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Vacuum acceleration of electrons in a dynamic laser pulse
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A planar laser pulse propagating in vacuum can exhibit an extremely large ponderomotive force. This force,
however, cannot impart net energy to an electron: As the pulse overtakes the electron, the initial impulse from
its rising edge is completely undone by an equal and opposite impulse from its trailing edge. Here we show
that planarlike “flying focus” pulses can break this symmetry, imparting relativistic energies to electrons. The
intensity peak of a flying focus—a moving focal point resulting from a chirped laser pulse focused by a chromatic
lens—can travel at any subluminal velocity, forward or backward. As a result, an electron can gain enough
momentum in the rising edge of the intensity peak to outrun and avoid the trailing edge. Accelerating the intensity
peak can further boost the momentum gain. Theory and simulations demonstrate that these dynamic intensity
peaks can backwards accelerate electrons to the MeV energies required for radiation and electron diffraction
probes of high energy density materials.
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Vacuum laser acceleration (VLA) exploits the large elec-
tromagnetic fields of high-intensity laser pulses to accelerate
electrons to relativistic energies over short distances [1–12].
The field of an intense pulse can far surpass that in con-
ventional radio frequency (rf) or advanced plasma-based
accelerators, and the underlying interaction—involving only
an electron and the electromagnetic field—has an appealing
simplicity. RF accelerators routinely improve beam quality
and achieve unprecedented energies, but their low damage
threshold constrains the maximum accelerating field. This
necessitates physically and economically immense structures
to accelerate electrons to the energies necessary for high en-
ergy density probes, radiation sources such as free-electron
lasers, or high-energy physics experiments [13–16]. Wake-
field accelerators, on the other hand, employ plasma to
sustain accelerating fields nearly 1000× that of rf accelerators
[17–23]. The use of plasma, however, comes with its own
set of challenges, such as tuning the laser or electron-beam
parameters to the plasma conditions, avoiding a myriad of in-
stabilities, and creating long uniform plasma channels [24,25].

VLA avoids damage constraints and the challenges inher-
ent to the use of plasma, but achieving competitive electron
energy gains requires a bit of ingenuity. The inherent dif-
ficulty is that the accelerating waves travel at the vacuum
speed of light. As a result, electrons, regardless of their
speed, will encounter repeated phases of acceleration and
deceleration. More specifically, the Lawson-Woodward theo-
rem precludes vacuum laser acceleration under the following
conditions: (1) There are no boundaries or walls present. (2)
The laser-electron interaction distance and duration are infi-
nite. (3) There are no static fields. (4) And finally, nonlinear
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forces, such as the magnetic Lorentz force or ponderomo-
tive force, are ignored [1,26,27]. While in principle the
Lawson-Woodward theorem limits laser vacuum acceleration,
in practice it classifies all laser vacuum acceleration schemes
by which assumption(s) they exploit. As an example, in di-
rect laser acceleration schemes, the linear electric field of a
combination of laser pulses or an exotically polarized pulse
accelerates injected relativistic electrons over a finite interac-
tion length [2,7,8,11].

Nonlinear forces become a predominant driver of electron
motion in the strong electromagnetic fields characteristic of
pulses delivered by modern laser systems. Accordingly, sev-
eral VLA schemes utilize the ponderomotive force, which
pushes electrons against the gradient of the local intensity
[1,3–6,12]. For planar pulses, however, the ponderomotive
force is insufficient to achieve net-energy gains: The rising
edge of an intensity peak that travels at the vacuum speed
of light (c) will accelerate an electron in the direction of
propagation, but the falling edge will eventually overtake
and decelerate the electron back to rest [Fig. 1(a)]. To break
this symmetry and impart net energy to an electron, the
speed of the intensity peak must be subluminal, i.e., |vI | < c.
In vacuum beat-wave acceleration, for instance, the sublu-
minal intensity peak produced by the beating of two laser
pulses with different frequencies and focusing geometries
ponderomotively accelerates electrons in the direction of beat
propagation [1,3].

In this paper, we demonstrate vacuum acceleration of elec-
trons in a single, planarlike laser pulse in either the forward or
backward direction. This mechanism for VLA utilizes the fly-
ing focus—a recently realized spatiotemporal pulse shaping
technique, in which a chirped pulse focused by a hyperchro-
matic diffractive optic produces an intensity peak that can
propagate at any velocity, including |vI | < c, over distances
much longer than the Rayleigh range [28–36]. When the peak
normalized vector potential of the flying focus pulse (a0 =
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FIG. 1. (a) A typical luminal intensity peak in vacuum. The
electron, shown as a red dot, experiences equal and opposite pon-
deromotive accelerations on the leading and falling edges of the
pulse, respectively, and gains no net energy. (b) A positively chirped
flying focus with a subluminal intensity peak. After forward acceler-
ation in the leading edge of the intensity peak, the electron outruns
the peak and retains the energy it gained. (c) A negatively chirped
flying focus with a subluminal intensity peak that travels in the
opposite direction of the pulse. After backward acceleration in the
leading edge, the electron outruns the intensity peak and retains the
energy it gained.

eA0/mec) exceeds a critical value [ac = 21/2|βI |γI , where
βI = vI/c and γI = (1 − β2

I )−1/2], it can accelerate electrons
from rest to a final axial momentum that depends only on the
velocity of the intensity peak: p f = 2mecβIγ

2
I . In principle,

the spectral phase and power spectrum of a pulse can be
adjusted to create an intensity peak with an arbitrary trajectory
[28,29]. Using this principle, we also show that matching the
trajectory of an intensity peak to that of an electron enhances
the momentum gain beyond 2mecβIγ

2
I . While this mechanism

for VLA works in either the forward or backward direction,

we focus on backward acceleration due to its novelty and po-
tential as a single-pulse Compton scattering radiation source.

Figures 1(b) and 1(c) illustrate the ponderomotive accelera-
tion of an electron in either a subluminal forward or backward
flying focus intensity peak. In both cases, a0 > ac and the
electron can reach a velocity sufficient to outrun the inten-
sity peak and retain its axial momentum, p f = 2mecβIγ

2
I .

The laser pulse propagates from left to right at the vacuum
speed of light, while the flying focus intensity peak moves
independently at a velocity determined by the chirp and chro-
maticity of the diffractive optic (not shown). The chromatic
aberration and chirp control the location and time at which
each frequency comes to focus, respectively. Specifically, the
intensity peak travels a distance zI = (�ω/ω) f at a velocity
βI = (1 ± cT/zI )−1, where ω is the central frequency of the
pulse, �ω/ω its fractional bandwidth, f the focal length of
the diffractive optic at ω, T the stretched pulse duration, and
the ± takes the sign of the chirp.

In order to demonstrate VLA in the intensity peak of a
flying focus, electron dynamics, i.e.,

dP
dt

= ∂a
∂t

− v × (∇ × a), (1a)

dx
dt

= β, (1b)

were simulated in a model vector potential that captures the
salient features of a flying focus pulse:

a = 1

2
â(z − βI t )ei(z−t )+iη(z−t )2/T 2

x̂ + c.c. (2)

In Eqs. (1) and (2), time and space are normalized to
ω and k = ω/c, respectively, P = p/mec, β = P/γ , γ =
(1 + P2)1/2, x̂ is the unit vector in the x direction, η =
[(αT �ω)2 − 1]1/2 is the chirp parameter, and α depends on
the power spectrum (e.g., α = [8 ln(2)]−1/2 for a Gaussian).
The amplitude, â(z − βI t ), represents the intensity peak trav-
eling at the velocity, vI . In each simulation, electrons were
initialized at rest.

Figure 2 displays the results of these simulations and il-
lustrates the principal features of ponderomotive acceleration
in a backward-traveling, subluminal intensity peak. Below the
cutoff vector potential determined by the speed of the intensity
peak, a0 < ac = 21/2|βI |γI , an electron gains insufficient axial
momentum to outrun the peak. The peak overtakes the elec-
tron and the electron loses all of its axial momentum. Above
the cutoff vector potential (a0 > ac), an electron gains enough
momentum to outrun the peak and retains its energy. In this
case, the final momentum depends only on the velocity of the
intensity peak, i.e., it is independent of the vector potential
(Pz = 2βIγ

2
I ). The final momentum of an electron increases

with the velocity of the intensity peak and even diverges as
βI → 1. However, the required vector potential increases as
well. Operating at the lowest possible vector potential (a0 =
ac) provides the scaling |Pz| = a0(2 + a2

0)1/2.
The underlying mechanism behind the acceleration can be

understood as a reflection from the ponderomotive potential of
the flying focus intensity peak in its Lorentz frame. Equations
(1) and (2) admit two lab-frame conservation relations. The
first equates the transverse momentum to the vector potential,
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FIG. 2. Final momentum of an electron accelerated in a
backward-propagating flying focus intensity peak. Below the cutoff
vector potential (ac), an electron acquires a velocity insufficient to
outrun the intensity peak. Above the cutoff, an accelerated electron
can outrun the intensity peak, and the final momentum is independent
of a0.

Px = ax, and the second the phase-averaged axial momentum
to the energy, d

dt (〈γ 〉 − βI〈Pz〉) = 0, where 〈〉 denotes an aver-
age over the rapidly varying phase of the vector potential and
〈γ 〉 = [1 + 1

2 â2 + 〈Pz〉2]1/2. Multiplying the second relation
by γI and recognizing the result as the electron energy in
the frame of the intensity peak, i.e., 〈γ ′〉 = γI〈γ 〉 − βIγI〈Pz〉,
gives

d〈γ ′〉
dt

= 0. (3)

That is, the electron energy in the peak frame is conserved.
In this frame, the electron dynamics reduce to an interac-

tion with a stationary ponderomotive potential barrier (Fig. 3).
Only two outcomes satisfy Eq. (3) after the electron-barrier
interaction: (1) The initial kinetic energy of the electron is
insufficient to overcome the potential barrier and the electron
is reflected [Fig. 3(a)], or (2) the initial kinetic energy is
sufficient to overcome the potential barrier [Fig. 3(b)]. Upon
Lorentz transforming back into the lab frame, the first case
results in net-energy gain as the electron overtakes the inten-
sity peak [Fig. 3(c)], while the second case results in zero
net-energy gain as the intensity peak overtakes the electron
[Fig. 3(d)].

The cutoff vector potential required for a reflection, and
hence energy gain, can be found by recasting Eq. (3) in terms
of the axial momentum. For an electron initially positioned
outside of the laser pulse, the phase-average axial momen-
tum in the peak frame is 〈P′

z〉 = ±[(βI − β0)2γ 2
0 γ 2

I − 1
2 â2]1/2,

where β0 is the initial velocity of the electron in the lab frame,
and γ0 = (1 − β2

0 )−1/2. The positive and negative roots of 〈P′
z〉

correspond to the electron overtaking the potential barrier and
reflecting from the barrier, respectively [Figs. 3(a) and 3(b)].
At the point of reflection, i.e., the turning point, the axial
momentum must vanish. As a result, the cutoff value of a0

needed to reflect the electron satisfies 〈P′
z〉 = 0:

ac = 21/2|βI − β0|γ0γI . (4)

FIG. 3. Trajectories of an electron (black dashed lines) and in-
tensity peak (contours) in the Lorentz frame of the intensity peak, (a)
and (b), and the lab frame, (c) and (d). In (a) the normalized vector
potential exceeds the cutoff, and the ponderomotive potential reflects
the electron, resulting in net momentum gain in the lab frame (c).
In (b) the ponderomotive potential is too weak to reflect the electron
and it returns to rest in the lab frame (d).

For an electron initially at rest, this simplifies to ac =
21/2βIγI . When a0 > ac, the electron retains a lab-frame
momentum 〈Pz〉 = [2βI − β0(1 + β2

I )]γ0γ
2
I upon exiting the

pulse. If γ0 = 1, 〈Pz〉 = 2βIγ
2
I . Plots of this final momentum

as a function of βI and conditional on a0 > ac are indistin-
guishable from Fig. 2.

The derivation of Eq. (3) required averaging over the rapid
spatiotemporal oscillations in the electron motion caused by
the phase of the vector potential. The validity of this averag-
ing holds when electrons quickly pass through many optical
cycles, allowing for a clean separation of the timescales as-
sociated with intensity and phase variations. While this is
always the case for electrons moving in the opposite direction
of the phase velocity, highly relativistic electrons moving in
the same direction as the phase velocity can experience a
near-constant phase of the vector potential for extended du-
rations and distances, which can blur the timescales of phase
and intensity variations. A rough validity condition for the
averaging can be found by ensuring that an electron expe-
riences many Doppler-shifted cycles during the interaction,
i.e., ω(1 − βz )TI � 2π , where TI is the interaction time. For
a0 � 1, this simplifies to ωTI � 4πa4

0, while for a0 � 1,
ωTI � 2π . Note that this is an important distinction between
vacuum ponderomotive acceleration and ponderomotive ac-
celeration in a plasma (cf. Ref. [37]). In a sufficiently dense
plasma, the superluminal phase velocity of the light wave
justifies the use of Eq. (3) for codirectional, highly relativistic
electrons regardless of the peak vector potential.
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FIG. 4. Path of an electron (black dashed line) and a trajectory-
locked intensity peak (contours) in the Lorentz frame associated
with the initial velocity of the intensity peak. The intensity peak is
accelerated to keep the electron at the initial cutoff vector potential
as its momentum increases.

Accelerating the intensity peak to match the ponderomo-
tive acceleration of an electron, i.e., “trajectory locking,” can
substantially increase the momentum gain. The constant ve-
locity intensity peaks considered above limited the interaction
distance and the momentum gain to a value determined by the
maximum vector potential (Fig. 2). By limiting the interaction
distance, the constant velocity scheme wastes any length that
the intensity peak has yet to travel. Trajectory locking, on the
other hand, keeps the electron in the ponderomotive potential
and can utilize the entire distance, zI , to increase the final
momentum (Fig. 4).

In the trajectory-locked (TL) scheme, the intensity peak
initially moves at a constant velocity, βI0. Once the electron
has accelerated from rest to the velocity of the intensity peak,
which occurs at the location a = ac, the intensity peak ac-
celerates to keep the electron at this location (i.e., at a = ac)
(Fig. 4). The momentum of the electron evolves according to
the ponderomotive guiding center [38] equation of motion,

d〈Pz〉
dt

= − 1

4〈γ 〉
∂

∂z
a2(z, t ). (5)

Because the electron samples a constant intensity gradient,
Eq. (5) can be directly integrated to find the momentum,

〈Pz(t > tc)〉 ≈
√(

βI0γ
2
I0

)2 + 1

2
(t − tc)

∂a2

∂z

∣∣∣∣
a=ac

, (6)

where βI0γ
2
I0 is the phase-average electron momentum in the

lab frame upon reaching ac at time tc. As expected, Eq. (6)
predicts that optimizing the momentum gain requires colo-
cating ac with the maximum intensity gradient of the peak.
Asymptotically, the momentum gain has a relatively weak
scaling with time, 〈Pz〉 ∝ t1/2. This results from the dimin-
ished ponderomotive force as 〈γ 〉 increases [right-hand side
of Eq. (5)]. Rewriting Eq. (6) provides the electron velocity
and, correspondingly, the peak velocity needed to accomplish
trajectory locking: 〈βz(t > tc)〉 ≈ 〈γ 〉−1〈Pz(t > tc)〉.

To demonstrate electron acceleration in a TL peak, electron
dynamics were simulated using Eq. (5) and the z component
of Eq. (1b). Figure 5(a) compares an example of the momen-
tum gain in a TL peak to that in a constant velocity peak.

FIG. 5. (a) Comparison of the momentum gained by an elec-
tron in trajectory-locked and constant velocity intensity peaks. An
electron exits the constant velocity peak and reaches its asymptotic
momentum, 2βI0γ

2
I0, at time TE . In the trajectory-locked peak, the

electron reaches a momentum 2βI0γ
2
I0 at the breakeven time TBE and

continues to accelerate. (b) An electron in a trajectory-locked peak
reaches a momentum 2βI0γ

2
I0 in a fraction of the time it would take

in the constant velocity peak over a wide range of parameters. (c)
At the constant velocity exit time, an electron in a trajectory-locked
peak typically reaches a higher momentum than one in a constant
velocity peak.

At the breakeven time, TBE , the momentum gain in the TL
scheme equals the asymptotic momentum gain, 2βI0γ

2
I0, in the

constant velocity scheme. At time TE , an electron accelerated
by the constant velocity peak has exited the peak and reached
its asymptotic momentum gain, while an electron in the TL
peak continues to gain momentum. As shown in Fig. 5(b),
an electron in a TL peak reaches 〈Pz〉 = 2βI0γ

2
I0 in a fraction

of the time it would take in a constant velocity peak over a
wide range of parameters. Alternatively, Fig. 5(c) shows that
the momentum gain in the TL scheme can exceed that in the
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constant velocity scheme over a time TE . The exception occurs
when a0 ≈ ac; near the maximum vector potential, the inten-
sity gradient becomes too small for effective TL acceleration.
Note that Fig. 5(c) represents the momentum gain after a time
TE and not the maximum achievable momentum gain in the
TL scheme, which is only limited by the interaction length.
Figures 5(b) and 5(c) are independent of the duration of the
intensity peak.

The acceleration schemes described here considered elec-
trons located on the propagation axis at the center of the laser
spot. These electrons experience zero transverse pondero-
motive force and remain on the axis indefinitely. Electrons
initially located off-axis would undergo lateral motion in re-
sponse to the transverse ponderomotive force. For profiles
that decrease with radius, the ponderomotive force would
radially expel electrons well before significant longitudinal
acceleration could occur. This can be avoided by using two po-
larizations and multiple spatial modes to shape the transverse
profile of the intensity peak. For instance, a superposition of
Hermite-Gaussian modes with appropriate polarizations, as
described in Refs. [4,6,39,40], can create a radial ponderomo-
tive potential well that focuses off-axis electrons to the center
of the laser spot, preventing radial expulsion. Because these
modes are eigenfunctions of the paraxial wave equation, the
intensity profile will retain its shape throughout propagation.
The promise of the scalings presented here warrants future,
full-format three-dimensional particle-in-cell simulations to
explore these effects.

A concept for VLA based on the recently demonstrated
flying focus offers a tunable source of high-energy electrons
that can travel in either the forward or backward direction.
Both the energy and direction can be controlled by ad-
justing the chirp of a laser pulse focused by a diffractive
optic. The resulting intensity peak, and hence ponderomotive
force, can travel at any velocity over distances unconstrained

by diffraction. A subluminal intensity peak, traveling either
forward or backward, breaks a fundamental symmetry in
the interaction of an electron with a planarlike laser pulse,
allowing for net-energy gain: Electrons ponderomotively ac-
celerated by a subluminal intensity peak can outrun the peak
and retain their momentum. In the Lorentz frame of the
intensity peak, this is simply a reflection from the pondero-
motive potential. By adjusting the spectral phase of the laser
pulse, the intensity peak can be accelerated and matched
to the trajectory of the electron, providing enhanced energy
gains. The case of backward acceleration described here en-
ables a promising scheme for all-optical, single-pulse inverse
Compton scattering [41–43]. The intensity peak accelerates
electrons against the phase velocity, which will result in
the same pulse Compton scattering off the electrons. This
avoids the issues of alignment and independently preparing
high-energy electrons and a counterpropagating pulse. As
an example, a 10-MeV electron will radiate light with an
upshifted frequency nearly 1500 times that of the incident
light. Further research, however, is needed to determine
the tradeoffs of this scheme when compared to a tradi-
tional Compton scattering configuration. In particular, the
requirement of multiple Hermite-Gaussian modes for a one-
dimensional interaction can introduce additional experimental
complexity [40].
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