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Rotating ion beam effects on temperature gradient instability in completely ionized plasmas
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The aim of this paper is to investigate the effects of a rotating ion beam on the temperature gradient instability
(TGI) in completely ionized plasmas. The interplay of the temperature and density gradients provides the basis
for experiencing an unstable inhomogeneous plasma medium due to TGI taken under consideration. The density
and temperature gradients are considered perpendicular to the magnetic field where a nonrelativistic rotating
ion beam such as O+ is present. By implementing the kinetic theory together with a zeroth-order approximation
of geometrical optics, the dielectric permittivity tensor of the inhomogeneous plasma is obtained where by a
suitable linear eikonal equation, the growth rate of the TGI in the collisional regime is calculated in the presence
of a rotating ion beam. In such a configuration an unstable condition is experienced in regions with opposite
electron density and temperature gradients, where it is destabilized by the temperature and plasma density
gradients and the frequent electron collisions. As a consequence, the results reveal that the TGI can be damped
or modified through interaction with the rotating ion beam depending on the characteristics of the ion beam,
namely, velocity and density.
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I. INTRODUCTION

Drift wave instabilities highlight themselves in various
physical phenomena, e.g., inhomogeneous plasmas [1–3],
dusty plasmas [4], stochastic coronal heating [5], solar
wind and the planetary magnetospheres [6,7], anomalous
transport [8], and anomalous ion heating in laboratory
confined plasmas [9], earth’s magnetopause [10], and
the ionosphere [11]. The earth’s ionosphere is spatially
inhomogeneous with respect to temperature and density [12].
This may be due to the photoelectron ionization production
effect [13], effects of the inner magnetosphere on the
ionosphere [14], chemical reactions between the ionized
species and the neutral compositions, and dissipating
planetary waves [15]. The density and temperature gradients
create diamagnetic drifts of electrons and ions in opposite
directions, which cause charge separation leading to an
electric field E perturbation perpendicular to the background
magnetic field B. These fields provide (E × B)/B2 drifts that
enhance the perturbation growth triggering instability. The
perturbation propagates perpendicular to the magnetic field
and the gradient [16–18] where the gradient drift frequency
provokes ionospheric irregularities. The ionospheric
irregularities are plasma density fluctuations that have been
reported by several radar observations [19,20] and have been
analyzed linearly [21] and nonlinearly [22] in the F region.
The effects of various factors such as density and temperature
gradients, electric fields, collisions, and anisotropies in plasma
temperature on these irregularities have been studied in
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various situations, where the efficiency of the temperature
gradient has been highlighted [23,24]. Observations of joint
measurements obtained by the Millstone Hill incoherent
scatter radar and the Super Dual Auroral Radar Network [25]
have detected decameter-scale irregularities excited on the
equatorward wall of midlatitude ionosphere trough in a
region that density and temperature gradients are in opposite
directions. Thus, it has been concluded that temperature
gradient instability (TGI) is an effective factor in the
generation of the irregularities, which fits well with the
irregularity generation via TGI proposed by Hudson and
Kelley [26]. The TGI is a type of collisional drift wave
instability whose free energy arises mainly from the opposed
temperature and density gradients perpendicular to the
magnetic field. In addition, collisions have been shown to
exert a destabilizing effect on the TGI [27].

Although the density and temperature gradients and col-
lisions play an effective role in the TGI, they are not the
only ones. For instance, TGI as the source of ionospheric
irregularity can be damped by a conducting layer of the E
region ionosphere that shorts out the electrostatic fields [25].
In fact, the charged particle beams would also affect the in-
homogeneous plasma [28]. The characteristics of the wave
generated by the interaction of a beam with an inhomogeneous
plasma depend on the inhomogeneity parameters together
with the consistent species of the plasma and beam [29,30].
Thus, the electron and ion beams would possess information
regarding both the ionosphere and the magnetosphere [31].
The injection of charged particle beams is a very probable
phenomenon in space. Regarding earth, they may enter the
ionosphere due to satellites and space shuttle engines [32,33],
which eventually provides a condition for water ion beams
to possess a rotating behavior as the downstream distance
from the shuttle is increased [34] (see also [35]). Natural
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processes also provide charged particle beams such as sub-
storm injections and solar wind penetration in the earth’s
atmosphere where they interact with the plasma [21]. The
charged particle beam-plasma interaction has already been
studied in homogeneous and inhomogeneous media [36–38].
The free energy in the relative streaming of the two species
can give rise to a variety of instabilities [39,40] and conse-
quent plasma heating [41]. In particular, the perpendicular
component of the velocity relative to the magnetic field pro-
vides a source of free energy to drive instabilities [42,43].
The cyclotron instability regarding a rotating electron beam
in a cold magnetoactive plasma medium was investigated by
Shokri and Khorashadizadeh [44] assuming the plasma to be
homogeneous.

In the present study, the long-wavelength TGI driven by
density and temperature gradients perpendicular to the mag-
netic field in the presence of a rotating ion beam such as O+ is
studied in a completely ionized plasmas. The beam is nonrel-
ativistic and propagating parallel to the magnetic field. Using
the kinetic theory, with the assumption of weak spatial inho-
mogeneities, the dielectric permittivity tensor is obtained by
the zeroth-order approximation of geometrical optics, which
is suitable for cases when the wavelength is smaller than
the characteristic length of the inhomogeneity. By presenting
a suitable linear eikonal equation for the gradient drift fre-
quency ω � ωdα ∼ k⊥v2

T α/�αL0, where ωdα and L0 are the
drift frequency of particle type α (α = e, i for electrons and
ions, respectively) and the characteristic length of inhomo-
geneity, respectively, the growth rate of the instability could
be derived in the collisional regime ω � νe and |ω + iνα| �
kzvT α , where να is the effective collisional frequency of a
particle of type α. The perpendicular and parallel wave vectors
with respect to the magnetic field are represented by k⊥ and kz,
respectively. The thermal velocity is represented by vT α , while
the inhomogeneous cyclotron frequency of particle of type
α is shown by �α . As a result, an unstable configuration is
found in the region where the electron density and temperature
gradients are in opposite directions. This implies the neces-
sity of the temperature gradient for instability. The role of
physical parameters such as plasma density and temperature
inhomogeneity scale lengths together with electron collisions
and ion beam parameters such as velocity and density on the
instability growth rate is investigated.

The paper is organized as follows. The model and equa-
tions together with the appropriate assumptions are presented
in Sec. II. The suitable eikonal equation and the correspond-
ing dielectric permittivity tensor of the plasma system which
enables estimating the growth rate of TGI in the presence of
a rotating ion beam are presented in Sec. III, which are then
discussed in Sec. IV. A summary is presented in Sec. V.

II. MODEL AND BASIC EQUATIONS

Consider a collisional magnetoactive plasma medium
which is weakly inhomogeneous. The external magnetic field
B0 and the gradients in plasma parameters (density and tem-
perature) are considered to be along the z and x directions,
respectively, as shown in Fig. 1. In the context of the present
study the medium possesses low plasma kinetic pressure com-
pared to the magnetic pressure, where the inhomogeneity of
the magnetic field is neglected, and the low-frequency drift os-

FIG. 1. Schematic of the inhomogeneous magnetoactive plasma
system in the presence of a rotating ion beam.

cillation (ω � ωdα � �α) is longitudinal with a high degree
of accuracy. Furthermore, in order to investigate the drift os-
cillations and consequently consider the guiding center drift of
particles, it must be assumed that να � �α . The wavelength
λ considered in this medium is significantly smaller than the
characteristic dimensions L0 of the inhomogeneity (λ/L0 �
1) of the medium. In such a condition, the zeroth-order
approximation of geometrical optics implies that the polariza-
tion of the wave is almost plane, which, as in the case of a ho-
mogeneous medium, enables obtaining the dielectric permit-
tivity tensor of inhomogeneous plasma. In this approximation,
all local parameters are set constant with their local values and
their local constant gradient direction and length scale.

It is supposed that the plasma is completely ionized, and
therefore collisions between charged particles dominate. So
the Landau kinetic equation for charged particles of type α

with momentum pα and charge eα is implemented to obtain
the dielectric permittivity tensor of collisional inhomogeneous
magnetoactive plasma [45]

∂ fα
∂t

+ v · ∂ fα
∂r

+ eα

{
E + 1

c
[v, B]

}
· ∂ fα
∂pα

= �β

(
∂ fα
∂t

)αβ

col

,

(1)

where v, E, and B are the velocity, the electric field, and the
magnetic field at the position of the particle, respectively, t
and r denote time and place coordinates, respectively, and c
is the light speed in vacuum. Furthermore, the right-hand side
relation denotes the variation of distribution function fα due
to the Coulomb collisions of charged particles of type α with
charged particles of type β, which is defined as

(
∂ fα
∂t

)αβ

col

= 2πLe2
α�βe2

β

∂

∂ pαi

∫
dpβ

u2δi j−uiu j

u3

×
[

fβ (pβ )
∂ fα (pα )

∂ pα j
− fα (pα )

∂ fβ (pβ )

∂ pβ j

]
, (2)

with the notations L for the Coulomb logarithm and u for the
relative velocity of particles of types α and β.

In order to calculate the dielectric permittivity tensor of
the plasma under consideration, it is necessary to determine
the corresponding equilibrium distribution function f0α first.
As the Larmor frequency of particles is high compared
to the characteristic collision frequencies, the equilibrium
distribution function of this inhomogeneous plasma can
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be calculated in the collisionless approximation. So, by
neglecting the term associated with the collisions and using
the cylindrical coordinates (vx = v⊥ cos φ, vy = v⊥ sin φ, and
vz, where vx, vy, and vz are the velocities in the x, y, and z
directions, respectively) for the stationary state where E0 = 0,
Eq. (1) reduces to

v⊥ cos φ
∂ f0α (Eα,Cα )

∂x
− �α

∂ f0α (Eα,Cα )

∂φ
= 0, (3)

where Cα = v⊥ sin φ + �αx, and by using the small
parameter λLα/L0 � 1 (λLα = vT α/�α is the Larmor
radius of the particles of type α), the distribution function
f0α (Eα,Cα ) = f0α[Eα, vy + �αx] for plasma species α with
the mass mα and energy Eα = mαv2/2 can be expanded as

f0α (Eα,Cα ) =
(

1 + v⊥ sin φ

�α

∂

∂x

)
Fα (Eα, x), (4)

where Fα (Eα, x) is an arbitrary function chosen to be the
local Maxwellian distribution function with inhomogeneous
density Nα (x) and temperature Tα (x),

Fα (Eα, x) = Nα (x)

[2πmαTα (x)]3/2
exp

(
− Eα

Tα (x)

)
. (5)

To derive the dielectric permittivity tensor, a linear small per-
turbation of local equilibrium must be considered, which, due
to the plasma inhomogeneity being in the x direction, is con-
sidered in the form of δ fα = δ fα (x) exp(−iωt + ikyy + ikzz).
While ky is the wave vector component in the y direction,
y and z are place coordinates in the y and z directions,
respectively. By considering Cα = v⊥ sin φ + �αx, and
therefore ∂ f0α/∂ pα j = v j∂ f0α/∂Eα + (δy j/mα�α )∂ f0α/∂x,
substituting fα = f0α + δ fα in Eq. (1) represents

(ω − kzvz )δ fe = e

Te

(
kzvz − kyv

2
Te

�e
ae

)
f0e

+ i

[(
∂ fe

∂t

)ee

col

+
(

∂ fe

∂t

)ei

col

]
(6)

for electrons and

(ω − kzvz )δ fi = e

Ti

(
kzvz − kyv

2
Ti

�i
ai

)
f0i + i

(∂ fi

∂t

)ii

col
(7)

for ions, where aα = ∂ ln Nα/∂x + ∂ ln Tα/∂x(−3/2 +
v2/2v2

T α ) and the potential  satisfies E = −ik; k is
the wave vector. Furthermore, Eq. (2) is used to calculate the
terms associated with the collision contribution. Since the ion
thermal velocity compared with the electron thermal velocity
is very low, the ion-electron collision integral (∂ fi/∂t )ie

col
is neglected. In addition, the terms associated with the
perturbation of the ion distribution function δ fi are neglected
in electron-ion collisions; then

(
∂ fe

∂t

)ei

col

= 2πe2e2
i LNi

∂

∂ pi

u2δi j−uiu j

u3

∂δ fe

∂ p j
. (8)

The consideration is restricted to the case of the frequent
electron-electron collisions νi � ω, kzvTe � νe, so the the
terms associated with the collisions are the main terms in
Eq. (6) and the Chapman-Enskog method is implemented. To
simplify, the function Fe is introduced by

δ fe = −kyv
2
Te

ω�e

e

Te
ae f0e + Fe (9)

for electrons. Under these assumptions, by substituting
Eq. (9) in Eq. (6), δ fe can be extracted by implementing
the Chapman-Enskog procedure, i.e., by expanding Fe into
a series of Sonin-Laguerre polynomials. Following the
standard procedure, the conductivity tensor components
σi j are calculated by an equation of the induced current
ji = �αeα

∫
dp viδ fα = σi jE j . Then the equation εi j =

δi j + (4π i/ω)σi j is used to obtain the dielectric permittivity
tensor contribution due to the electrons, δεe(ω, k, x) for
νeffω � k2

z v
2
Te,

δεe(ω, k, x) = ω2
pe

k2v2
Te

{
1 + i1.44

ωνeff

k2
z v

2
Te

(
1 − kyv

2
Te

ω�e

∂ ln NT −0.56
e

∂x

)}
, (10)

in which νeff is the effective collisions frequency of electrons. Furthermore, the function Fi is introduced by

δ fi = ei

Ti
 f0i + Fi (11)

for ions. By substituting Eq. (11) in Eq. (7) and implementing successive approximations for kzvTi, νi � ω, the dielectric
permittivity tensor contribution due to the ions, δεi(ω, k, x), is obtained as

δεi(ω, k, x) = ω2
pi

k2v2
Ti

{
kyv

2
Ti

ω�i

∂ ln N

∂x
+ k2

⊥v2
Ti

�2
i

(
1 − kyv

2
Ti

ω�i

∂ ln NTi

∂x

)
+ iνiv

4
Ti

10ω

[(
16

k4
z

ω4
+ 28

k2
z k2

⊥
ω2�2

i

+ 7
k4
⊥

�4
i

)(
1 − kyv

2
Ti

ω�i

∂ ln N

∂x

)

−
(

24
k4

z

ω4
+ 33

2

k2
z k2

⊥
ω2�2

i

− 3

4

k4
⊥

�4
i

)
kyv

2
Ti

ω�i

∂ ln Ti

∂x

]}
, (12)

where ωpα represents the Langmuir frequency of particle
species α (α = e, i).

Since the weakly inhomogeneous plasma under considera-
tion is in the presence of a monoenergetic rotating ion beam,
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the eikonal equation for longitudinal plasma oscillations tak-
ing into account the correction caused by the rotating ion
beam δεbeam(ω, k) is given by

ε(ω, k, x) = 1 + δεe(ω, k, x) + δεi(ω, k, x)

+ δεbeam(ω, k) = 0, (13)

where

δεbeam(ω, k) = kik j

k2
δεi j (ω, k), (14)

where δεi j (ω, k) is the dielectric permittivity tensor compo-
nents of the rotating ion beam with a nonrelativistic parallel
(u‖) and perpendicular (u⊥) velocity component with respect
to the external magnetic field described by the distribu-
tion function with average longitudinal p‖0 and transverse
p⊥0 momenta with respect to the direction of the magnetic

field B0,

f0b = N0b

2π p⊥0
δ(p⊥ − p⊥0)δ(p‖ − p‖0), (15)

where N0b is the total number of beam particles whose thermal
spread has been neglected. Due to the smallness of the spatial
size of the ion beam in comparison with the scale length of the
inhomogeneity, the ion beam is considered to be spatially ho-
mogeneous. It should be stated that when the plasma density
greatly exceeds the ion beam density, neutralization-induced
charges and currents are observed in the plasma by injected
ion beams enabling the assumption ω2

b � ω2
pe, where ωpe

and ωb are the Langmuir frequencies of the plasma and the
beam, respectively. Now, in order to neglect the equilibrium
azimuthal motion of the beam and the plasma components, it
is assumed that u2

⊥ � c2.
The distribution function for the rotating ion beam together

with Vlasov’s equation regarding a perpendicular wave vector
(k⊥) along the x axis gives the dielectric permittivity of this
system as [44,45]

δεxx = �n

{
2

z
n2Jn(z)J ′

n(z)Pn + n2J2
n (z)Qn

}
, δεyy = �n

{
1

z

[
z2J ′2

n (z)
]′

Pn + z2J ′2
n (z)Qn

}
,

δεzz = −ω2
b

ω2
+ �n

{[
2kzu‖

ω − kzu‖
J2

n (z) + u2
‖

u2
⊥

2zJn(z)J ′
n(z)

]
Pn + u2

‖
u2

⊥
z2J2

n (z)Qn

}
,

δεxy = −δεyx = −i�n

{
n

z
[zJn(z)J ′

n(z)]′Pn + nzJn(z)J ′
n(z)Qn

}
,

δεyz = −δεzy = i�n

{(
�ikzzJn(z)J ′

n(z)

k⊥(ω − kzu‖)
+ u‖

u⊥
[zJn(z)J ′

n(z)]′
)

Pn + u‖
u⊥

z2Jn(z)J ′
n(z)Qn

}
,

δεxz = δεzx = �n

{[
n�ikz

k⊥(ω − kzu‖)
J2

n (z) + u‖
u⊥

2nJn(z)J ′
n(z)

]
Pn + u‖

u⊥
nzJ2

n (z)Qn

}
, (16)

where Jn(z) and J ′
n(z) are the Bessel function of the first kind

and its derivation with respect to the argument z, respectively.
Here

Pn ≡ ω2
b(ω − kzu‖)

ω2(ω − kzu‖ − n�i )
,

Qn ≡ ω2
b�

2
i

(
ω2 − k2

z c2
)

ω2c2k2
⊥(ω − kzu‖ − n�i )2

, (17)

z = k⊥u⊥
�i

.

Equations (10)–(17) provide a foundation for investigating
the effects of a rotating ion beam on the TGI, which will be
discussed in the following section.

III. TGI IN THE PRESENCE OF A ROTATING ION BEAM

Drift waves are prominent features of inhomogeneous plas-
mas, where in the context of the present study it is the
long-wavelength gradient drift waves (ω � ωdα < �α ) in an
inhomogeneous plasma that are bound to attract attention.
Our inhomogeneous plasma consists of electrons and ions
that host a rotating ion beam. The inhomogeneity includes

temperature and density gradients that lead to diamagnetic
drifts of electrons (vde) and ions (vdi) heading in opposite
directions, causing charge separation. The result would be the
creation of an electric field E with a perturbation perpendicu-
lar to the magnetic field. Thus, in such a plasma medium, the
wave is produced perpendicular to the magnetic field with the
gradient drift frequency (ωdα = k · vdα ∼ k⊥v2

T α/�αL0) that
propagates parallel to the electrons drift [16]. The magnetic
field is taken in the z direction, while the gradients in density
and temperature are assumed to be in the x direction. Thus,
the wave vector would be perpendicular k⊥, which is along the
y direction in the direction of vde. In order to satisfy the term
|ω/kzvTe| � 1, a parallel component (kz) of the wave vector in
the z direction is considered so that |kz/k⊥| � 1. The analysis
is confined to the low-frequency waves under the conditions
ω � �i � ωpi, with a long wavelength |k⊥vT α/�α| � 1. By
taking kx = 0, Eq. (14) reduces to

δεbeam(ω, k) = k2
y

k2
δεyy + k2

z

k2
δεzz + kzky

k2
(δεyz + δεzy), (18)

while the components of the dielectric permittivity tensor of
the rotating ion beam can be evaluated from Eq. (16) by
considering the asymptotic form of the Bessel function for
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small arguments (z � 1) [46],

Jn(z) = 1

�(n + 1)

( z

2

)n
, (19)

where �(n + 1) represents the Gamma function. Due to the limit u⊥ � c, only the fundamental harmonic n = 0,±1 is
accounted. Using Eq. (16) for the perpendicular wave number k⊥ along the y axis, the essential components of the dielectric
permittivity tensor caused by the nonrelativistic rotating ion beam are obtained

δεyy = ω2
b

ω2

{
�i(ω − kzu‖)

(ω − kzu‖)2 − �2
i

+ u2
⊥
2

(
ω2

c2
− k2

z

)
(ω − kzu‖)2 + �2

i[
(ω − kzu‖)2 − �2

i

]2

}
,

δεzz = ω2
b

ω2

{(
kyu⊥
�i

)2( kzu‖
ω − kzu‖

+ u2
‖

u2
⊥

)
(ω − kzu‖)2

(ω − kzu‖)2 − �2
i

+ u2
‖

(
ω2

c2
− k2

z

)[
1

(ω − kzu‖)2
+

(
kyu⊥
�i

)2 (ω − kzu‖)2 + �2
i

2[(ω − kzu‖)2 − �2
i ]2

]
+ u2

‖
u2

⊥

2k⊥u⊥
�i

+ 2kzu‖
ω − kzu‖

− 1

}
,

δεyz = δεzy = ω2
b

ω2

�i(ω − kzu‖)

(ω − kzu‖)2 − �2
i

k⊥u‖
�i

{
kzu⊥

(ω − kzu‖)

u⊥
2u‖

+ 2u2
⊥
(

ω2

c2 − k2
z

)
(ω − kzu‖)2 − �2

i

+ 1

}
. (20)

We assume that |ω − kzu‖|/�i � 1 and |ω| � |kzc|. By considering Te = Ti, ∂ ln Ne/∂x = ∂ ln Ni/∂x, and k⊥ along the y axis
and substituting Eqs. (10), (12), and (18) into Eq. (13), the eikonal equation is obtained as

ε(ω, k, x) = 1+ ω2
pe

k2v2
Te

{
1+ k⊥v2

Ti

ω�i

∂ ln N

∂x
+ k2

y v
2
Ti

�2
i

(
1 − k⊥v2

Ti

ω�i

∂ ln NTi

∂x

)}
+ ω2

b

ω2

k2
y

k2

{−ω + kzu‖
�i

− k2
z

k2
y

[
3

2

k2
⊥u2

⊥
2�2

i

+ k2
z u2

‖
(ω − kzu‖)2

− u2
‖

u2
⊥

2k⊥u⊥
�i

− 2kzu‖
ω − kzu‖

+ 1

]}
+ i1.44

ωνeff

k2
z v

2
Te

ω2
pe

k2v2
Te

{
1 − 1

LN

k⊥v2
Te

ω�e
(1 − 0.56ηe)

}
= 0, (21)

where ηe = LN/LTe is the relative parameters of the electron, while LTe = (∂ ln Te/∂x)−1 and LN = (∂ ln N/∂x)−1 are the
characteristic lengths of the temperature and density inhomogeneity of the electron, respectively. In addition, the dissipation
due to the ion-ion collisions has been neglected. Assuming k2

y v
2
Ti/�

2
i � 1 reduces the eikonal Eq. (21) as

ε(ω, k, x) = 1 + ω2
pe

k2v2
Te

{
1 + k⊥v2

Ti

ω�i

∂ ln N

∂x

}
+ ω2

b

ω2

k2
y

k2

{−ω + kzu‖
�i

− k2
z

k2
y

[
3

2

k2
⊥u2

⊥
2�2

i

+ k2
z u2

‖
(ω − kzu‖)2

− u2
‖

u2
⊥

2k⊥u⊥
�i

− 2kzu‖
ω − kzu‖

+ 1

]}
+ i1.44

ωνeff

k2
z v

2
Te

ω2
pe

k2v2
Te

{
1 − 1

LN

k⊥v2
Te

ω�e
(1 − 0.56ηe)

}
= 0. (22)

It should be noted that we have ω = ωr + iγ , where γ � ωr . In addition, ωr = Re{ω} is the oscillation frequency and γ = Im{ω}
is the growth rate of the wave with γ > 0 corresponding to the instability. Under such conditions and ω2

b � ω2
pe, by calculating

the root of the real part of the dielectric permittivity (22) without the contribution of the beam, the wave frequency is obtained as

ωr = −
k⊥v2

Ti
�i

∂ ln N
∂x

1 + k2λ2
De

∼ k⊥v2
Te

�e

∂ ln N

∂x
= ωNe, (23)

where λDe = vTe/ωpe is the Debye wavelength of the electron, with k2λ2
De � 1, and ωNe = (k⊥v2

Te/�e)(∂ ln N/∂x) ∼
(k⊥v2

Te/�e)1/LN is the density gradient contribution in the gradient drift frequency of electrons. The instability growth rate
is defined as

γ = −Imε(ωr, k, x)

∂ Reε(ω, k, x)/∂ω|ω=ωr

, (24)

where Reε(ω, k, x) and Imε(ω, k, x) are the real and imaginary parts of Eq. (22), respectively. By substituting Eqs. (22) and (23)
into Eq. (24), the growth rate of the instability for the plasma system of interest in the present study is obtained as

γ = −
0.81ω2νeff

k2
z v2

Te
ηe

1 + A
, (25)

where

A = ω2
b

ω2
pe

k2
⊥v2

Te

ω2

{
ω − 2kzu‖

�i
+ 2

k2
z

k2
y

(
3

4

k2
⊥u2

⊥
�2

i

+ k2
z u2

‖(2ω − kzu‖)

(ω − kzu‖)3
− u2

‖
u2

⊥

2k⊥u⊥
�i

− kzu‖(3ω − 2kzu‖)

(ω − kzu‖)2
+ 1

)}
. (26)
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TABLE I. Plasma parameters used for computing the wave frequency and the growth rate of TGI.

Particle ωpα (rad/s) �cα (rad/s) vT α (m/s) Tα (K) L−1
T (km−1) L−1

N (km−1)

electron 2.33 × 107 8.81 × 106 1.38 × 105 1250 1/5 1/5
ion 1.36 × 105 301.5 803.05 1250 0 1/5

It could be readily noticed that ηe = 0 corresponds to γ = 0
and without the presence of the beam (ωb = 0), the instability
(γ > 0) occurs for ηe < 0, which is known as TGI. In fact, the
TGI is experienced in regions with opposite electron density
and temperature gradients, while the temperature gradient is
necessary to excite the instability. Indeed, when the plasma is
perturbed, a charge accumulates at the interface between hot
and cool regions and consequently the polarization electro-
static fields is formed, directed from the high- to low-density
regions of the perturbed plasma. The polarization field of the
perturbation will grow as a consequence of the diamagnetic
drifts of the opposed density and temperature gradients. These
fields, in combination with the ambient magnetic field, cause
E × B flows that further enhance the perturbation.

As one can notice from Eq. (25), the growth rate of the
instability also develops by the frequent electrons collisions.
It thus follows that the electron collisions not only do not
stabilize the TGI, but they also destabilize it.

In addition, it can now be understood that the presence of
the beam can stabilize or destabilize the TGI that depends on
the magnitude and sign of A [Eq. (26)]. Equation (25) yields
straightforwardly that in the presence of the ion beam, the
instability (ηe < 0) remains unstable if 1 + A > 0 and it can
be stabilized (A > 0) or destabilized (A < 0) by the ion beam.
So the conditions in which the ion beam acts as a stabilizing
effect can be defined by a stabilization switching relation

ω − 2kzu‖
�i

+ 2
k2

z

k2
y

{
3

4

k2
⊥u2

⊥
�2

i

+ k2
z u2

‖(2ω − kzu‖)

(ω − kzu‖)3

− u2
‖

u2
⊥

2k⊥u⊥
�i

− kzu‖(3ω − 2kzu‖)

(ω − kzu‖)2
+ 1

}
> 0. (27)

To analyze this switching relation, the conditions under which
Eq. (25) has been obtained, in particular, kzvTi � ω and
k⊥u⊥/�i � 1, should be considered. Due to inhomogeneity
being weak (large LN ), k⊥/kz must be too large to satisfy
the condition used, kzvTi � ω = k⊥v2

Te/�eLN . Under such a
condition, it should be understood that the terms with the
factor k2

z /k2
⊥ in Eq. (27) are so low that the first term (ω −

2 kzu‖)/�i determines the conditions for which the beam has
the stabilizing or destabilizing effect on the TGI. So it can
be implied that, in the case ω > 2 kzu‖, the parameter A is
positive (A > 0) and therefore the ion beam has a stabilizing
effect on the TGI. In the inverse case ω < 2 kzu‖, the param-
eter A is negative (A < 0) and therefore the ion beam has a
destabilizing effect on the TGI.

By implementing the proposed model and equations, the
TGI in the presence of a rotating ion beam is investigated in
the following section.

IV. RESULTS AND DISCUSSION

For the purpose of investigation, it is interested to see
how the TGI would be affected by the presence of energetic
oxygen ions (O+) in the form of a beam including parallel and
perpendicular velocity components through the wave-particle
interactions. The plasma parameters used for computing the
wave frequency and the growth rate of TGI in this study are
listed in Table I.

To analyze TGI in the presence of a nonrelativistic rotating
ion beam such as O+, Eqs. (23) and (25) are implemented re-
garding the oscillation frequency spectrum and the growth rate
of the instability, respectively. The inhomogeneous plasma
consists of electrons and ions and includes temperature and
density gradients. The density and temperature gradients driv-
ing TGI are assumed to be perpendicular to the magnetic field,
where the magnetic field and inhomogeneity are along the z
and x directions, respectively (the gradients in density and
temperature are assumed to be in the x and −x directions,
respectively).

It can be implied from Eq. (23) that the oscillation fre-
quency is dependent on the density inhomogeneity scale
length LN and wavelength. Figure 2 shows the normalized
wave frequency of the temperature gradient wave ωr/�i as a
function of normalized wave number (k⊥ρi ) and normalized
density inhomogeneity scale length (LN/ρi ) for Te/Ti = 1,
where ρi = vTi/�i is the Larmor radius of the ion.

It can be seen that the magnitude of the wave frequency
decreases by increasing the characteristic length of inhomo-
geneity LN , and increases by increasing the perpendicular
component of the wave vector k⊥. As the diamagnetic drift
of electrons and the propagation of the temperature gradient
wave are in the −y direction, the positive wave frequency
(ω > 0) means that the phase velocity of the wave is in the

FIG. 2. Wave frequency ωr/�i as a function of wave number
k⊥ρi and density inhomogeneity scale length LN/ρi for Te/Ti = 1.
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FIG. 3. Growth rate of the TGI in the absence of an ion beam
as a function of k⊥/kz and the relative parameters ηe = LN/LTe for
k⊥ρi = 0.4, Te/Ti = 1, me/Mi = 1/(8 × 1836), LN/ρi = 5 × 103,
vTi = 800 m/s, and νeff/�i = 1.1.

direction of the electron drift velocity (ω = ωNe = k · vde >

0) [47]. This refers to the frequency range |ω| � kzvTi, for
which, in high frequency, the electrons are responsible.

According to Eq. (25), the growth rate of the instability
depends on the wave vector components and the relative pa-
rameters ηe = LN/LTe. Figure 3 shows the normalized growth
rate of the TGI, γ /�i, in the absence of an ion beam as a func-
tion of k⊥/kz and the normalized relative parameters (ηe =
LN/LTe) for k⊥ρi = 0.4, Te/Ti = 1, me/Mi = 1/(8 × 1836),
LN/ρi = 5 × 103, vTi = 800 m/s, and νeff/�i = 1.1. It could
be noticed from Fig. 3 that the instability occurs in the region
that the electron density and temperature gradients are in the
opposite directions (ηe < 0), where the point corresponding
to the interchange between stability and instability is ηe = 0,
i.e., without the temperature gradient. Consequently, the tem-
perature gradient is found to be necessary for the instability.

In addition, it can be readily seen from Fig. 3 that the
growth rate of the instability increases by increasing the de-
gree of propagation of the TGI with respect to the magnetic
field. This treatment is based on the fact that the TGI is created
across the gradients and the magnetic field, i.e., along the y
direction.

Since Fig. 3 corresponds to the constant characteris-
tic density length of inhomogeneity, it indicates that the
TGI is destabilized by the temperature gradients, which, as
shown in Fig. 4, are destabilized by the density gradients.
Figure 4 shows the normalized growth rate of the TGI (γ /�i )
in the absence of an ion beam as a function of k⊥/kz and
normalized density inhomogeneity scale length LN/ρi for
k⊥ρi = 0.4, Te/Ti = 1, me/Mi = 1/(8 × 1836), ηe = −0.2,
vTi = 800 m/s, and νeff/�i = 1.1.

As it was discussed in Sec. II, the plasma is assumed to
be completely ionized, and the Coulomb collisions associated
with the electrons are considered in this study. Figure 5 shows
the normalized growth rate of the TGI in the absence of an ion
beam as a function of k⊥/kz and normalized electron collision
frequency νeff/�i for k⊥ρi = 0.4, Te/Ti = 1, me/Mi = 1/(8 ×

FIG. 4. Growth rate of the TGI in the absence of an ion beam as a
function of k⊥/kz and the density inhomogeneity scale length LN/ρi

for k⊥ρi = 0.4, Te/Ti = 1, me/Mi = 1/(8 × 1836), ηe = −0.2, vTi =
800 m/s, and νeff/�i = 1.1.

1836), ηe = −0.2, LN/ρi = 2 × 103, and vTi = 800 m/s. It
can be readily seen that the electron collisions destabilize the
TGI. So it can be implied that the particle collisions do not
stabilize the drift instabilities of the inhomogeneous plasma
and they may even cause their development.

As it can be seen from Figs. 3–5, in the absence of the
ion beam, an unstable condition known as TGI is experienced
in regions with opposite electron density and temperature
gradients (η < 0), where it is destabilized by the tempera-
ture and plasma density gradients and the frequent electron
collisions. In addition, the growth of the instability increases
by increasing the degree of its propagation with respect to
the magnetic field. Now, in order to know how the TGI is

FIG. 5. Growth rate of the TGI in the absence of an ion beam
as a function of k⊥/kz and electron collision frequency νeff/�i for
k⊥ρi = 0.4, Te/Ti = 1, me/Mi = 1/(8 × 1836), ηe = −0.2, LN/ρi =
2 × 103, and vTi = 800 m/s.
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FIG. 6. Growth rate of the instability in the presence of an
ion beam as a function of the Langmuir beam frequency ωb/ωpi

and parallel beam velocity u‖/vTe for k⊥ρi = 0.1, k⊥/kz = 2 ×
103, Te/Ti = 1, me/Mi = 1/(8 × 1836), ηe = −0.2, LN/ρi = 2 ×
103, vTi = 800 m/s, νeff/�i = 1.1, and u⊥/c = 2 × 10−5.

affected by a rotating ion beam, we continue our analysis by
considering the TGI in the presence of energetic oxygen ions
(O+) in the form of a charged particle beam including parallel
and perpendicular velocity components. In order to provide a
deeper understanding of the effects of a rotating ion beam on
the TGI, it is instructive to find the instability growth rate as a
function of the ion beam parameters such as velocity, density,
and ion species.

Figure 6 shows the normalized growth rate of the instability
in the presence of an ion beam as a function of the normalized
Langmuir beam frequency ωb/ωpi and normalized paral-
lel beam velocity u‖/vTe for k⊥ρi = 0.1, k⊥/kz = 2 × 103,
Te/Ti = 1, me/Mi = 1/(8 × 1836), ηe = −0.2, LN/ρi = 2 ×
103, vTi = 800 m/s, νeff/�i = 1.1, and u⊥/c = 2 × 10−5. As
expected from the discussion in Sec. III, depending on the par-
allel beam velocity component, the instability growth rate can
be both stabilized and destabilized by the ion beam. In the suf-
ficiently low parallel beam velocity component (ω > 2kzu‖),
the instability growth rate is stabilized by the Langmuir beam
frequency ωb/ωpi, which is due to the interaction between the
ion beam and the temperature gradient wave; by increasing
the density of the ion beam, the energy transferring from
the TGI to the beam increases. Indeed, under this condition,
the stabilizing effect of the rotating ion beam exceeds the
destabilizing effect due to the free energy of the beam.

The parallel beam velocity component dependence shows
that by increasing this ion beam parameter to be sufficiently
large (ω < 2kzu‖), the instability is destabilized by the rotat-
ing ion beam. Indeed, by increasing the parallel beam velocity
component, a condition is reached in which increasing the free
energy of the beam exceeds the reduction of the instability
growth rate due to the energy transferring from the TGI to the
beam. Therefore, by increasing the density of the ion beam,
the TGI is destabilized.

From the analysis of Fig. 6 the effect of the rotating ion
beam on the TGI is evident. Under the conditions considered,

FIG. 7. (a) Growth rate of the instability in the presence of
an ion beam and (b) effect of the ion beam on the TGI as
a function of the parallel beam velocity u‖/vTe and k⊥/kz for
k⊥ρi = 0.1, Te/Ti = 1, me/Mi = 1/(8 × 1836), ηe = −0.2, LN/ρi =
2 × 103, vTi = 800 m/s, νeff/�i = 1.1, ωb/ωpi = 0.02, and u⊥/c =
4 × 10−5.

in the presence of the rotating ion beam, by increasing the
density of the ion beam, the growth rate of the instability can
decrease more than two times, in the sufficiently low parallel
beam velocity component, and it can increase more than one
to two times, in the sufficiently high parallel beam velocity
component.

Figure 7 shows the growth rate of the instability in the
presence of an ion beam [Fig. 7(a)] and the effect of the
ion beam on the TGI [Fig. 7(b)] as a function of normal-
ized parallel beam velocity u‖/vTe and k⊥/kz for k⊥ρi =
0.1, Te/Ti = 1, me/Mi = 1/(8 × 1836), ηe = −0.2, LN/ρi =
2 × 103, vTi = 800 m/s, νeff/�i = 1.1, ωb/ωpi = 0.02, and
u⊥/c = 4 × 10−5. Figure 7(a) illustrates an increase of the
growth rate of the instability with an increase of k⊥/kz, while
in this range of the parallel beam velocity Fig. 7(b) shows the
enhancement in the stabilizing effect (A > 0) and reduction
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FIG. 8. Growth rate of the instability in the presence of an ion
beam as a function of wave number k⊥ρi and perpendicular beam
velocity u⊥/c for k⊥/kz = 2.7 × 103, Te/Ti = 1, me/Mi = 1/(8 ×
1836), ηe = −0.2, LN/ρi = 2 × 103, vTi = 800 m/s, νeff/�i = 1.1,
ωb/ωpi = 0.1, and u‖/vTe = 0.02.

in destabilizing effect (A < 0) of the ion beam with an in-
crease of k⊥/kz. This result means that the rate of the energy
transferring from the temperature gradient wave to the beam
is increasing with an increase of k⊥/kz. It can be noticed
that as it was shown in Fig. 3, in the absence of the ion
beam, the growth rate of the TGI increases with an increase
of k⊥/kz. Taken together, these imply that the enhancement
in producing TGI exceeds the reduction of the growth rate
due to the energy transfer to the ion beam and consequently
the growth rate of the instability increases with an increase of
k⊥/kz.

According to these findings, we conclude that increasing
the degree of propagation of the TGI with respect to the
magnetic field improves the interaction of it with the rotating
ion beam. Therefore, although the growth rate of the TGI is
enhanced by increasing k⊥/kz [21], the damping of it can be
improved by increasing k⊥/kz.

As it was explained in Sec. III, due to k⊥/kz being large,
the terms including the perpendicular velocity component
become suppressed and lose their effect. However, in some
special conditions such as ω = 2kzu‖, which leads to elimi-
nation of the first term in Eq. (26), the perpendicular velocity
component becomes important. We analyze how the instabil-
ity would be affected by the perpendicular velocity component
in the range mentioned. Figure 8 shows the normalized growth
rate of the instability in the presence of an ion beam as a
function of normalized wave number (k⊥ρi ) and perpendic-
ular beam velocity (u⊥/c) for k⊥/kz = 2.7 × 103, Te/Ti = 1,
me/Mi = 1/(8 × 1836), ηe = −0.2, LN/ρi = 2 × 103, vTi =
800 m/s, νeff/�i = 1.1, ωb/ωpi = 0.1, and u‖/vTe = 0.02. It

can be seen that for a fixed degree of propagation, the growth
rate of the instability decreases with an increase in the wave
number and perpendicular beam velocity.

Investigating the effects of a rotating ion beam on the
instability growth rate reveals that the rotating ion beam could
provide a tendency for the TGI towards stabilizing or desta-
bilizing. The stabilizing effect can be due to the interaction
between the ion beam and the temperature gradient wave; the
energy of the temperature gradient wave transfers to the ion
beam. Depending on conditions, the destabilizing effect due to
the free energy of the beam may exceed the stabilizing effect
of the rotating ion beam.

V. CONCLUSION

The aim of this paper was to investigate the effect of a
rotating ion beam on the temperature gradient instability. So
in this work the attention was put on the long-wavelength
temperature gradient waves (ω � ωdα ∼ k⊥v2

T α/�αL0) driven
by the density and temperature gradients perpendicular to the
magnetic field in the presence of a rotating ion beam such
as O+. A nonrelativistic rotating ion beam was taken into
consideration that propagates parallel to the magnetic field.
The kinetic theory and the zeroth-order approximation of
geometrical optics were implemented to derive the dielectric
permittivity tensor of a collisional inhomogeneous plasma
medium and consequently observe the growth rate of the TGI
in the collisional regime.

It was found that in regions where the electron density
and temperature gradients are in opposite directions, an un-
stable situation known as TGI is observed. In addition, it was
found that the TGI is destabilized by the frequent electron
collisions and the plasma temperature and density gradient,
and depending on conditions can be stabilized or destabilized
by the characteristics of the ion beam, namely, velocity and
density.

The interplay of the stabilizing tendency of the rotating
ion beam and the destabilizing tendency of the free energy
results in both stabilizing and destabilizing states for the TGI.
In the sufficiently low parallel beam velocity component (ω >

2kzu‖), the rotating ion beam provides a significant stabilizing
effect on the instability in the frequency range under con-
sideration in the present study. The stabilizing effect can be
due to the interaction between the ion beam and the temper-
ature gradient wave; the energy of the temperature gradient
wave transfers to the ion beam and consequently leads to
stabilization of the instability growth rate. By increasing the
parallel beam velocity component to be sufficiently large (ω <

2kzu‖), the instability is destabilized by the rotating ion beam.
Furthermore, in some special conditions such as ω = 2kzu‖,
the perpendicular velocity component becomes important and
provides a stabilizing effect on the TGI.

[1] V. S. Mikhailenko, V. V. Mikhailenko, M. F. Heyn, and S. M.
Mahajan, Phys. Rev. E 66, 066409 (2002).

[2] M. Salimullah, A. M. Rizwan, M. Nambu, H. Nitta, and P. K.
Shukla, Phys. Rev. E 70, 026404 (2004).

043208-9

https://doi.org/10.1103/PhysRevE.66.066409
https://doi.org/10.1103/PhysRevE.70.026404


S. M. KHORASHADIZADEH et al. PHYSICAL REVIEW E 102, 043208 (2020)

[3] M. F. Bashir and J. Vranjes, Phys. Rev. E 91, 033113 (2015).
[4] J. Vranjes and S. Poedts, Phys. Rev. E 82, 026411 (2010).
[5] J. Vranjes and S. Poedts, Astrophys. J. 719, 1335 (2010).
[6] S. M. Shaaban, M. Lazar, and S. Poedts, Mon. Not. R. Astron.

Soc. 480, 310 (2018).
[7] S. Shaaban, M. Lazar, R. López, and S. Poedts, Astrophys. J.

899, 20 (2020).
[8] S. Gadgil, B. Hnat, and G. Rowlands, Phys. Plasmas 26, 012105

(2019).
[9] J. M. McChesney, R. A. Stern, and P. M. Bellan, Phys. Rev.

Lett. 59, 1436 (1987).
[10] C. C. Chaston, T. D. Phan, J. W. Bonnell, F. S. Mozer, M.
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