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Contribution of viscous stress work to wall heat flux in compressible turbulent channel flows
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In this paper we derive an exact expression for the mean heat flux at the wall for the compressible turbulent
channel flow. In the expression, the heat flux at the wall can be decomposed into four parts, including the
contribution from the turbulent heat transfer, the contribution from the molecular heat transfer, the contribution
from the pressure work, and the contribution from the work from viscous stress (VW). The decomposition is
validated in compressible turbulent channel flows with isothermal walls at three different Reynolds and Mach
numbers, and the results match very well with the direct estimations at the wall. The data also show that the
VW term dominates the contributions (around 90%) in the decomposition while around 90% of VW is from the
near-wall region (y/h < 0.2), illustrating the importance of the viscous stress work in the near-wall region.
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I. INTRODUCTION

Compressible wall-bounded turbulence is of great impor-
tance in many industrial and engineering applications [1,2].
In the past decades, plenty of effort has been devoted to
study the effect of compressibility and the corresponding
mechanism on wall-bounded turbulence [3–6]. In compress-
ible wall-bounded turbulence, the heat transfer is also a very
important topic besides the flow velocity field, making the
wall resistance and the heat flux at the wall to be two critical
quantities.

In the past, researchers have documented that the skin
friction in wall-bounded turbulence can be expressed as the
contribution from the flow statistics inside the flow domain
[7–10]. Fukagata et al. [7] first derived a simple expression
of the componential contribution from different dynamical
effects to the surface friction resistance based on a streamwise
momentum budget in the wall reference frame in incom-
pressible channel, pipe, and plane boundary layer flows.
The expression shows that four parts, including the lami-
nar, turbulent, inhomogeneous, and transient components, will
contribute to the local skin friction (FIK decomposition).
Furthermore, the turbulent term is a weighted integral of the
Reynolds stress distribution, and the near-wall Reynolds stress
contributes dominantly. Based on the above fact, Fukagata
et al. [7] used the above decomposition to analyze the drag
modification by the opposition control and by the uniform
wall blowing and suction. Gomez et al. [8] extended the
FIK decomposition to compressible wall-bounded flows, and
it was reported that two additional compressibility-induced
terms, namely, the compressible contribution term and the
compressible turbulent interaction term, will come out besides
the laminar and turbulent terms in incompressible channel
flows. Their numerical data in compressible turbulent channel
flows at different Mach numbers showed that the main con-
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tribution to the skin friction is still from the turbulent term,
while the two additional compressibility-induced terms are
quasinegligible. Recently, the FIK decomposition and its com-
pressible extension were used to form a new quadrant analysis
for wall-bounded turbulence [11] and to study the genuine
compressibility effect in compressible channel flows [12].
Renard and Deck [9] derived another decomposition (RD
decomposition) of the mean skin friction from a mean stream-
wise kinetic-energy budget in an absolute reference frame for
incompressible wall-bounded turbulence. In an incompress-
ible zero-pressure-gradient smooth-flat-plate boundary layer
flow, the local skin friction, which can also represent the mean
power supplied by the wall to the fluid in the absolute frame,
can therefore be decomposed into a diffusion term, which dif-
fuses through the boundary layer profile with a direct viscous
dissipation, a dissipation term, which is dissipated by all the
production of the turbulent kinetic energy, and an inhomoge-
neous term, which represents the spatial growth of the flow
or the rate of the gain of mean streamwise kinetic energy by
the fluid in the absolute frame. For incompressible turbulent
channel flows, the RD decomposition can also be derived from
the argument of dissipation function [13–15]. Recently, the
RD decomposition was extended to compressible turbulent
channel flows [16] and compressible zero-pressure-gradient
boundary flows [17] to investigate the effect of Reynolds
number and scalings of each term.

For heat flux at the wall, a great deal of work has been done,
too. Morinishi et al. [18], Shadloo et al. [19], and Liang and Li
[20] studied the statistics of wall heat transfer at different tem-
perature boundaries, including adiabatic and isothermal walls,
while Kawamura et al. [21] and Duan et al. [22] investigated
the Reynolds and Prandtl number effects on the turbulent heat
transport and wall heat flux in different wall temperatures.
The scaling of the velocity profile under wall heat transfer
for compressible turbulent boundary layers was also studied
by Zhang et al. [23]. Other researchers tried to quantify it
from the skin friction. Hopkins and Inouye [24] introduced
a formula to predict the heat transfer at the wall from the
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skin friction on flat plate at supersonic and hypersonic Mach
numbers. For fully developed compressible turbulent channel
flows with equal isothermal boundary conditions, Huang et al.
[25] found

qw ≡ −λ
d〈T 〉
dy

∣∣∣∣
w

= −ubτw, (1)

based on the argument that the overall energy balance in a
fully developed channel flow requires that the total pressure
work done (or the total heat generation) across the channel
equal and the heat transfer into the walls is the same. Here
λ is the thermal conductivity, ub = ∫ h

0 〈ρu〉dy/
∫ h

0 〈ρ〉dy is the
bulk velocity, and τw is the wall shear stress. This formula
was also discovered by Ghosh et al. [26] and Li et al. [16].
For adiabatic thermal boundary conditions, the above formula
(1) is invalid locally. Furthermore, the above works are all
devoted to estimate the quantity of the heat transfer at the
wall. Not many of them tried to unravel the source of the
heat transfer at the wall, although the balance equation was
derived in Ghosh et al. [26] to explain the difference in the
mean density and temperature profiles in channel and pipe
flows.

In fact, Fukagata et al. [27] used to derive a mathemati-
cal relation of the contribution of turbulent heat flux to the
Nusselt number for incompressible wall-bounded turbulence
with isothermal and isoflux conditions. Based on the derived
relation, they proposed a strategy for simultaneous control
to achieve friction drag reduction and heat transfer augmen-
tation in a fully developed incompressible turbulent channel
flow [28]. Nevertheless, the work was based on the transport
equation of the temperature, which is a passive scalar for
the incompressible velocity field. For compressible cases, the
temperature is no longer a passive scalar but coupled with the
velocity field, the source of the heat transfer at the wall is still
unknown. In the present paper we derive a direct mathematical
relation between the heat flux at the wall and the integral of
the turbulent statistics inside the flow field for compressible
turbulent channel flows. Similar to the decomposition of skin
friction, the decomposition of the heat flux at the wall could
show its direct sources and the possible dominant contribu-
tions, which might be useful for flow control.

II. EXACT MATHEMATICAL DECOMPOSITION
OF THE WALL HEAT FLUX qw

In this section we are going to derive the decomposition
of the wall heat flux qw in a fully developed compress-
ible turbulent channel flow, as sketched in Fig. 1. The
compressible fluid is driven by a uniform force along
the streamwise direction, and it flows between two infi-
nite parallel walls. The magnitude of the force is adjusting
in time to ensure a constant flow flux in the stream-
wise direction. In the simulations, a computational box
of size Lx × Ly × Lz is adopted, and periodic boundary
conditions are applied in the wall-parallel directions (stream-
wise and spanwise directions), while the no-slip boundary
conditions are adopted for the velocity fields at both walls. It
is worth noting that the no-slip boundary condition restriction
is not needed for the wall-normal velocity component in the
following derivation of the formulas for the wall heat flux qw

Lx

Ly

Lz

FIG. 1. Schematic diagram of turbulent flow in compressible
channel without blowing nor suction at the wall. Please note that we
may allow blowing and/or suction at the wall, as what was done by
Kametani et al. [29].

and it will be removed to allow the blowing and/or suction at
the wall, as was done by Kametani et al. [29]. In the present
paper only isothermal boundary conditions at both walls are
considered for the temperature field, and it is Tw equally.
Under these assumptions, it can be inferred that the field is
symmetric with respect to the center plane. In the derivation
only the internal energy equation will be used, and it reads as
follows [30]:

∂e

∂t
+ ∂ (euk )

∂xk
+ ∂qk

∂xk
= −p

∂uk

∂xk
+ τi j

∂ui

∂x j
, (2)

where

τi j = μ

(
∂ui

∂x j
+ ∂u j

∂xi
− 2

3

∂uk

∂xk
δi j

)
, qk = −λ

∂T

∂xk
. (3)

Here, e = p/(γ − 1) = ρCvT is the internal energy for the
unit volume, with Cv being the specific heat at constant
volume, u1, u2, and u3 denote the streamwise (x1 or x), wall-
normal (x2 or y), and spanwise (x3 or z) velocity fluctuations,
respectively; u, v,w are used interchangeably with u1, u2, u3.
It should be emphasized that the forcing term has disappeared
in the internal energy equation, since the forcing term directly
changes only the kinetic energy. Nevertheless, it will modify
the internal energy indirectly through the pressure dilatation
term,

Pd = −p
∂uk

∂xk
,

and the viscous action term,

Va = τi j
∂ui

∂x j
,

which are the interaction terms between the kinetic and inter-
nal energy [30]. If we considered the total energy equation,
the forcing term would appear [31]. Equation (2) can be aver-
aged using the Reynolds averaging operator ¯(·) to obtain the
Reynolds-averaged equation for the internal energy

∂ ē

∂t
+ ∂ (euk )

∂xk
+ ∂qk

∂xk
= Pd + Va. (4)
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For a fully developed turbulent channel flow, the Reynolds
averaging operator can be substituted by the averaging in x, z,
and t , and thus

∂φ̄

∂x
= ∂φ̄

∂z
= ∂φ̄

∂t
= 0

for any quantity φ. The corresponding fluctuation is denoted
as φ′ = φ − φ. Equation (4) could be further simplified as

∂ (ev)

∂y
+ ∂qy

∂y
= Pd + Va. (5)

By integrating Eq. (5) from 0 to y, we obtain

qy + ev − (qw + ev|y=0) =
∫ y

0
Pd dy +

∫ y

0
Vady. (6)

Equivalently,

qw = qy + ev −
∫ y

0
Pd dy −

∫ y

0
Vady − ev|y=0. (7)

Equation (7) shows that the wall heat flux can be evaluated
from the information within the region [0, y] inside the field
and the blowing and/or suction information at the wall. It
should be noted that the above equation was also obtained by
Ghosh et al. [26] to explain the difference of mean tempera-
ture and density in the wall-normal direction. By integrating
Eq. (7) from 0 to h (h being the half-width of the channel), we
obtain the following relationship:

qw = 1

h

∫ h

0
qydy︸ ︷︷ ︸

MH

+ 1

h

∫ h

0
CvρT ′′v′′dy︸ ︷︷ ︸

TH

+ 1

h

∫ h

0
(y − h)Pd dy︸ ︷︷ ︸

PW

+ 1

h

∫ h

0
(y − h)Vady︸ ︷︷ ︸

VW

+ 1

h

∫ h

0
Cvρ{T }{v}dy − CvρT v

∣∣∣∣
y=0︸ ︷︷ ︸

BS

. (8)

Here the Favre averaging operator {φ} = ρφ/ρ is adopted and
φ′′ = φ − {φ} is the corresponding fluctuations. This relation
shows that the heat flux at the wall can be decomposed into
five contributing terms: the contribution from the turbulent
heat transfer (TH), the contribution from the molecular heat
transfer (MH), the contribution from the pressure work (PW),
the contribution from the work from viscous stress (VW),
and the contribution due to the blowing and/or suction at the
walls (BS). If there is no blowing and suction at the walls,
{v} = 0 in the whole channel and the BS term will disappear.
It is seen that the MH and TH terms are the volume average
of the molecular heat transfer and the turbulent heat transfer
in the wall-normal direction, respectively, while the PW and
VW terms are the weighted average of the pressure dilatation
and the viscous action terms, respectively, where the weight is
linearly decreasing with the distance from the wall. It is worth
noting that Eqs. (7) and (8) deliver different information on
qw. Equation (7) can be viewed as a local balance equation,
and it can be used to evaluate qw at any local y. In applications,
the dominating contribution term to qw may be different at

different y (see Fig. 9 in Ghosh et al. [26]). Equation (8) is the
wall-normal average of Eq. (7), and it can provide the infor-
mation on the amount of the contribution from each term to qw

in an average sense. More importantly, the contributions from
the pressure dilatation and the viscous action are the integrals
of Pd and Va in the interval [0, y] in Eq. (7). Although they
can give the amount of the contributions at any y, the results
might hide the underlying physics. For example, according
to results in Ghosh et al. [26], the relative contribution from
the viscous action (the summation of the direct dissipation
and the turbulent dissipation) based on Eq. (7) increases with
y. However, the term Va in fact decreases with y [see the
hint from Fig. 5(b) below], and thus the contribution from
the viscous work should be more important in the near-wall
region. This physical information about the contribution of
the viscous action can be correctly expressed through Eq. (8)
(see Figs. 5 and 7 below and the related discussions). Ac-
tually, when Eq. (7) is integrated, the integral interval can
be arbitrary and a different interval can deliver a different
message. Nevertheless, the half-channel integral is unique and
it uses the information from the whole channel. The difference
between Eqs. (7) and (8) is very similar to what was done
for the skin friction in incompressible [7] and compressible
[8] wall-bounded turbulence, where the authors integrated the
momentum balance equations to obtain the decomposition
formulas for the skin friction. It should also be noted that
the decomposition can be derived for compressible turbulent
pipe flows and turbulent boundary layers following the same
procedure.

III. NUMERICAL SIMULATION

Direct numerical simulations (DNS) are performed for
three fully developed compressible turbulent channel flows.
The OPENCFD code using the high-order finite difference
method from Prof. Xinliang Li is used, and the code has been
validated before [20,32,33]. The inviscid and viscous terms
are discretized by using a seventh-order upwind scheme and
an eighth-order central scheme, respectively, and the time is
advanced using an explicit third-order Runge-Kutta scheme.
In the simulations, the viscous coefficient μ is calculated by
using Sutherland’s formula, and all quantities are nondimen-
sionalized by the reference temperature Tref = 288.15 K, the
viscosity at the reference temperature μref , the sound speed
at the reference temperature c0, h, the bulk-averaged density
ρm = ∫ 2

0 ρdy/2, and the bulk velocity um = ∫ 2
0 ρudy/(2ρm).

The control parameters are the Reynolds number Re and the
Mach number Ma, and they are defined as

Re = ρmumh

μref
, Ma = um

c0
.

The thermal conductivity is estimated from μ through the
Prandtl number Pr = Cpμ/λ = 0.72, with Cp being the spe-
cific heat at constant pressure.

The grid is uniform in the streamwise and spanwise direc-
tions, while it is clustered in the near-wall region in order
to capture the near-wall dynamics of the streaks. Details of
the flow conditions, the computational domains, the grid res-
olutions, as well as the wall heat flux coefficient are listed
in Table I. It is seen that our grid resolutions in the wall
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TABLE I. Details of the flow conditions, the computational domains, and the grid resolutions. In the computation, Ly = 2, γ = 1.4, and
Tw = 1. The friction Reynolds number Reτ = ρwuτ h/μw is defined using the density at the wall ρw , the viscosity at the wall μw , and the
friction velocity uτ = √

τw/ρw , where τw are the wall shear stress values. Re∗
τ is the transformed friction Reynolds number using the TL

transformation. Bq = qw/(ρwCpuτ Tw) is the wall heat flux coefficient, and 1/(ρwCpuτ Tw ) = 1.691, 13.243, and 38.475, respectively.

Case Re Reτ Re∗
τ Ma Bq Lx Lz Nx Ny Nz 	x+ 	z+ 	y+

min 	y+
max

Case 1 6000 355 332 0.5 0.0057 4π 4π/3 400 180 320 11.15 4.64 0.59 8.23
Case 2 6000 408 267 1.5 0.0451 4π 4π/3 400 180 320 12.82 5.34 0.68 10.68
Case 3 4880 456 143 3.0 0.1392 4π 4π/3 400 210 320 14.32 5.96 0.65 9.05
Coleman et al. [34] 4880 451 – 3.0 0.137 4π 4π/3 144 119 80 ≈ 39 ≈ 24 ≈0.2 –
Modesti and Pirozzoli [35] ≈ 7500 500 – 1.5 0.042 6π 2π 1024 256 512 9.2 6.1 – –

parallel directions are within the suggested range, and they
are comparable with those used by Modesti and Pirozzoli [35]
and Li et al. [16].

Figure 2(a) shows the mean velocity profiles from the
three cases normalized using uτ , μw, and ρw (conventional

FIG. 2. (a) Mean velocity profiles from the three cases normal-
ized using uτ , μw , and ρw . The results from Coleman et al. [34] and
Modesti and Pirozzoli [35] are also shown for comparison. No van
Driest transformation is applied. (b) Mean velocity profiles from the
three cases normalized using the Trettel and Larsson transformation
[36]. The incompressible DNS results at Reτ = 395 and Reτ = 180
from Moser et al. [37] are also shown as reference.

normalization) as

y+ = ρwuτ y

μw

, u+ = 〈u〉
uτ

.

For comparison, the reference data from Coleman et al. [34]
and Modesti and Pirozzoli [35] at similar Reynolds numbers
and Mach numbers are also shown. It is clearly seen that our
simulation results match very well with those reference data,
illustrating the correctness of the present simulations. It is also
evident that the mean velocity profiles at different Ma and
Re apparently diverge when they are normalized following
the convectional normalization. Although the mean velocity
profiles still exhibit a logarithmic behavior, the intercepts will
increase apparently with Ma, illustrating the effect of com-
pressibility. According to Trettel and Larsson [36], if the new
transformation (TL transformation),

Y + = ρ̄(τw/ρ̄ )1/2y

μ̄
, (9)

U + =
∫ u+

0

(
ρ̄

ρw

)1/2[
1 + 1

2

1

ρ̄

d ρ̄

dy
y − 1

μ̄

dμ̄

dy
y

]
du+, (10)

is applied to the compressible channel flow, an excellent col-
lapse of the mean velocity profile can be obtained at different
Re, Ma, and Bq, and we plot the mean velocity profiles from
the three cases using the TL transformation in Fig. 2(b). The
incompressible DNS data at Reτ = 395 and Reτ = 180 from
Moser et al. [37] are also shown for reference. It is clearly
seen from the figure that the mean velocity profiles collapse
very well with the reference incompressible data when the TL
transformation is used, which again proves the accuracy of the
present data. For case 1, the transformed friction Reynolds
number Re∗

τ ≈ 332 and the transformed mean velocity pro-
file match very well with the incompressible DNS data at
Reτ = 395. For case 2, the TL transformed mean velocity
profile shifts upwards for a little bit, and it almost coincides
with the profile from the incompressible DNS at Reτ = 180.
For case 3, the TL transformed profile further shifts upwards
with a larger intercept in the log law region. We attribute this
upshift behavior to the lower transformed friction Reynolds
numbers effect, where Re∗

τ values are around 267 and 143,
respectively, for cases 2 and 3. In fact, for the incompressible
DNS data at lower Reynolds numbers, it was shown by Moser
et al. [37] that the apparent log law in the Reτ = 180 case
has a larger intercept than in the Reτ = 395 case [see Fig. 1
in Ref. [37] and Fig. 2(b)]. With a much lower transformed
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TABLE II. Contribution to the wall heat flux coefficient Bq for the three different cases. The relative error is calculated by error =
|(Bq,integral − Bq,direct )/Bq,direct|, where Bq,direct is calculated directly through the wall heat flux using the temperature gradient at the wall, and
Bq,integral is the summation of the four integral contributions.

Case Bq,direct Bq,integral Error TH MH PW VW

Case 1 −5.702 × 10−3 −5.758 × 10−3 0.98% −3.057 × 10−4 −1.793 × 10−4 −1.060 × 10−4 −5.167 × 10−3

– – – 5.3095% 3.1144% 1.8414% 89.7347%

Case 2 −4.512 × 10−2 −4.470 × 10−2 0.93% −2.219 × 10−3 −1.516 × 10−3 −7.305 × 10−4 −4.023 × 10−2

– – – 4.9640% 3.3926% 1.6344% 90.0090%

Case 3 −1.392 × 10−1 −1.405 × 10−1 0.93% −6.618 × 10−3 −7.502 × 10−3 −2.051 × 10−3 −1.247 × 10−1

– – – 4.3915% 5.3415% 1.4602% 88.8068%

friction Reynolds number, it is reasonable that the mean pro-
file further shifts upwards for case 3.

IV. RESULTS AND DISCUSSION

Now we would like to validate the proposed decomposition
(8) by using our DNS data at three different Re and Ma. In
the present study, no blowing and suction is applied at the
wall, and thus the last BS term in Eq. (8) is zero. The other
four contributions to the wall heat flux coefficient (normalized
wall heat flux) and their summation as well as the direct
estimation of the wall heat flux coefficient at the three cases
are listed in Table II, and the relative contributions of different
terms are shown in Fig. 3. It is clearly seen from the data
that the decomposition in Eq. (8) is quite accurate, and the
relative error is within 1% in all three cases. More importantly,
the data show that the main contribution to Bq is from the
VW term, and it is about 90% at three different Ma and Re
cases. This is in sharp contrast to the passive scalar case
for incompressible flows, where the temperature is assumed
as a passive scalar and the work from the viscous stress is
ignored [27]. For the other three terms, it is seen that the
pressure work contributes the least, which is around 1.5%,
while the TH and MH terms contribute around 4%–5% and

FIG. 3. Relative contribution of the four different terms to the
wall heat flux coefficient. The mean part and fluctuation part from
the VW term are also shown.

3%–5% for the three cases considered. When Ma increases,
the contributions from all four terms increase. Nevertheless,
the relative contributions show different behaviors, where the
relative contribution from the TH and PW terms decrease
while the relative contribution from the MH term increases.
If we assumed the thermal conductivity was constant, then the
MH term could be related to the temperature differences 	T
between the channel center and the wall. Although the thermal
conductivity varies in space and time, we still can infer that it
can be related to 	T . At the present three cases, 	T increases
with Ma, which is in the same trend as the contribution of the
MH term.

To further understand the VW term, Va can be decomposed
to a mean part and a fluctuating part, which is the viscous
dissipation, as in the following equation [25]:

Va = τi2
∂ui

∂y
+ τ ′

i j

∂u′
i

∂x j
. (11)

Accordingly, the VW term can be decomposed into a mean
part VWm and a fluctuating part VWf. The magnitudes of
the two terms at the three cases are also shown in Fig. 3. In
the present cases, it is seen that the contributions from the
VWm term are larger than the VMf term, where the former
contribute more than 50% of the total wall heat flux. Further-
more, the VWm term increases with Ma while the VWf term
shows an opposite trend.

We now turn to the wall-normal distributions of the four
integrands in Eq. (8). Figure 4 shows the normalized wall-
normal distributions of the integrands in the TH and MH
terms. As already discussed above, the TH term is the wall-
normal average of the turbulent heat transfer CvρT ′′v′′, while
the MH terms is the wall-normal average of the molecular
heat transfer qy. As shown in Fig. 4, when normalized with
the same nondimensionalized parameter ρwCpuτ Tw as Bq,
the wall-normal distributions of CvρT ′′v′′ and qy diverge for
the three cases, although they have the same shapes. For the
normalized CvρT ′′v′′, it is zero at y = 0 and 1 and negative in
between. When Ma increases, the absolute value of the peak
increases while the location of its peak also moves away from
the wall. This is consistent with the increase of the TH term
(absolute value), as listed in Table II. For the normalized qy, it
is Bq at the wall and then it (the absolute value of qy) decreases
to zero rapidly as y increases, which makes the contribution
from the MH term (the wall-normal average of qy) rather
small, and the wall heat flux has to be compensated by the
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y

(×10-3)

y

(×10-2)

FIG. 4. Wall-normal distributions of (a) CvρT ′′v′′ and (b) qy from
the three cases. The quantities are normalized with ρwCpuτ Tw .

other three terms. Clearly, the normalized qy increases with
Ma.

Figure 5 shows the weighted wall-normal distributions of
the integrands in the PW and VW terms. The wall-normal
distributions of Pd and Va are quite similar to (1 − y)Pd and
(1 − y)Va, which is due to the fact that Pd and Va are very close
to zero in the core region (0.4 < y/h < 1) and the weight
1 − y is a linear with y, and they will not be shown here. For
the normalized (1 − y)Pd , there is a positive peak at around
y/h ≈ 0.05 and a negative peak further away from the wall.
The absolute values of the two peaks and their locations in-
crease with Ma. For the normalized (1 − y)Va, it is very large
at the wall and then decreases rapidly to zero as y increases
for all three cases. The values are much larger at higher Ma.

Figures 6 and 7 show the cumulative contributions of the
integrands in the TH, MH, PW, and VW terms from the three
cases. They are defined as

Th(y) =
∫ y

0
CvρT ′′v′′dy∗

/∫ 1

0
CvρT ′′v′′dy∗,

Mh(y) =
∫ y

0
qydy∗

/∫ 1

0
qydy∗ ,

FIG. 5. The weighted distributions of (a) (1 − y)Pd and (b)
(1 − y)Va from the three cases. The quantities are normalized with
ρwCpuτ Tw .

Pw(y) =
∫ y

0
(1 − y∗)Pd dy∗

/∫ 1

0
(1 − y∗)Pd dy∗ ,

Vw(y) =
∫ y

0
(1 − y∗)Vady∗

/∫ 1

0
(1 − y∗)Vady∗ .

For Th, as shown in Fig. 6(a), the cumulative contribution of
the TH term increases as y increases, and it approaches to 90%
of the total TH term when y/h � 0.6 for all three cases. This
means that the TH term is not restricted to the near-wall region
but a whole field, and it is consistent with the normalized
CvρT ′′v′′ distribution shown in Fig. 4(a).

Similarly, the cumulative contribution of the PW term,
which is depicted in Fig. 7(a), also shows that the PW term
is a global one. Due to the fact that (1 − y)Pd has a positive
peak in the near-wall region and a negative peak further away
from the wall, Pw first increases with y and then decreases to
1 gradually. Differently from Th and Pw, Mh and Vw show a
much better local behavior, as shown in Figs. 6(b) and 7(b),
where more than 90% of the total MH and VW terms come
from the near-wall region where y/h � 0.2 (inner region). In
other words, most of the wall heat flux is generated in the
inner region in the compressible turbulent channel flows with
isothermal walls.
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y

M
h

y

T
h

FIG. 6. Cumulative contributions of the integrands in the TH and
MH terms from the three cases: (a) Th and (b) Mh.

V. CONCLUSIONS

To conclude, we have derived an exact relationship giv-
ing the contributions of different physical mechanisms to the
wall heat flux, including the turbulent heat transfer (TH), the
molecular heat transfer (MH), the pressure work (PW), and
the viscous stress work (VW). Three DNSs with different Re
and Ma are performed to validate the new decomposition,
and very good agreement can be arrived between the decom-
position formula and the direct estimation at the wall. The
data also show that the VW term dominates the contribution
(around 90%) in the total wall heat flux, and around 90%

y

Pw

y

V
w

90%

FIG. 7. Cumulative contributions of the integrands in the PW and
VW terms from the three cases: (a) Pw and (b) Vw.

of the total VW term comes from the viscous stress work
in the near-wall region (y/h < 0.2) in compressible turbulent
channel flows with isothermal walls. In the future, the effect of
Mach number and Reynolds number on different contribution
terms will be analyzed with more DNS cases.
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