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Average-atom calculations of bound-free and free-free cross sections in dense plasmas
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Cross sections for photo-induced bound-free and free-free transitions in plasmas are evaluated in the
average-atom approximation and applied to determine opacities of dense plasmas of light elements. Parameters
characterizing the plasmas (chemical potential, average ionic charge, free electron density, bound and continuum
wave functions, and occupation numbers) are obtained from the average-atom model. Lowest-order calculations
of the free-free cross sections, which diverge in the low-frequency limit, are regularized by accounting for the
finite electron-ion relaxation time. The resulting analysis provides the basis for average-atom studies of plasma
opacities. Such studies are presented for dense lithium, beryllium, boron, and carbon. Applications are given
to Rosseland mean opacities of dense hydrogen and deuterium plasmas and to comparisons of free-free to
bound-free opacities in shock-compressed plasmas. Average-atom cross section and opacity calculations are
extended to plasmas consisting of more than one ionic species, boron nitride, polystyrene, and a composite H,
He, C plasma.
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I. INTRODUCTION

This paper is devoted to the evaluation of cross sections for
absorption of a photon by an electron moving in the field of
an ion. The electron and ion are assumed to be components
of a plasma described in the average-atom approximation.
Bound-free and free-free transitions play important roles in
determining the opacity of plasmas, and average-atom models
provide a relatively simple yet useful approach to evaluating
the associated cross sections and the related opacities. There
have been a number of calculations of bound-free cross sec-
tions in which an average-atom potential is used to describe
the electron-ion interaction [1–5]. Although there have been
numerous quantum mechanical calculations of free-free tran-
sition cross sections [6–25], only two published calculations
[10,20] have employed an average-atom model to describe
the electron-ion interaction. In most of the above calculations
of free-free cross sections, results are expressed in terms of
the Gaunt factor [26]: the ratio of the quantum mechanical to
classical (Kramers) free-free cross section [27].

There are two, somewhat different, theoretical approaches
to plasma opacities: the first approach which is based on the
Lambert-Beers law is used in the opacity tables of Henke [28]
and x-ray attenuation tables of Hubbel and Selzer [29]. In this
approach the plasma opacity is expressed in terms of bound-
free and free-free cross sections. The alternative approach
to opacities is based on the Kubo formula for plasma con-
ductivity and was developed by Desjarlais et al. [30] within
the framework of density-functional theory. This approach
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was later adapted to average-atom models in Refs. [31–33].
Inasmuch as the focus of the present paper is on accurate cal-
culations of bound-free and free-free cross sections, we limit
our discussion of opacities to those based on cross sections.
A recent review of average-atom studies of opacities of dense
plasmas is given by Piron and Blenski [34].

In the present paper, we use the average-atom model de-
scribed in Ref. [31] to determine properties of a plasma
including the electron-ion interaction potential and wave func-
tions for bound and continuum electrons moving in this
potential. In Sec. II we set out the equations used to evaluate
the cross sections and show how the infrared divergence in the
free-free cross section is regularized by considering the finite
electron-ion relaxation time. Section III, which includes a
discussion of the Gaunt factor, is applied to evaluate opacities
of dense one-ion and multi-ion plasmas of light elements.
An Appendix is included in which an accurate and efficient
method is described to evaluate velocity-form matrix elements
for the average-atom and similar models where the electron-
ion interaction potential has finite range.

II. THEORY

A. Bound-free cross section

The bound-free (photoionization) cross section for transi-
tions from an ionic bound state |a〉 to a free-electron state |b〉
induced by absorption of a photon of frequency ω, evaluated
in the unretarded dipole approximation, is

σ (ω) = (2π )2αh̄

m2ω

∫
( fa − fb) |〈b|p · ε|a〉|2

× δ(Eb − Ea − ω)
V d3 pb

(2π h̄)3
. (1)
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In the above, p is the momentum operator, ε is the photon
polarization vector, and fa, fb are Fermi distribution functions

fa,b = 1

1 + exp[(Ea,b − μ)/kT ]
. (2)

The bound-state radial wave function Pa(r) is normalized to
1, and the associated occupation number in the average atom
approximation is 2(2la + 1) fa. The factor ( fa − fb) in Eq. (1)
accounts for the partial occupation of state |a〉 modified to
include Pauli blocking. The continuum state wave function is
normalized in a box of volume V and behaves asymptotically
as a plane wave plus an incoming spherical wave; the associ-
ated radial wave function Pb(r) is a phase-shifted cosine wave
asymptotically:

lim
r→∞ Pb(r) = cos(kbr − (l + 1)/2 + δb) (3)

with kb = pb/h̄. After summing over magnetic quantum
numbers and spins of electrons, averaging over photon
polarization directions and integrating over free-electron di-
rections, Eq. (1) becomes

σ = 16π

3
α

m

pb

∑
a

( fa − fb)Sba, (4)

where the sum extends over all bound states a in the average
atom. In the above,

Sba = la|Mla−1,la |2 + (la + 1)|Mla+1,la |2, (5)

with

Mla−1,la =
∫ ∞

0
dr Pεb la−1(r)

( d

dr
+ la

r

)
Pεa,la (r),

Mla+1,la =
∫ ∞

0
dr Pεb la+1(r)

( d

dr
− la + 1

r

)
Pεa,la (r). (6)

Although it is common practice in studies of photoionization
to replace the above velocity-form matrix elements by length
form matrix elements, it is more convenient to treat contribu-
tions from the region r > RWS, the radius of the Wigner-Seitz
sphere containing the ion, analytically using Eqs. (6).

B. Free-free cross section

The free-free (inverse bremsstrahlung) cross section for
transitions from a free-electron state |a〉 to a free-electron
state |b〉 moving in the field of an ion and evaluated in the
unretarded dipole approximation, is

σ (ω) = (2π )2αh̄

m2ω

∫
( fa − fb)|〈b|p · ε|a〉|2

× δ(Eb − Ea − h̄ω)
d3 paV

(2π h̄)3

d2 pbV

(2π h̄)3
. (7)

The incident and final state wave functions behave asymptot-
ically as plane waves plus outgoing and incoming spherical
waves, respectively. As for bound-free transitions, the as-
sociated radial wave functions Pa(r) and Pb(r) approach
phase-shifted cosine waves asymptotically. Summing over
electron magnetic quantum numbers and spins, averaging over
photon polarization directions, and integrating over electron

directions, one obtains

σ (ω) =
∫

( fa − fb) σ (pa, ω) dna, (8)

where the differential free-electron density is

dna = p2
ad pa

π2h̄3 . (9)

It should be noted that∫ ∞

0
fa dna = ne = Z∗nion, (10)

where nion and ne are the ion and electron number densities,
respectively, and Z∗ is the mean ionic charge predicted by the
average-atom theory. Again, the factor ( fa − fb) in Eq. (8)
accounts for Pauli blocking of transitions from initial free-
electron states. The function σ (pa, ω) in Eq. (8) is

σ (pa, ω) = 32π2

3
α

(
mc2

h̄ω

)(
h̄

mc

)2 h̄3

p2
a pb

Sba. (11)

In the above,

Sba =
∞∑

la=0

[la|Mla−1,la |2 + (la + 1)|Mla+1,la |2], (12)

where the velocity-form matrix elements are given by Eqs. (6).
Although nonrelativistic free-free matrix elements are typi-
cally evaluated in acceleration form, it is much simpler here,
as for bound-free transitions, to develop formulas for the con-
tribution from r > RWS using velocity-form matrix elements.

C. Free-free infrared divergence

The velocity-form matrix elements Mba in Eq. (6) are pro-
portional to 1/ω and fa − fb is proportional to ω in the ω → 0
limit; therefore, the free-free cross section σ (ω) diverges as
ω−2 as ω approaches 0. This is a well-understood infrared di-
vergence associated with the single-ion approximation to the
electron-ion interaction. A method to regularize the infrared
divergence for the closely related average-atom implemen-
tation of the Kubo-Greenwood formula [31] was discussed
in Refs. [35,36]. This regularization requires that account be
taken of the time between successive electron-ion collisions
in the plasma.

Following the arguments given in Refs. [35,36], one finds
that as ω → 0,

σ (pa, ω) → 4π

3
α

p3
a

m3ω3
σtr(pa), (13)

where σtr(p) is the transport cross section, which is given tn
terms of the elastic-scattering form factor f (p) as

σtr(p) =
∫

(1 − cos θ )| f (q)|2 d	

= 4π h̄2

p2

∞∑
l=0

(l + 1) sin2[δl+1(p) − δl (p)]. (14)

Equation (13) is in agreement with the limiting value of
the low-frequency approximation obtained in Eq. (36) of
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FIG. 1. The regularized free-free cross section σb(ω) for Li at
density ρ = 0.534 g/cc and temperature T = 2 eV shown in the
solid line is compared with the infrared divergent cross section σ (ω)
shown in the dashed line

Ref. [21]. In the low-frequency limit,

fa − fb −−→
ω→0

−h̄ω
df

dE
, (15)

and one can combine Eqs. (13) and (15) to obtain the follow-
ing low-frequency approximation to the free-free cross section

σ (ω) ≈ 16α

3π h̄2ω2

∫ (
− df

dE

)
E2σtr(p) dE , (16)

which clearly isolates the infrared divergence.
The mean-free path in a plasma is � = 1/[nionσtr(p)], and

the corresponding relaxation time is

τ (p) = �/v = m/[p nion σtr(p)]. (17)

As discussed in Ref. [35], the effect of the finite relaxation
time is to replace ω by ω − i/τ (p) in the transition matrix
element or equivalently

ω2 → ω2 + τ (p)−2 (18)

in the cross section. The resulting low-frequency cross
section is

σb(ω) = 16α

3π h̄2

∫ (
− df

dE

)
E2 σtr(p)

ω2 + τ (p)−2
dE . (19)

The above arguments, when applied to the Kubo-Greenwood
expression for conductivity, lead to a frequency-dependent
generalization of the Ziman conductivity formula [37,38].

The free-free cross section σ (ω) is compared with its
divergence-free counterpart σb(ω) in Fig. 1 for Li at T = 2 eV.
For the light elements considered herein, as illustrated for Li
in Fig. 1, the regularized and divergent cross sections differ
noticeably only for frequencies ω < 10 eV, so the modifica-
tions discussed in this section have little or no influence on
the examples shown later.

III. OPACITIES

A. Basic definitions

The opacity μ of a medium is defined through the Lambert-
Beer law: the reduction in intensity of a beam as it passes a

distance through a medium is proportional to the intensity,

dI = −μρI (x) dx, (20)

where ρ is the density of the medium. For bound-free and
free-free absorption of a photon beam of frequency ω by elec-
trons in a plasma, considered here, the reduction in intensity
can be expressed alternatively in terms of the absorption cross
sections:

dI = −(σbf + σff ) nionI (x) dx, (21)

where nion is the ion number density. This permits one to
express the opacity μ in terms of the absorption cross sections:

μbf, ff(ω) = σbf, ff(ω) nion/ρ. (22)

The Rosseland mean opacity 〈μ〉, important in astrophysi-
cal applications, is defined by

1

〈μ〉 =
∫ ∞

0
1

μ(ν)
∂Bν

∂T dν∫ ∞
0

∂Bν

∂T dν
, (23)

where

Bν = 2π

c2

ν3

(ehν/kT − 1)
(24)

is the Planck distribution function and, correspondingly,

1

k

∂Bν

∂T
= 2πhν4ehν/kT

c2(kT )2(ehν/kT − 1)2
. (25)

The integral in the denominator of Eq. (23) is
∫ ∞

0

1

k

∂Bν

∂T
dν = 8π5(kT )3

15c2h4
. (26)

It follows that

1

〈μ〉 = 15

4π4

∫ ∞

0

1

μ(x)

x4ex

(ex − 1)2
dx, (27)

where x = hν/kT .

B. Gaunt factor and Kramers cross section

The classical Kramers free-free cross section [see, for ex-
ample, Eq. (16) of Ref. [21] is

σK (pa, ω) = 16π3

3
√

3
α

(αZ∗)2h̄2c2

mpaω3
. (28)

As alluded to in the introduction, it is common to express
the corresponding quantum mechanical cross section σ (pa, ω)
in terms of the classical Kramers cross section. The (dimen-
sionless) Gaunt factor, which is often used in tabulations of
σ (pa, ω), is the ratio of the quantum mechanical to classical
cross section,

G(pa, ω) = σ (pa, ω)

σK (pa, ω)
= 2

√
3

π (αZ∗)2

k2

kakb
Sba, (29)

where ka = pa/h̄, kb = pb/h̄, and k = ω/c. In the above, Z∗
is the average ionic charge of the plasma.

The classical counterpart of the free-free cross section
σ (ω) is obtained by integrating σK (pa, ω) over the electron
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distribution:

σK (ω) = 1

π2h̄3

∫ ∞

0
( fa − fb) σK (pa, ω) p2

a d pa. (30)

Traditionally, the Maxwell-Boltzmann distribution rather than
the Fermi distribution is used for fa,b leading to a version
of the Kramers cross section modified to account for Pauli
blocking:

σK (ω) = 16π2α3

3

√
2π

3mkT

(Z∗)2h̄2c2

mω3
ne

(
1 − e−h̄ω/kT

)
. (31)

The reciprocal of Kramers’ cross section may be written

1

σK
= (mkT )7/2

α2c2h̄2m2(Z∗)2 ne

x3

1 − e−x
, (32)

where x = hν/kT . The Rosseland mean cross section is

1

〈σK〉 = (mkT )7/2

α2c2h̄2m2(Z∗)2 ne

15

4π4

∫ ∞

0

x7ex

(ex − 1)2(1 − e−x )
.

(33)

The integral above evaluates to 5104.745 and the resulting
Rosseland mean cross section is

〈σK〉 = dK
α2c2h̄2m2(Z∗)2ne

(mkT )7/2
, (34)

where the dimensionless constant dK = 0.00282870. In
atomic units m = 1, h̄ = 1, c = 1/α, one obtains

〈μK〉 = dk (kT )−7/2(Z∗)2nenion/ρ, (35)

for the Rosseland mean of the Kramers opacity.

C. Dense plasmas of light metal elements

As a first example, average-atom calculations of opacities
of Li, Be, B, and C at temperature T = 10 eV and densities
ρ = 0.534, 1.848, 2.463, 2.268 g/cc, respectively, in the fre-
quency range ω = 10–1000 eV are presented in Fig. 2. The
1s state, which is fully occupied, is the only bound state in
these plasmas at T = 10 eV, so there are no bound-bound
contributions to the opacity. For photon energies below the 1s
photoionization threshold only free-free absorption, shown by
the blue line, contributes to the opacity. Above the threshold,
photoionization of 1s electrons dominates the opacity. The
solid red lines in Fig. 2 show the average-atom bound-free
contribution to the opacity. The black dots joined by the thin
black line in Fig. 2 are experimental data from pp. 215–217 of
Ref. [28]. Sources of the experimental data for each element
are listed at the bottom of the corresponding page in [28]. It
is interesting to note how well the relatively simple average
atom picture tracks the cold-matter experimental data.

D. Dense hydrogen and deuterium plasmas

As a second application of the present formalism, we eval-
uate the contribution of free-free absorption to the Rosseland
mean opacity of dense hydrogen and deuterium plasmas,
where bound-free absorption plays no role. We, of course,
ignore the contribution of Thompson scattering here. The
solid green, orange, and blue lines in Fig. 3 show the opacities
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FIG. 2. Average-atom contributions of free-free and bound-free
contributions to opacities are illustrated by the blue and red curves,
respectively. The black dots joined by the thin blue line are experi-
mental data from Ref. [28].

of hydrogen plasmas at densities 1, 10, and 200 g/cc, respec-
tively. Differences between the solid curves reflect differences
in nion and ne associated with differences in plasma mass
densities. The dashed green, orange, and blue lines in the

FIG. 3. Rosseland mean opacities for dense hydrogen and deu-
terium plasmas as functions of temperature. The solid lines show the
hydrogen opacities for plasma densities ρ = 1, 10, and 200 g/cc. The
dashed lines show the opacities at these densities for deuterium.
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FIG. 4. Solid and dashed lines show bound-free and free-free
contributions, respectively, to the opacity at ω = 9 keV of four times
compressed Be, B, and C. The bound-free contributions are seen to
be decreasing functions of temperature whereas the free-free contri-
butions become independent of T as temperature increases.

figure show the Rosseland mean opacities of deuterium plas-
mas at densities 1, 10, and 200 g/cc, respectively. Differences
between the H and D curves at fixed density reflect differences
in nion owing to the difference in atomic weights.

E. Shock-compressed plasmas

A shock wave passing through a plasma can compress mat-
ter behind the shock front by a factor of approximately 4 near
the peak of the Hugoniot curve. In recent experiments [39–42]
conditions behind the shock fronts were probed by a He-like
Zn K-x-ray at ω = 9 keV. In these experiments the dominant
contribution to the opacity at the probe energy was from
bound-free absorption which is approximately proportional to
the K-shell occupation number. For precise measurements of
properties of a shock-compressed plasma it is necessary to ac-
count for free-free absorption. The role of free-free transitions
in the opacity of shock-compressed light element plasmas is
illustrated in Fig. 4, where free-free and bound-free opacities
for four times compressed Be, B, and C are shown as func-
tions of temperature at ω = 9 keV. The bound-free opacity
decreases with temperature, while the free-free cross section is
relatively flat leading to the increasing importance of free-free
transitions with temperature. Indeed, at ω = 9 keV free-free
transitions dominate the opacity of four times compressed
Li plasmas for T > 300 eV and four times compressed Be
plasmas for temperatures T > 500 eV.

In Fig. 5 free-free contributions to the opacity of four times
compressed boron at ω = 9 keV from the present average-
atom calculation are compared with calculations based on
the phase amplitude method [10] and with calculations based
on the Karzas-Latter [23] theory shown in Ref. [43]. The
phase-amplitude method is described in Ref. [10], whereas
the Karzas-Latter results come from a calculation with an
effective ion charge from the detailed configuration ac-
counting model described in Refs. [44,45]. For comparison
purposes, we show the present average-atom results and re-
sults from the classical Kramers [27] theory evaluated using
average-atom electron densities. The disagreement between

FIG. 5. Free-free contributions to the opacity of four times com-
pressed boron at ω = 9 keV from phase-amplitude and Karzas-Latter
calculations in Ref. [43] are compared with the present average-atom
opacity for temperatures ranging from 10 to 400 eV. The dashed
black line shows the opacity obtained from the Kramers classical
cross section.

the Karzas-Latter theory and the average-atom theory opac-
ities is expected; the Karzas-Latter cross section describes
scattering from an unscreened ion of charge Z∗ whereas the
average-atom model describes scattering from a screened ion
with effective charge Z∗. The difference between the phase-
amplitude and average-atom calculations is more difficult to
understand. The bound-free contributions to opacity for all
three quantum mechanical calculations are in close agreement
as shown in Ref. [43] indicating that all three methods are us-
ing similar ionization states as a function of temperature. The
differences in the average-atom and phase-amplitude opacities
are therefore most likely to arise from differences in free-
free cross sections and not from the plasma models used to
describe the electron-ion potential.

F. Applications to composite plasmas

To treat composite plasmas, such as boron-nitride BN or
polystyrene C8H8, we adjust the densities of individual ions
to ensure that the WS volume of the composite is the sum of
the WS volumes of its components. Thus for a plasma having
fractional occupation xi for ions with atomic weight Ai and
density ρi, ∑

i xiAi

NAρ
=

∑
i

xiAi

NAρi
, (36)

where NA is Avogadro’s number and ρ is the plasma density.
The above relation provides one equation for n unknown
densities ρi. The free-electron densities ne(i) associated with
different types of ion in the plasma must also be identical,
leading to the remaining n − 1 equations

ne(1) = ne(2) = ne(3) = · · · = ne(n) (37)

needed to determine the densities of component ions. It should
be noted that the above equation ensures that the chemical
potential is a plasma property, independent of the type of ion.
The opacity of the composite plasma is the weighted sum of
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FIG. 6. Upper panel: Continuum densities nc(r) for boron and
nitrogen in a BN plasma at T = 20 eV and ρ = 9.21 g/cc are shown
inside the respective WS spheres. The densities converge to the free-
electron density at ionic boundaries. Lower panel: Contributions to
the opacity of the BN plasma described in the upper panel.

the opacities of its components:

μ =
∑

i

xiμi. (38)

In the upper panel of Fig. 6 densities of continuum elec-
trons nc(r) inside the WS spheres of B and N ions in
compressed BN at T = 20 eV and ρ = 9.12 g/cc are shown.
The WS radii of B and N are 1.50a0 and 1.58a0, respectively.
The continuum densities are seen to converge to the constant
free-electron density ne at the respective WS boundaries. The
1s shell is fully occupied for both ions, whereas all other shells
are empty. Bound-free and free-free contributions to the opac-
ity of the BN plasma are shown in the lower panel of Fig. 6
as functions of photon frequency ω. The green line shows the
sum of the free-free (FF) and bound-free (BF) contributions.
The orange curve shows the FF opacity, which is the only con-
tribution to the sum below the boron K-shell photoionization
threshold. The bound-free contribution, shown in blue, can be
seen in the interval between the B and N thresholds but is
masked by the green line above the N threshold.

The corresponding plot for a polystyrene C8H8 plasma at
density 4.24 g/cc (4ρ0) is shown in the upper panel of Fig. 7.
Inasmuch as H is completely ionized, the BF contribution to
the opacity is from C ions only. In the lower panel of Fig. 7

FIG. 7. Upper panel: Contributions to the opacity of a C8H8

plasma at T = 20 eV and ρ = 4.24 g/cc. Lower panel: Contributions
to the opacity of a H, He, C plasma with concentrations 0.71, 0.27,
0.02, respectively, at T = 20 eV and ρ = 10 g/cc.

the opacity of a plasma consisting of H, He, and C ions is
illustrated. The relative concentrations are taken to be 0.71,
0.27, and 0.02, respectively, from observational constraints on
brown dwarf stars listed in Table 1 of Ref. [46].

IV. SUMMARY

Bound-free and free-free photoabsorption cross sections
are studied in the average-atom approximation and applied
to determine the corresponding contributions to opacities of
light-element plasmas. The infrared divergence in the free-
free cross section is regularized by taking account of the finite
electron-ion relaxation time leading to a finite ω = 0 limit and
found to significantly modify cross sections of light element
plasmas for ω < 10 eV.

Bound-free and free-free contributions to opacity μ(ω) are
expressed in terms of bound-free and free-free cross sections
and the frequency-averaged Rosseland mean opacity 〈μ(ω)〉
is introduced. The average-atom expression for the Gaunt-
factor is given together with the related classical (Kramers)
expression for the free-free cross section. An analytic expres-
sion for the Rosseland mean of the Kramers opacity, which is
useful for comparison purposes, is also given.

As a first example of the present formalism, appli-
cations are given to dense plasmas of light elements at
temperature T = 10 eV for photon energies ω = 10–1000 eV.
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The average-atom opacities for these elements are compared
with cold-matter experimental data tabulated in Ref. [28].

In a second example, Rosseland mean opacities of H and
D plasmas at densities 1, 10, and 200 g/cc are compared over
a temperature range from T = 10 to 1000 eV. Differences in
opacities for these hydrogen plasmas at different densities can
be traced to differences in ion densities, which in the average-
atom model are reciprocals of the corresponding Wigner-Seitz
cell volumes. Differences between the opacities of H and D,
both of which have nuclear charge Z = 1, are the result of a
factor of 2 decrease in nion for D compared with H at a given
mass density.

A third example concerns four times compressed light
elements. The free-free and bound-free opacities are evalu-
ated as functions of temperature for ω = 9 keV to illustrate
the increasingly important role of free-free transitions with
temperature. Comparison of the ω = 9 keV free-free opacity
of compressed boron from average-atom calculations with the
phase amplitude method and Karzas-Latter calculations show
surprisingly large differences in the temperature range 10 to
400 eV in view of the excellent agreement noted in Ref. [43]
of the corresponding bound-free opacities.

As final examples, opacities of composite BN, CH, and H-
He-C plasmas are studied in the average-atom approximation.

All calculations are carried out using velocity-form matrix
elements. Radial matrix elements are evaluated using standard
point-by-point numerical integration for r smaller than the
Wigner-Seitz cell radius and matched to values for larger r
determined analytically.
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APPENDIX: COMPUTATIONAL CONSIDERATIONS

In this Appendix we describe the combined numerical-
analytical procedure used here to avoid difficulties that arise
in when evaluating wave functions using purely numerical
methods. A typical example of such difficulties occurs in nu-
merical studies of bound-free transitions for large values of ω,
where there is strong cancellation between rapidly oscillating
contributions to the matrix element from the region r < RWS

and the region r > RWS. Although it is relatively simple to
control the accuracy of the contribution to the matrix ele-
ment for r < RWS by choosing a narrowly spaced grid, it is
significantly more difficult to control the accuracy of the con-
tribution for r > RWS using point by point integration. This
problem is illustrated in Fig. 8. The dipole matrix element
which is the smoothly varying function of frequency shown by
the black line in the figure is the sum of two rapidly oscillating
functions from r < RWS shown by the blue line and from the
region r > RWS shown by the orange line. Assuming that the
contribution from r < RWS can be evaluated precisely, it is

FIG. 8. The dipole matrix element between a weakly bound 2s
state and a continuum state in a boron plasma at density ρ = 2.463
g/cc and temperature T = 100 eV is shown. The blue curve is the
numerically evaluated contribution to the matrix element from r <

RWS. The orange curve is the contribution from r > RWS. The solid
black curve is the sum of contributions from the two regions.

clear from Fig. 8 that the contribution from r > RWS must also
be evaluated with exquisite precision to produce the smooth
sum shown by the black line. In the average-atom theory,
where the potential vanishes beyond RWS, wave functions for
both bound states and free-particle states are well known ana-
lytically and contributions to matrix elements from the region
r > RWS can be evaluated analytically with the required high
precision.

1. Bound-state wave functions

In the region r < RWS, the bound-state wave function is
determined numerically using point-by-point numerical inte-
gration. Beyond the WS radius, the potential vanishes in the
average-atom approximation and the radial wave function for
a bound state with energy −ε and angular momentum l is

Pεl (r) = Aλrkl (λr), (A1)

where, in atomic units, λ = √−2ε and where A is a con-
stant determined by matching Eq. (A1) to the wave function
Pεl (r), which is determined by numerical integration, at the
WS boundary. The function kl (x) in Eq. (A1) is a modified
spherical Bessel function. The normalization of the modified
spherical Bessel functions used here differs by a factor of
π/2 from the functions kl (z) defined in Ref. [47]. Specifically,
we define

k0(z) = e−z/z, (A2)

k1(z) = e−z(1/z + 1/z2), (A3)

k2(z) = e−z(1/z + 3/z2 + 3/z3). (A4)

The functions kl (z) for l > 2 can be obtained from the recur-
sion relation

kl+1(z) = kl−1(z) + [(2l + 1)/z]kl (z). (A5)

2. Continuum wave functions

Two independent solutions to the radial Schrödinger equa-
tion for p = √

2ε (in atomic units) are Pl (r) = pr jl (pr) and
Pl (r) = pr yl (pr), where jl and yl are spherical Bessel and
Neumann functions, respectively. The general solution to the
radial equation in the field-free region may be written as a
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linear combination of the two independent solutions:

Pl (r) = pr jl (pr) cos δl − pr yl (pr) sin δl . (A6)

This solution has the asymptotic limit

lim
r→∞ Pl (r) = cos

[
pr + δl − (l + 1)

π

2

]
(A7)

and leads to the interpretation of δl as the continuum
phase shift.

We integrate the radial Schrödinger equation outward from
the origin to the cavity boundary r = R and match the solution
and its derivative to a linear combination of the corresponding
free-particle radial wave function and its derivative:

Pl (R) = Nl [x jl (x)Cl − x yl (x)Sl ], (A8)

1

p
Ql (R) = Nl

{
d[x jl (x)]

dx
Cl − d[x yl (x)]

dx
Sl

}
, (A9)

where Ql (r) = dPl (r)/dr and x = pr. The constants Sl and
Cl are constants to be determined. Solving, we find

Nl Sl = d[x jl (x)]
dx Pl (R) − x jl (x) 1

pQl (R), (A10)

NICl = d[x yl (x)]
dx Pl (R) − x yl (x) 1

pQl (R). (A11)

With the definitions

tan δl = Sl

Cl
, Nl = 1√

S2
l + C2

l

, (A12)

the resulting wave function has the desired asymptotic limit.
Thus, in the continuum case, as in the bound case, we have
numerical wave functions for r < RWS and analytical wave
functions for r > RWS.

3. Free-free matrix elements

The radial matrix elements for free-free transitions take
the form

R(bl − 1, al ) =
∫ ∞

0
drPbl−1(r)

( d

dr
+ l

r

)
Pal , (A13)

R(bl − 1, al ) =
∫ ∞

0
drPbl+1(r)

( d

dr
− l + 1

r

)
Pal . (A14)

Note first that for free-particle functions, Pl (x) = x jl (x)
or xyl (x), ( d

dx
+ l

x

)
Pl (x) = Pl−1(x), (A15)

( d

dx
− l + 1

x

)
Pl (x) = −Pl+1(x). (A16)

Thus, the following two cases must be considered for the
contribution to the radial integral from r > R:

�R(bl ± 1, al ) = ∓p2
a pb

∫ ∞

R
r2dr[ jl±1(pbr) cos δb

− yl±1(pbr) sin δb][ jl±1(par) cos δa

− yl±1(par) sin δa]. (A17)

The above integrals can be evaluated with the aid of the Lom-
mel integral formula [48,49]. Consider two spherical Bessel

functions (of first or second kind) fl (par) and gl (pbr). These
satisfy

r2 d2 fl

dr2
+ 2r

dfl

dr
+ [

p2
ar2 − l (l + 1)

]
fl = 0, (A18)

r2 d2gl

dr2
+ 2r

dgl

dr
+ [

p2
br2 − l (l + 1)

]
gl = 0. (A19)

Multiplying the second of these by fl and the first by −gl and
adding, we find

d

dr

[
r2

(
fl

dgl

dr
− gl

dfl

dr

)]
+ (

p2
b − p2

a

)
r2 flgl = 0.

The resulting version of the Lommel formula is∫ ∞

R
dr r2 fl (par) gl (pbr) = R2

p2
a − p2

b

[
gl (pbr)

dfl (par)

dr

− fl (par)
dgl (pbr)

dr

]
r=R

.

(A20)

In the above, we introduced an infinitessimal exponential
damping to eliminate the contribution from the upper limit.
With the aid of the above, one finds

�R(bl ± 1, al ) = ∓ p2
a pbR2

p2
a − p2

b

×{[ jl±1(pbR) cos δb − yl±1(pbR) sin δb]

× d

dr
[ jl±1(par) cos δa − yl±1(par) sin δa]R

− d

dr
[ jl±1(pbr) cos δb−dyl±1(pbr) sin δb]R

× [ jl±1(paR) cos δa − yl±1(paR) sin δa]}.
(A21)

To check the numerical evaluation of the above formulas,
one can verify that the radial integrals vanish term by term
when ionic wave functions are replaced by free-particle wave
functions!

4. Bound-free matrix elements

The radial matrix elements for bound-free transitions are
given by Eqs. (A13)–(A14) where Pal (r) = Aλrkl (λr) and
Eqs. (A15) and (A16) are satisfied with the exception that
right-hand side of Eq. (A15) is −Pl−1(x). The resulting con-
tribution to the radial integral from r > R is

�R(bl ± 1, λl ) = −Aλ2 pb

∫ ∞

R
r2dr[ jl±1(pbr) cos δb

− yl±1(pbr) sin δb]kl±1(λr). (A22)

In the counterpart to Eqs. (A18) and (A19), one replaces
fl (par) by kl (λr) and p2

a by −λ2 leading to
∫ ∞

R
drr2gl (pbr)kl (λr) = − R2

λ2 + p2
b

[
gl (pbr)

dkl (λr)

dr

− kl (λr)
dgl (pbr)

dr

]
r=R

. (A23)
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The above steps lead to

�R(bl± 1, λl ) = Aλ2 pbR2

λ2 + p2
b

{[ jl±1(pbR) cos δb − yl±1(pbrR sin δb]
dkl (λr)

dr
|R − d

dr
[ jl±1(pbr) cos δb−yl±1(pbr) sin δb]Rkl (λR)}.

(A24)
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