.

In electron-atom scattering, the dominant force is de-
scribed as a dipole interaction, which is caused by the
polarization of the atomic electron cloud as the scattering
electron approaches the atom [15]. The polarization potential
presented by Redmer et al. [33] was applied for electron-atom
interactions in our previous work for Ar [26]. However, under
warm dense conditions, the spatial distribution of electrons
of an atom bound in a dense plasma environment is remark-
ably different from that of a free atom, which makes the
description for electron-atom interactions more complex. For
such complex interactions, a single polarization potential may
not be sufficient as the plasma environmental effects may
play an important role. To improve the descriptions for these
interactions, an effective potential model in conjunction with
the Muffin-tin model is applied here, which not only includes
the static, exchange, and polarization interactions but also
considers the plasma environmental effects [31]. Following
the effective potential model, the interaction potential for scat-
tering by atoms in a plasma is given by

Vmt (r) =
{

Vs,mt (r) + Vex(r) + Vp(r) if r < Rmt

Vs,mt (Rmt ) + Vex(Rmt ) + Vp(r) if r > Rmt ,
(16)

where Vs,mt is the electrostatic interaction energy with atoms
in dense plasmas, Vex and Vp are the exchange and polariza-
tion potentials, respectively, and Rmt is the Muffin-tin sphere
radius. The Muffin-tin sphere radius is applied to consider the
influence of the plasma environment, which is taken as the
averaged interatomic radius as

Rmt =
(

3M

4πNAρ

)1/3

, (17)

where M is the atomic weight of the target atom. The elec-
trostatic interaction energy with an atom at the origin of the
coordinates Vs,mt is approximated as

Vs,mt (r) = Vs(r) + Vs(2Rmt − r), (18)

where Vs(r) is the static Coulomb potential, which can be
calculated by

Vs(r) = −Za

r
+

∫∫∫
ρe(r′)
|r − r′|dτ

= −Za

r
+ 4π

r

∫ r

0
r′2ρ(r′)dr′ + 4π

∫ ∞

r
r′ρ(r′)dr′,

(19)

where Za is the atomic number of the target atom and ρe(r) =∑
i

φi(r)φi
∗(r) is the bound electron density. Here, we use
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FIG. 1. The MTCS of elastic electron scattering by neon atoms
as a function of the scattering energy in different plasma densities
and a temperature of 20 kK.

the analytic Roothaan-Hartree-Fock atomic wave functions,
φi(r), which was derived by Bunge and Barrientos [34].

The polarization potential Vp(r) was calculated using the
formula

Vp(r) = − αp

2
(
r2 + r2

a

)2

(
1 + r

rD

)2

e−2r/rD , (20)

where αp = 3.956 × 10−25 and 2.4844 × 10−24 cm3 are the
dipolar polarizabilities for Ne and Kr, respectively, and ra =
(αp/2Z1/3

a )
1/4

is a parameter related to the atom species. The
exchange potential Vex(r) was calculated using the Hara local
exchange approximation [35],

Vex(r) = − 2

π
KF

[
1

2
+ 1 − η2

4η
+ ln

∣∣∣∣1 + η

1 − η

∣∣∣∣
]
, (21)

where η(r) = [κ2
F (r) + 2I + Ee]1/2

/κF (r), κF (r) =
[3π2ρe(r)]1/3, Ee is the collision energy, and I is the first
ionization potential.

III. RESULTS AND DISCUSSION

A. MTCS for electron-atom scattering under warm dense
environments

As described in Sec. II B 2, under warm dense conditions,
the effects of the plasma environment may play an important
role in the MTCS of electron-atom scattering. To evaluate
these effects, we calculate the MTCSs for electron-Ne and
electron-Kr scattering over a wide density range as functions
of the scattering energy, as shown in Figs. 1 and 2. Figure 1
shows the MTCS for electron-Ne scattering in a density range
of ρ = 0.02–10 g/cm3 at a constant temperature of T = 20
kK. It is seen that for electron-Ne scattering, the influence
of the plasma density is significant at low scattering energies
(<10 eV), but is nearly constant for higher energy scattering
(>10 eV). This means that for electron-Ne scattering, the
effects of the plasma density on the MTCS should be con-
sidered at low scattering energies and can be ignored at higher

FIG. 2. The calculated MTCS of elastic scattering of electrons
from Kr as a function of scattering energy in different plasma densi-
ties and a temperature of 15 kK.

scattering energies. Figure 2 shows the MTCS for electron-Kr
scattering in a density range ρ = 0.2–10.6 g/cm3 at a constant
temperature of T = 15 kK. For electron-Kr scattering, the
significant influence from the plasma density is also observed
at low scattering energies (<3 eV). This suggests that for
electron-Kr scattering, the plasma density effect on the MTCS
should also be considered at low scattering energies. More-
over, a density-dependent Ramsauer-Townsend minimum is
found for electron-Kr scattering. The Ramsauer-Townsend
minimum shifts towards lower scattering energies with an
increasing density, and the MTCS decreases (increases) for
densities below (above) the Ramsauer-Townsend minimum.

B. Transport properties under warm dense conditions

It is well known that the calculated conductivity of warm
dense matter is strongly dependent on the accuracy of the
MTCS and plasma component calculations. For warm dense
Ne and Kr, the accuracy of the component calculations using
the SFVT was validated by comparing the EOSs between
the calculations and the shock compression experimental
measurements [24,25,36]. Therefore, the key to test the adapt-
ability of the model lies in the MTCS. We know the MTCS
calculations are strongly related to the interaction potential
model, which can be indirectly validated through comparisons
of the conductivities between calculations and experiments
after the plasma component accuracy is confirmed. Figure 3
shows the calculated electrical conductivities versus shock
temperature for liquid Kr along its Hugoniot along with the
available shock compression experimental results for liquid
Kr [12] at pressures up to 90 GPa, temperatures up to 27 kK,
and densities up to 7 g/cm3, which provides a test bench-
mark for the adaptability of the model over a wide range of
parameters. We see that the proposed SFVT + LRT model
can nearly reproduce the experimental results, showing that
the potential model is feasible to describe the MTCS of warm
dense Kr at high densities. Moreover, the electrical conduc-
tivity calculated using only the polarization potential is also
shown in Fig. 3 (labeled pol. potential) for comparison. It
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FIG. 3. Electrical conductivity vs shock temperature and shock
pressure of liquid Kr along the principal Hugoniot curve.

is noted that the same plasma component, which is given
in the SFVT, is used in the polarization potential electrical
conductivity calculation. Comparing the results of the polar-
ization potential shows that the calculated conductivities using
the effective potential in the proposed model have a better
agreement with the experiments. This shows that the effec-
tive potential model can provide an improved description for
both electron-atom scattering and the conductivity of warm
dense Kr. Figures 4(a)–4(d) show the calculated conductivity
of dense Kr as a function of density over a wide range of
densities and temperatures along with the available theoretical
results from COMPTRA04 [37], Rosmej et al. [38], and Fortov
et al. [39], which provides a comparison between the different
models.

At low densities, our calculations are in agreement with
those from COMPTRA04 at T = 15 kK and Fortov et al. at
T ∼ 8 kK. However, at high densities, apparent differences

FIG. 4. Comparison of electrical conductivity vs density for
warm dense Kr at different temperatures.

FIG. 5. Comparison of electrical conductivity vs density for
warm dense Ne at different temperatures.

are seen between the different models. To further test the
adaptability of the model as extended to lighter elements, the
isothermal electrical conductivity of dense Ne was calculated
over a wide region of densities and temperatures as a function
of density, as shown in Figs. 5(a)–5(d). The results from
COMPTRA04 [37], Rosmej et al. [38], LMR [17], and exper-
iments [11] are also shown as a comparison. For Ne at T = 20
kK, all the calculations using different models, including the
proposed model, are in good agreement with the experiments
at low densities. The results show that the proposed model
is feasible for warm dense Ne for at least low densities. At
densities above 0.1 g/cm3, there are obvious discrepancies
among the various calculation models, which arise primarily
from differences in the plasma components and interaction
potentials used in the MTCS calculations. Moreover, for both
Ne and Kr, similar behaviors with Ar [26] are observed. For
example, at some temperature region, the electrical conductiv-
ities first decrease before rapidly increasing with the density,
but they always increase with the density at higher tempera-
tures. Another observation is that the electrical conductivities
intercross with each other and are inverse at higher densities.
These behaviors are related to the pressure ionization and
nonmetal-metal transition (NMMT), which were illustrated in
our previous work for Ar [26].

The thermopower characterizes the generation of an elec-
tric field as a response to temperature gradients and is
important in the context of gas-filled voids that form un-
der irradiation. Figures 6(a) and 6(b) present the calculated
thermopower versus density for dense Ne and Kr plasmas at
different temperatures, respectively, which illustrates the evo-
lution of thermopower with both temperature and density. The
results from COMPTRA04 [37] are also given as a comparison.
There are differences between our calculations and the results
from COMPTRA04. For Ne, our calculations indicate that the
thermopower first increases rapidly up to a maximum from
negative to positive with density at different temperatures be-
fore decreasing for our considered range, as seen in Fig. 6(a).
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FIG. 6. Comparison of thermopower vs density with the COMPTRA04 for warm dense Ne and Kr at different temperatures.

These decreases are slow for the initial phase. However, when
the density further increases to ∼6 g/cm3, the decreases grow
rapidly at a rate that is faster for lower temperatures. When at
approximately 8 g/cm3, the thermopower becomes negative
and a “reversal” occurs, i.e., the thermopower of the lower
temperature has smaller values than at higher temperatures.
For Kr, similar behavior is observed, but the thermopower
reversal occurs at an even higher density of ∼9.5 g/cm3, as
seen in Fig. 6(b). Compared with our calculations, the ther-
mopower data given from COMPTRA04 are always negative
and the evolution of the thermopower with temperature and
density shows different characteristics.

Thermal conductivity is also a key parameter for the
transport coefficients. At high temperatures and pressures, it
is relatively difficult to produce theoretical results that are
consistent with experiments. Some questions concerning the-
oretical descriptions and interpretations of the measurements
data are still open. Figures 7(a) and 7(b) present the calculated
thermal conductivity versus density for dense Ne and Kr plas-
mas at different temperatures, respectively. For warm dense
Ne and Kr, there is no available experimental data of thermal
conductivity. Therefore, we compare our calculations with
the existing thermal conductivity data given by COMPTRA04
[37]. Figure 7(a) compares the thermal conductivity for dense
Ne. Our calculations show a similar evolution tendency with
the COMPTRA04 results in the considered range, but are only
consistent at the lower temperature of T = 15 kK. There
are discrepancies between the curves at higher temperatures,
which become larger with temperature and density, with our

results being smaller than the COMPTRA04. Figure 7(b) com-
pares the thermal conductivity for dense Kr with notable
deviations present. In particular, at densities from 4 to 6
g/cm3 and temperatures from 15 to 20 kK, our calculations
show different evolution tendencies than COMPTRA04 in the
considered range. The differences arise primarily from the
discrepancies in the plasma components and interaction po-
tentials between the approaches. Moreover, the COMPTRA04
results show an instability region at temperatures of T =
15 and 20 kK, which did not occur in our calculations.
These instabilities are due primarily to the atomic compo-
nents having loops in the curves for COMPTRA04 (see Fig. 10
in Ref. [23]).

C. Plasma phase transition

The plasma phase transition (PPT) concept was intro-
duced by Landau and Zeldovich in 1943 [40], and several
researchers have since investigated phase transitions both ex-
perimentally [41] and theoretically [42,43]. However, PPT
occurs in situations where both quantum and Coulomb effects
are important, making the physical analysis more difficult.
Here, the PPT of warm dense Kr is revisited from multi-
ple perspectives regarding numerical simulation results for
electrical conductivity and thermopower. Both the electrical
conductivity and thermopower of warm dense Kr at densi-
ties from 9 to 10 g/cm3 have an intercross point and show
a reversal [see Figs. 4(d) and 6(b)]. As mentioned in our
previous work for warm dense Ar, the intercross and reversal

FIG. 7. Comparison of thermal conductivity vs density with COMPTRA04 [37] for warm dense Ne and Kr at different temperatures.
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are related to the so-called NMMT [26]. Surprisingly, the
density-temperature location for the NMMT, which is deter-
mined from the present intercross and reversal in the electrical
conductivity and thermopower, is consistent with the PPT of
warm dense Kr, which is given by the results of our previous
EOS analysis [24]. This coincidence indicates that the NMMT
found here for dense Kr may be connected to the PPT. A
similar behavior was also found for dense Ne, as shown in
Figs. 5(d) and 6(a).

IV. CONCLUSION AND OUTLOOK

An improved SFVT + LRT model is presented, in which
an effective potential model in conjunction with the Muffin-tin
model was applied to provide an improved description of
electron-atom scattering. The model was used to calculate
the transport coefficients, including the electrical conductivity,
thermopower, and thermal conductivity, of warm dense Ne
and Kr. The effective potential model allows not only includ-
ing the static, exchange, and polarization interactions, but also
considers the plasma environmental effects for electron-atom
scattering. The improved SFVT + LRT is successfully ex-
tended to lighter and heavier elements (Ne and Kr) relative to
previous results. The density effect on the MTCS for electron-
atom scattering in plasmas is analyzed based on the effective
potential model, and the resulting influence is significant at

lower scattering energies but is different between the electron-
Ne and electron-Kr scattering. For electron-Kr scattering, an
important feature called the Ramsauer-Townsend minimum
is observed, which depends on the relative densities. The
“reversal” of the electrical conductivity and thermopower of
warm dense Kr, which characterizes the so-called NMMT,
was found at densities from 9 to 10 g/cm3. The density-
temperature location for the NMMT as determined from the
reversal shows good consistency with the PPT, which was
determined by the results of the EOS analysis in our previous
work. This indicates that the NMMT found here for dense Kr
may be connected with the PPT, which would require new
theoretical and experimental data tests in the future. These
observations are useful to better understand the transport
properties of warm dense noble gases and may provide an im-
portant guide for future experimental designs and theoretical
developments.
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