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Multiple scattering theory for dense plasmas
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Dense plasmas occur in stars, giant planets, and in inertial fusion experiments. Accurate modeling of the
electronic structure of these plasmas allows for prediction of material properties that can in turn be used to
simulate these astrophysical objects and terrestrial experiments. But modeling them remains a challenge. Here
we explore the Korringa-Kohn-Rostoker Green’s function (KKR-GF) method for this purpose. We find that it is
able to predict equation of state in good agreement with other state-of-the-art methods, where they are accurate
and viable. In addition, it is shown that the computational cost does not significantly change with temperature, in
contrast with other approaches. Moreover, the method does not use pseudopotentials—core states are calculated
self consistently. We conclude that KKR-GF is a very promising method for dense plasma simulation.
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I. INTRODUCTION

In stars like our sun [1], in white dwarfs [2], and in inertial
fusion experiments [3,4] a state of matter variously known as
warm and hot dense matter, or dense plasma, is reached. To
understand and model these physical systems it is necessary
to be able to accurately predict the material properties, such
as equation of state and transport properties, of these dense
plasmas.

There has been a serious and sustained effort to produce
such accurate models [5]. For temperatures roughly less than
the Fermi temperature, plane-wave based Kohn-Sham density
functional theory molecular dynamics (DFT-MD) has become
a widely used and reliable tool [6–10]. To get to higher tem-
peratures, orbital-free MD has proved useful [11–15], but is
limited in its physical accuracy by the approximate kinetic-
entropic functional used. For example, we know of no orbital
free functional that can predict discrete bound (or core) states
[16,17]. Very recently, stochastic DFT [18] has been shown to
perform well at high temperature, but still uses pseudopoten-
tials to represent core states, leading to transferability issues.
Moreover, stochastic DFT yields the electron density, not
the Kohn-Sham orbitals, so standard linear-response theory
for optical and transport coefficients can not be applied, and
alternative methods such as time-dependent DFT will have to
be developed [19–23].

Another high fidelity method is path integral Monte Carlo
(PIMC) [24,25], which is an excellent method for equation of
state (EOS) at high temperature, but becomes prohibitively ex-
pensive at lower temperature due to the fermion sign problem.
To our knowledge, the method cannot directly produce other
quantities of interest like opacity or transport coefficients.

More approximate methods include average atom models
and their extensions to include ionic structure [26–31]. These
are DFT models of one fictitious averaged atom whose elec-
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tronic structure represents an average over all atoms in the
plasma. These methods have been enormously useful, and still
are the dominant method for production of large tables of data
due to their reasonable fidelity and fast computation times.
However, due to the extreme difficulty in performing con-
trolled EOS, opacity and transport coefficient measurements
on dense plasmas in the laboratory, benchmarking these codes
is largely done with reference to more complete models.

In this paper we explore the Korringa-Kohn-Rostoker
Green’s function (KKR-GF) method, also known as the multi-
ple scattering method, for calculating the electronic structure
of dense plasmas [32–34]. KKR-GF is a general method for
solving the Schrödinger or Dirac equation, but routinely, as
here, it is used to solve the Kohn-Sham(-Dirac) DFT equations
[35–39]. The method has been developed for many years
in the solid state community [40–43], and was introduced
to the dense plasma community quite recently [44], where
an overview of the method and its potential benefits were
presented, as well as some exploratory calculations. Since
then, some work has been done exploring the behavior of
high temperature crystals, i.e., hot electrons with ions fixed
in their crystal positions [45], and some calculations of EOS,
again using hot crystals have been presented [46]. However,
the challenging question of the behavior of the method for
disordered plasma environments has not, until now, been
addressed. Here we address this question, and present calcu-
lations for dense plasmas. We find good agreement for EOS
with existing state of the art methods, where they are accurate
and tractable. We find that the key to applying KKR-GF to
these disordered environments lies in the concept of extra
expansion centers.

In demonstrating that this method is viable for dense
plasmas, we are introducing a method with a very high
physical fidelity for calculating the electronic structure of
dense plasmas. It has the advantage of providing an, in
principle, exact solution of the Kohn-Sham DFT equations;
even core electrons are evaluated self-consistently, in contrast
to pseudopotential-based methods. The main weakness, as
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discussed later in this work, is the convergence of the multiple
scattering sum. The practical solution, used for many years
when applying the method to low temperature systems, is
demonstrated here to also give good results for dense plasmas.

II. GENERAL THEORY

The central quantity in the KKR-GF method is the one-
electron Green’s function G(r, r′, z), defined as the solution to
the Kohn-Sham inhomogeneous equation [47],

[z − H (r)]G(r, r′, z) = δ(r − r′), (1)

where z is the (complex) energy and H is the Kohn-Sham
Hamiltonian. The spectral representation of the Green’s func-
tion for real energy ε is

G(r, r′, ε) =
∑

ν

ψν (r)ψ∗
ν (r′)

ε − εν + ıη
, (2)

where lim η → +0 should be taken, giving the so-called re-
tarded Green’s function, and the ψν are the eigenstates with
eigenvalues εν . Contact with the more familiar wave function
formalism is made by taking the imaginary part of the Green’s
function,

�G(r, r′, ε) = −π
∑

ν

ψν (r)ψ∗
ν (r′)δ(ε − εν ). (3)

The electron density is given by

ne(r) = − 2

π
�

∫ ∞

−∞
dε f (ε, μ)G(r, r, ε), (4)

where the 2 is due to spin degeneracy, the integral is along
the real energy axis, and f is the Fermi-Dirac function with
chemical potential μ. Using Eq. (3), Eq. (4) clearly recovers
the usual expression for ne(r).

An important concept in the KKR-GF [32–34] method is
the multisite expansion of the Green’s function, where the
spatial dependence of G(r, r′, z) is expanded about a set of
fixed centers. These centers are used to define cells that are
non-overlapping and space filling. Starting with the known
free electron Green’s function,

g(x, x′, z) = − m

2π

exp(ıp|x − x′|)
|x − x′| , (5)

where p = √
2mz, one expands the Green’s function about a

set of centers {Rn} using spherical harmonics Ylm(r̂). Note that
we are using atomic units in which h̄ = aB = 4πε0 = e = 1,
but we leave the electron mass m dependence as it allows
easy conversion between Rydberg and Hartree atomic units.
Letting x = r + Rn and x′ = r′ + Rn′

, we arrive at

g(r + Rn, r′ + Rn′
, z) = δnn′2m

∞∑
L=0

h×
L (r>, z) jL(r<, z)

+ 2m
∞∑
LL′

jL(r, z)Gnn′
0,LL′ (z) j×L′ (r′, z),

(6)

where L = {l, m}, jL(r, z) = jl (pr)Yl,m(r̂), hL(r, z) =
−ıphl (pr)Yl,m(r̂), jl (hl ) is the spherical Bessel (Hankel)
function, and Gnn′

0,LL′ are the structure constants (Appendix).

The superscript × indicates that the complex conjugate of the
spherical harmonic should be taken. Also, r> (r<) means that
one should take the vector with greater (lesser) magnitude of
r and r′.

Equation (6) can be generalized to the case of nonfree
electrons, giving

G(r + Rn, r′ + Rn′
, z) = δnn′2m

∞∑
L=0

Hn,×
L (r>, z)Rn

L(r<, z)

+ 2m
∞∑
LL′

Rn
L(r, z)Gnn′

LL′ (z)Rn′×
L′ (r′, z),

(7)

where Rn
L is the regular solution to the Kohn-Sham equation

in cell n and Hn
L is the irregular solution, and Gnn′

LL′ are the
structural Green’s function matrix elements (Appendix). The
double sum term in Eq. (7) can be thought of as a multisite
correction the the single site Green’s function, defined by the
single summation term. This so-called “multiple scattering”
term corrects the boundary condition applied to the single site
solution (i.e., the free electron boundary condition), replacing
it with the correct form so that all incoming and outgoing
waves are matched at the cell boundaries. Another way to
think of it, is that the multiple scattering term introduces
quantum diffraction, where electron scattering from multiple
sites can interfere.

The structural Green’s function matrix G is calculated from
the structure constants matrix G0 and the so-called t-matrix,
which encapsulates the scattering properties of all the cells,
by using Dyson’s equation

G(z) = G0(z)[I − t (z)G0(z)]−1. (8)

This expression is known as the fundamental equation of
multiple scattering theory. It is solved by matrix inversion.
Each term is a matrix indexed by the site indices n and n′,
and by L and L′. The t-matrix is site diagonal.

III. PRACTICAL CONSIDERATIONS

In this section we give details on the implementation of
this method. A flow chart summary of the method is given in
Fig. 1. At a high level, the method involves dividing space into
nonoverlapping, space-filling cells, solving the Kohn-Sham
equations within each cell independently, and combining
these solutions via Dyson’s equation to form the Green’s
function. In turn this Green’s function is used to obtain a new
electron density to feed back into the Kohn-Sham equations
until self-consistency is achieved.

A. Tessellation of space

To implement the KKR-GF method in practice the first step
is to tessellate space. For regular crystals a Voronoi tessella-
tion has been used with success [35]. For crystals with more
than one atomic species, using a power tessellation has been
shown to be numerically advantageous [48]. In principle the
Green’s function should be independent of the tessellation,
but to minimize the number of spherical harmonic expansion
terms, ideally the expansion regions (i.e., the cells) should be
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FIG. 1. Flow chart describing the computational workflow. In-
side the shaded (blue) region is the self-consistent field (SCF)
procedure, outside the shaded area, in orange boxes, are one-off steps
that are decided or calculated before the SCF procedure starts.

as spherically symmetric as possible. This is why the power
tessellation is better for mixtures; it allows one to weight cell
sizes, in contrast to the Voronoi procedure which tessellates
purely on the positions of the expansion centers. In the imple-
mentation applied here we have used the power-tessellation
code of reference [49].

There is another important consideration when making this
tessellation: the derivation of Eqs. (6) and (7) rely on the
following sets of inequalities being satisfied [50,51]:

|r| < |Rn − Rn′ | and |r′| < |x − Rn′ | (9)

and

|r′| < |Rn′ − Rn| and |r| < |x′ − Rn|. (10)

These are satisfied for all combinations of r and r′ if the cells
n and n′ are the largest possible, nonoverlapping spheres for
a given set of centers; these spheres are called the muffin
tin spheres. For space filling tessellations the left hand set
of inequalities can always be made to be satisfied by adding
extra centers (see Fig. 2). For power tessellations, one of
the right-hand inequalities can also always be satisfied [50].
However, there will always be certain pairs of points where
the other right-hand inequality is violated (Fig. 3). This leads
to slow or even conditional convergence of the double sum in
the expansion Eq. (7).

The practical solution to this conditional convergence issue
is to truncate the double summation to l, l ′ � lms

max [51,52],
where lms

max = 2, 3, or 4. This works because using lms
max =

2, 3, or 4 covers the orbital angular momenta of the chem-
ically relevant electrons and bound states. Higher l states
correspond to higher energy electron states that are therefore
more like free electrons which are less affected by multisite
contributions. It is important to note that adding higher order
terms in the expansion (larger lms

max) may actually lead to worse
results due to this conditional convergence [50,51]. This is
the key weakness of the method. It can be systematically
ameliorated by increasing the number of expansion centers.

FIG. 2. Schematic example of power tessellation. Top panel
shows the 2D tessellation for eight centers, which would correspond
to the nuclear positions in 3D. The circles correspond to the muffin
tin spheres, and the black line demarcate the cells. In the bottom
panel 35 extra centers have been added in such a way as to minimize
the area (volume) not in the muffin tins. Notice that the power
tessellation preserves the original eight spheres as more centers are
added.

However, as we shall see in Sec. IV B, relative insensitivity of
the equation of state to the choice of lmax within the range 2 to
4, affirms the validity of this practical solution.

Once the expansion centers have been decided the struc-
tural constants G0 are calculated. These depend only on the
positions of the centers and the energies needed (see later).
Hence, for a given set of centers, they need only be calculated
once. We have assumed a periodic supercell in our calcula-
tions. This artificial construct is widely used for simulations
of disordered systems. The corresponding structural constants
are thus calculated in Fourier-space and transformed back to
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FIG. 3. Example of geometry in which one of the inequalities is
violated. The circles represent the muffin tin spheres and the vertical
line is the boundary plane. For the points r and r′, the inequality
|r′| < |x − Rn′ | is violated, while the others are satisfied.

real space; see the Appendix. An alternative method that we
do not explore here, is to neglect long range effects on the
Green’s function, and evaluate the structure constants using a
finite cluster of atoms [35,53,54].

B. Single-site solutions

The next step is to solve the single-site problem in each
cell. This means solving the Kohn-Sham equation for the
regular Rn

L(r) and irregular Hn
L (r) solutions, as well as the

t-matrix for each site tn. This problem is considerably sim-
plified if the effective potential inside the cell V eff,n(r) is
spherically symmetric. In cells around a nucleus, the elec-
tron density (and effective potential) will be approximately
spherically symmetric due to the dominance of the nuclear
potential. In cells not containing a nucleus, the electron den-
sity will be reasonably close to that of a free electron gas,
which is uniform. Hence, for this initial evaluation of the
method for disordered dense plasmas, it is reasonable to
adopt this spherically symmetric approximation for V eff,n(r)
within the cells. This approximation is called the muffin tin
approximation.

In the muffin tin approximation the effective potential in-
side the muffin tin spheres is spherically averaged:

V eff,n
mt (r) = 1

4π

∫
d r̂V eff,n(r) for r < Rn

mt, (11)

where Rn
mt is the muffin tin radius for cell n. Outside the muffin

tin spheres, in the interstitial (is) region, the potential takes an
average value—the muffin tin constant. This is determined by

V̄ mt =
∑

n

1

V n
is

∫
r∈is

d3rV eff,n(r), (12)

where the sum is over all cells, and V s
is is the volume of the

interstitial region for cell n. Hence, the potential inside each
cell is spherically symmetric.

An important point worth clarifying is that even though
V eff,n

mt (r) is spherically symmetric, the Green’s function and
electron density inside a cell are not, in general. The symmetry
is broken by the multisite term in the Green’s function. This

results from the coupling of different spherical harmonics in
the double sum term in Eq. (7).

The regular and irregular solution must be matched to their
free electron forms at the edge of the cell

Rn
L(r, z) = [ jl (pr) − ıphl (pr)t n

l (p)]Ylm(r̂), (13)

Hn
L (r, z) = −ıphl (pr)Ylm(r̂), (14)

where the tn-matrix is now diagonal in the muffin tin approx-
imation. The regular solution is found by integrating out from
the origin, and the irregular solution is found by integrating
inward [55]. In matching the numerical solutions to these
analytic forms the tn-matrix is found.

Going beyond the MT approximation is the goal of so-
called “full potential” calculations [40,56,57]. This introduces
significant complexity to the single-site problem. For exam-
ple, the tn-matrix ceases to be diagonal in L. The importance
of full-potential versus MT for disordered plasma applications
will be considered in the future.

C. Efficient evaluation of multisite effects

With the single-site problem solved and the structural
Green’s function evaluated, one can construct the Green’s
function, Eq. (7). The multiple scattering term is expensive
to evaluate due in part to the double sum [Eq. (7)] but also
because the solution of Dyson’s equation for the structural
Green’s function matrix involves a matrix inversion for each
energy and k-space integration point (Appendix). The size of
this matrix is N (lms

max + 1)2 where N is the number of expan-
sion centers and lms

max is the maximum l for both summations.
Since dense matrix inversion cost scales as size of the matrix
cubed, it is clearly desirable to keep N and lms

max as small
as possible.1 As noted above, only the first few terms are
included in the double sum (lms

max = 2, 3, or 4), which serves to
limit computational expense. As explored in Ref. [45], higher
l terms are kept in the single site part of the Green’s function.
This is expected to be a good approximation because higher
l states correspond to higher energy states, and hence are
more free-electron like, leading to small multiple scattering
contributions.

Another way to reduce computational expense is to eval-
uate the multisite term only in the energy range where it
is significant. We expect tightly bound states to be unaf-
fected by multisite interactions due to their localized nature.
At the other extreme, electrons in high-energy states should
be insensitive to the details of multisite interactions due
to their free electron-like character. Hence, we introduce
a minimum Emin and maximum energy Ems

max for multisite
contributions, outside of which only the single-site term
contributes.

Even if the multiple scattering Green’s function were eval-
uated only in the range Emin to Ems

max, it would be a rapidly
varying function of the energy there, requiring many inte-
gration points to accurately resolve the multiple scattering

1Note, however, that there exist so-called “screening transform”
methods which sparsify the matrix inversion and permit more favor-
able scaling for large systems [58].
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Matsubara poles at
E=μ+iπ(2j-1) kT

Band of
states

Continuum states

μ E
max

ms

FIG. 4. Schematic of the different types of states that occur on
the real energy axis. For large negative energy only discrete core
states exist, and one only needs the numerically inexpensive single-
site solution. Between Emin and Ems

max valence states exit, which are
strongly affected by multisite effects. In this region the full Green’s
function expression is evaluated for l � lms

max. For l > lms
max only the

single-site contribution is needed. For energies greater than Ems
max,

again only the single site solution is needed.

contribution to the density, Eq. (4). This is avoided by de-
forming the energy integration path into the upper half of
the complex plane. This technique results in much smoother
integrands, fewer integration points, and most importantly
avoids the poles on the real axis, which correspond to the
eigenstates of the system. Hence, one does not actually find
these eigenstates, nor are they needed. The (retarded) Green’s
function has no poles in the upper half complex plane.
However, the Fermi-Dirac function does have poles, at the so-
called Matsubara frequencies: z = μ + ıπ (2 j − 1)kBT , for
j = 1, 2, . . .. Their residues can be evaluated directly, or
avoided by choosing a contour with imaginary part of energy
everywhere less than πkBT . Note also, that the poles are
avoided if μ < Emin or μ > Ems

max.
This strategy is summarized in Fig. 4. For large negative

energy only the single-site term is evaluated, and and any
core states that exist are accounted for using Eq. (3). Between
Emin and Ems

max the full Green’s function expression is evaluated
using contour integration. Note that, for this region lss

max for the
single-site term is as large as needed for convergence, whereas
lms
max for the multisite term is fixed at a small values (e.g., 2, 3,

or 4). Above Ems
max only the single site term is evaluated, up to

some maximum energy Emax, determined by integrand having
become negligibly small.

With the Green’s function determined, the electron density
can be evaluated, and the usual self consistent field procedure
is followed. The Poisson equation is solved using the tech-
nique presented in Ref. [59]. The self-consistent field problem
is solved using Eyert’s method [60], and normally takes less
than 10 iterations to converge, using the Thomas-Fermi cell
model to generate an initial guess [61]. For spatial integrations
over the cells, we use the isoparametric integration method of
reference [62]. Note also, that in the calculations presented
here we use the temperature dependent local density approxi-
mation [63].

D. Thermodynamics

To study the convergence properties of the KKR-GF
method in disordered plasmas, we focus on thermodynamic
properties. These require the electron density of states in
addition to the density. The density of states per volume V
is also found from the Green’s function

χ (ε) = − 2

π
�

∫
V

d3r G(r, r, ε). (15)

The pressure is given by the Virial expression

P = 1

V

[
U k + F el

3

]
+ Pxc + PI , (16)

where F el is the electrostatic free energy [59], PI (= NT/V )
is the ideal ion pressure (with N ions in the volume V ), and
U k is the internal kinetic energy,

U k =
∫ ∞

−∞
dε f (ε, μ)χ (ε)ε −

∫
V

d3rV eff(r)ne(r), (17)

and assuming the local density approximation

Pxc = 1

V

[
−F xc +

∫
V

d3r ne(r)V xc(r)

]
, (18)

where F xc is the exchange and correlation free energy, V xc =
δF xc/δne.

Evaluating the plasma equation of state also requires aver-
aging over an ensemble of realistic ion positions. We generate
these using the PAMD (pseudoatom molecular dynamics)
model [64]. This model uses a DFT average atom calcula-
tion to produce a force field for use in classical molecular
dynamics. It gives an accurate set of ion transport coefficients
and pair distribution functions for dense plasmas [65,66]. It
is numerically inexpensive and we use it to generate sets of
ion positions that are well separated in time and hence, are
uncorrelated. This is a reliable and accurate procedure for
dense plasmas. For lower temperature liquids and warm dense
matter with transient chemical bonds, PAMD will not produce
accurate ion positions because it assumes the superposition
approximation, in which the total electron density is the sum
of spherically symmetric “pseudoatom” densities, each based
on single center calculations. In principle, it is possible to
calculate forces on ions directly from the KKR-GF solution
[67]. However, we have not attempted that yet and we note
that results shown are firmly in the regime where PAMD is
accurate.

IV. RESULTS

A. The effect of extra expansion centers

In Fig. 5 we show the total pressure as a function of the
number of extra centers for two different temperatures, for
aluminum at solid density. For each temperature, we show
results for two different sets of ion positions. We are using
eight nuclei in the simulation volume. The number of extra
centers corresponds to the number of cells not containing a
nucleus. We see that on adding centers the pressure initially
changes rapidly and then settles down to a rough constant.
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FIG. 5. Convergence of pressure with the number of extra centers
for 8 aluminum atoms, at solid density and temperatures of 10 eV
(top panel) and 100 eV (bottom panel). The dotted lines serve as
a guide to the eye. The two lines correspond to two sets of ion
configurations (i.e., positions). The results are for lms

max = 2.

There are still some fluctuations in the pressure even after
the value settles down. The pressure initially changes rapidly
because the inequities Eq. (9) are strongly violated. As ex-
tra centers are added, the expansion becomes valid and the
value settles down. However, as we are using the muffin-tin
approximation, adding extra centers treats the electrons in
the interstitial region slightly differently to before, hence the
fluctuations. At the same time, the region being modeled with
the conditionally convergent double summation also reduces
in size. The exact interplay of these errors is not yet known
but could be examined in detail with a future full-potential
treatment.

It is also noted that the 100 eV case reaches its (roughly)
constant pressure more quickly than the 10 eV case. We can
understand this behavior by noting that at high temperature
the multiple scattering effect is of less relative importance as
there are more high energy electrons that are insensitive to
multisite effects.

B. Sensitivity to multiple scattering summation

In Fig. 6 we shown the total pressure as a function of
simulation time for the same 10 and 100 eV aluminum plas-
mas. Results are shown for lms

max = 2, 3, and 4. The average
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FIG. 6. Total pressure for solid density aluminum at 10 eV (top
panel) and 100 eV (bottom panel), versus simulated time. Shown are
results for lms

max = 2, 3, and 4. These results use 35 extra centers.

pressures and standard deviations are (in Mbar),

lms
max 10 eV 100 eV

2 3.36 ± 0.18 76.6 ± 0.35
3 3.31 ± 0.18 76.4 ± 0.34
4 3.28 ± 0.18 76.3 ± 0.33

where we give results at temperatures of 10 and 100 eV,
for lms

max = 2, 3, and 4. The pressure does not change strongly
with lms

max, indicating that the strategy of using a physically rel-
evant lms

max is meaningful. Comparing the KKR-GF approach
with other methods we have

T [eV] KKR − GF DFT − MD PAMD Tartarus

10 3.31 ± 0.18 3.34 3.19 2.93
100 76.4 ± 0.34 – 76.3 75.4

where we have used lms
max = 3. At 10 eV we compare with

DFT-MD results [68] and find agreement within the error
bars. We also compare with PAMD [69] which also gives
reasonable agreement, and the average atom model Tartarus
[28], which gives too low a pressure. Since PAMD is based
on the idea of correcting average atom pressures for ionic
disorder, the difference between them implies that the lack of
this effect in the Tartarus model is the cause of the difference.
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TABLE I. Total pressure and wall time for solid density alu-
minum across two orders of magnitude of temperature. Results are
for lms

max = 2, with 8 atoms and 35 extra spheres. Wall time is the
time taken to converge for a single set of ion positions using a single
node with 18 threads for all cases. G0 time is the wall time for the
calculation of the structural Green’s function. Clearly, the results
demonstrate an independence of wall time on temperature.

T (eV) P (MBar) Time (min) G0 time (min)

10 3.36 (0.182) 60 50
20 7.56 (0.167) 61 49
50 27.9 (0.473) 59 46
100 76.44 (0.351) 64 54
200 194.6 (1.13) 61 53
500 600.5 (1.23) 61 54
1000 1306 (3.20) 63 53

At 100 eV the relative change with lms
max is smaller than at

10 eV. This is due to the decreased relative importance of
multisite effects, as noted earlier. Agreement with PAMD is
again good.

The rather large fluctuations in the pressure seen in Fig. 6
are due to the small number of nuclei in the simulation, i.e.,
eight nuclei. There is no restriction of the method to small
numbers of atoms. Indeed, linear scaling variations exist that
could be exploited for plasma applications [42,54,67]. How-
ever, our results are enough to demonstrate the viability of the
method, our main aim.

Table I shows total pressure along the 2.7 g/cm3 isochore
from 10 to 1000 eV and the wall time for one complete self
consistent field cycle (to convergence) for a given set of ion
positions. The key point is that, in practice, the wall-time
for KKR-GF method does not significantly change with tem-
perature, in stark contrast with plane wave DFT-MD [16].
Also shown is the wall-time for calculation of the structural
constants, which takes roughly 5/6 of the total execution time.
This can probably be dramatically improved, either through
algorithmic improvements, exploitation of modern paral-
lelism, or switching to real-space approximations [53,54].

While Table I demonstrates no scaling of wall-time with
temperature in practice, in principle our implementation
scales linearly with temperature This can be seen by con-
sidering Eq. (4). As temperature increases, the number of
evaluations of the Green’s function also rises, as it is needed
at increasingly high energies. As higher energy Green’s func-
tions only require evaluations of the inexpensive single-site
term, the cost of this scales linearly with temperature. How-
ever, in practice wall-time is dominated by the evaluation of
the expensive multisite Green’s function, along the contour
between Emin and Ems

max (Fig. 4). Since we have used the same
number of points for the contour integration for all cases in
Table I, the wall-time does not scale with temperature. For
reference, we use four-point Gauss-Legendre integration in
equally spaced panels, with 112 panels in total (448 integra-
tion points total), and the horizontal part of the contour (Fig. 4)
has an imaginary part of energy equal to 0.05 EH .

C. Diffraction and disorder effects on electronic structure

In Fig. 7 the density of states per atom is shown for the 10
and 100 eV aluminum cases, focusing on the valence region
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FIG. 7. Density of states of solid density aluminum with lms
max = 2

for temperatures of 10 eV (top panel) and 100 eV (bottom panel). We
also show the result from the average atom model Tartarus [28].
We have made the zero of energy at the chemical potential. For both
cases the density of states shown is focused on the valence region,
where states transition from bound to free. The dashed vertical line
shows the average energy of the muffin tin constant.

where multisite, quantum diffraction effects are most impor-
tant. The density of states gives detailed information about
the electronic structure, and is a less averaged quantity than
the EOS. To produce the density of states from the KKR-GF
model, we have evaluated the Green’s function slightly above
the real energy axis. This leads to a broadening of the the den-
sity of states [41], equivalent to convolving with a Lorentzian
of full-width-half-maximum equal to the imaginary part of the
energy (here set to 0.1 EH ). This is similar to the artificial
broadening used in plane-wave DFT-MD to produce densities
of states.

We compare to the average atom density of states using
the Tartarus model, which is a spherically symmetric, single
center model of an average atom in a jellium. It has only one
atom in it and hence no multiple scattering. At 10 eV the
Tartarus model yields two bound states in this energy range
(2s and 2p), which are represented graphically by vertical
lines corresponding to a Dirac δ density of states. In the KKR-
GF model, these states broaden into bands of states, at roughly
the same energy as the Tartarus bound states. This broaden-
ing is the result of two effects. First, since each atom has a
different local environment, the eigenenergy varies from site
to site. Second, the inclusion of quantum diffraction through
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the multisite term broadens the state, as was seen for high
temperature ordered lattices [45]. The broadening can crudely
be interpreted as a reduction in lifetime of the state due to
multiple scattering, an effect that is absent in the average atom
model.

For the average atom model, a distinct continuum in ob-
served (Fig. 7) which corresponds to states with energies
greater than the average atom muffin tin level. These states
are the charge carrying electron states in conductors. At
10 eV, this continuum is also observed in the KKR-GF re-
sult and is more like the free electron form (∝ √

ε). The
artificially high symmetry in the average atom model leads
to the structure in the continuum not seen in the KKR-GF
model.

At 100 eV, the average atom model predicts two bound
states in the energy range shown (Fig. 7), as well as a res-
onance structure in the continuum. The resonance structure
in average atom models is well documented [27,28] and is a
long lived quasi-stable state, caused by a potential minimum
due to the sum of the effective potential and the centrifugal
term l (l + 1)/r2 in the radial Kohn-Sham equation. These
bound and resonance states merge into one ‘bump’ in the
KKR-GF result, and the continuum merges with the bound
states. Resonances could occur in the KKR-GF model but
are likely to be more spread out due to the fluctuations in
the local environment and the multiple scattering effect. This
merging of the average atom bound and resonance states
clearly has an influence on the EOS (see earlier). Perhaps
more dramatic would be the influence on optical spectra, as
lines corresponding to transitions to and from these states
in the average atom model would disappear and be replaced
with some sort of merged feature. This is the subject of future
work.

V. CONCLUSIONS AND DISCUSSION

The KKR-GF method has been demonstrated to be
a viable and promising modeling tool for dense plas-
mas. Calculations of equation of state demonstrate that
the method gives good agreement with other state of the
art methods, where they are valid and are practical. Two
major advantages of the method are (1) no pseudopoten-
tial is needed; core states are calculated explicitly and
self-consistently, and (2) example calculations show that
the computational time does not significantly change with
temperature.

There are limitations to our current implementation that
are not limitations of the method in general. First, we have
used the muffin tin approximation. This does not appear
to cause major inaccuracies for the conditions explored in
this work (i.e., temperature >10 eV), but we expect it
to be more problematic at lower temperature where there
only lower energy electrons, that will be more strongly af-
fected by inaccuracies in the potential. We note that the
muffin-tin approximation is unnecessary, but serves us as
a useful test vehicle. Second, we have used a small num-
ber of atoms in the simulation cell (eight), due to computer
memory limitations, but a more sophisticated implementation

could overcome this, possibly simulating thousands of atoms
[42,54,67]. Third, we have imported the ion positions from
a different model (PAMD [55]). While this is accurate for the
present results, molecular dynamics forces could be calculated
directly from the electronic density, as is done in plane-wave
DFT-MD.

A limitation of the method that has yet to be fully resolved
is the convergence of the multisite contribution to the Green’s
function. Recent work has explored the possibility of trans-
forming the conditionally convergent multisite summation to
an absolutely convergence one [51], but to our knowledge, the
practicality of this approach remains an open question. We
have used the empirically supported method of keeping only
the chemically relevant expansion terms, and found only weak
dependence of the pressure on the exact number, consistent
with past results.

An exploration of the density of states of hot, dense
aluminum plasmas reveals significant changes to the den-
sity of states compared to an average atom model. There
is broad alignment of features with this more approxi-
mate model, and the comparison facilitates understanding
how multiple scattering affects the electronic structure.
It is pointed out that this will have significant impact
on spectroscopic lines, for example, in the absorption
coefficients.
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APPENDIX: STRUCTURAL GREEN’S FUNCTION

In this Appendix we give the expression for the structural
Green’s function Gnn′

LL′ for a periodic system [70,71]. The struc-
tural Green’s function is first found in Fourier space using
Ewald’s technique and the transformed back to real space. For
the application presented here, we consider a periodic super-
cell in a simple cubic lattice. Let μ be the index the lattice
vectors aμ, and Rn be the vector pointing from the origin to
the nth atom in the supercell. The real-space structural Green’s
function

Gnn′,μμ′
LL′ = 1

VBZ

∫
BZ

dkeık·(Rn−Rn′ )eık·(aμ−aμ′ )

× [(1 − G0(k, z)t (z))−1G0(k, z)]nn′
LL′, (A1)

where the matrices are indexed in n and L, and the integral
is over the Brillouin zone of volume VBZ . Note that, in the
main text, the omission of the superscripts μ and μ′ indicates
that μ = μ′, referring to atoms in the same supercell. The
structural constants are given by

Gnn′
0,LL′ = 2m

{
Ann′

lm,l ′m′ + ıpδll ′δmm′δnn′
}
, (A2)

where

Ann′
lm,l ′m′ = 4π ı l−l ′

∑
l ′′

Dnn′
l ′′,m−m′Cl ′m′

lm,l ′′m′′ . (A3)

043211-8



MULTIPLE SCATTERING THEORY FOR DENSE PLASMAS PHYSICAL REVIEW E 102, 043211 (2020)

The Cl ′m′
lm,l ′′m′′ are called Gaunt coefficients,

Cl ′m′
lm,l ′′m′′ ≡

∫
d r̂Yl,m(r̂)Yl ′,m′ (r̂)∗Yl ′′,m′′ (r̂) (A4)

and

Dnn′
l,m = D(1)nn′

l,m + D(2)nn′
lm + δnn′δl,0δm,0D(3)

0,0. (A5)

Here D(1)nn′
l,m is the part of Ewald’s summation summed in

k-space,

D(1)nn′
l,m = −4π exp (z/η)

1

V
p−l

∑
i

kl
i

(
k2

i − z
)−1

× exp
(−k2

i /η
)
Y ∗

lm(k̂i )e
ıki·(Rn−Rn′ ), (A6)

with ki being a reciprocal space lattice vector, the sum is over
all these lattice vectors, and V is the volume of the supercell.

D(2)nn′
l,m involves the real-space summation,

D(2)nn′
l,m = (−2)l+1π− 1

2 p−l
′∑
s

[ı l exp(ık · as)]

× Y ∗
lm( ̂as − Rnn′ )|as − Rnn′ |l

×
∫ ∞

√
η/2

ξ 2l exp{−ξ 2(as − Rnn′ )2 + [z/(4ξ 2)]}dξ,

(A7)

where Rnn′ = Rn − Rn′ and the sum is over all lattice vectors,
with the prime indicating that the lattice vector as = 0 is
omitted:

D(3)
0,0 = −√

η(2π )−1
∞∑
j=0

(z/η) j[ j!(2 j − 1)]−1, (A8)

where η is the Ewald parameter and the result is independent
of its value (though computation time is not [72]). In im-
plementing these equations, we found the work of Ref. [73]
helpful.
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