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Numerical simulations of a falling film on the inner surface of a rotating cylinder
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A flow in which a thin film falls due to gravity on the inner surface of a vertical, rotating cylinder is
investigated. This is performed using two-dimensional (2D) and 3D direct numerical simulations, with a
volume-of-fluid approach to treat the interface. The problem is parameterized by the Reynolds, Froude, Weber,
and Ekman numbers. The variation of the Ekman number (Ek), defined to be proportional to the rotational
speed of the cylinder, has a strong effect on the flow characteristics. Simulations are conducted over a wide
range of Ek values (0 � Ek � 484) in order to provide detailed insight into how this parameter influences
the flow. Our results indicate that increasing Ek, which leads to a rise in the magnitude of centrifugal forces,
produces a stabilizing effect, suppressing wave formation. Key flow features, such as the transition from a 2D to
a more complex 3D wave regime, are influenced significantly by this stabilization and are investigated in detail.
Furthermore, the imposed rotation results in distinct flow characteristics such as the development of angled
waves, which arise due to the combination of gravitationally and centrifugally driven motion in the axial and
azimuthal directions, respectively. We also use a weighted residuals integral boundary layer method to determine
a boundary in the space of Reynolds and Ekman numbers that represents a threshold beyond which waves have
recirculation regions.
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I. INTRODUCTION

Falling liquid films are of central importance to a range of
industrial applications and associated unit operations, which
include reactors, distillation columns, heat exchangers, con-
densers, and evaporators. It is unsurprising, therefore, that
they have enjoyed significant attention in the literature for sev-
eral decades since the seminal work of Kapitza [1–4]. Falling
film flows are characterized by complex dynamics and pattern
formation. Waves emerge naturally from disturbances near the
inlet, which then grow downstream and as their amplitude in-
creases, nonlinearities then give rise to growth saturation; the
resulting wave deceleration then leads to constant wave speed.
Two distinct types of waves have been detected corresponding
to short waves that are nearly sinusoidal in shape, typi-
cally found near the flow inlet, and longer, large-amplitude,
solitary waves, further downstream; the latter have tall, well-
separated peaks, which are preceded by capillary waves of
much smaller amplitude and whose speed is maintained by
the constant compression from the main solitary wave peak,
located immediately upstream [5]. The interfacial dynam-
ics are also accompanied by transitions from two- (2D) to
three-dimensional waves that resemble horseshoe-like coher-
ent structures, and at higher film Reynolds numbers, “roll
waves” overtake the capillary waves resulting in complex,
apparently random, wave structures [4,6].

Numerous methods have been employed to investigate the
behavior of thin falling films. Experimentally, film thick-
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nesses and velocity profiles can be determined through
laser-based techniques including fluorescence and particle
image velocimetry measurements [7–13]. Furthermore, mod-
eling and numerical simulations have been used extensively
to provide insight into the complex falling film dynamics.
Low-dimensional (LD) modeling, whereby the governing
equations and boundary conditions are simplified, such as the
weighted residual integral boundary layer (WRIBL) model
by Ruyer-Quil and Manneville [14] have been used to pro-
vide an accurate representation of the hydrodynamics. A
comparison of these models is perfomed by Scheid et al.
[15]. Numerical modeling and direct numerical simulations
(DNS) have also been deployed starting with the work of
Ramaswamy et al. [16] who were among the first to perform
DNS on falling liquid films, using a finite-element method
with a Lagrangian-Eulerian formulation to analyze the spatial
and temporal stability of the flow. Two-dimensional sim-
ulations of falling films using the volume-of-fluid method
were performed by Gao et al. [17], who examined the
time-space wave evolution at different Reynolds and Weber
numbers. Gao et al. [17] and Nosoko and Miyara [18] also
assessed the impact of forcing the inlet flow rate with certain
frequencies on the emergent wave formation, an approach
similar to that employed experimentally by Park et al. [19].
Recently, Denner et al. [20] compared experimental mea-
surements with DNS and LD modeling for solitary waves
on inertia-dominated falling liquid films, finding good agree-
ment. These authors have further investigated the onset of
recirculation within the waves whose presence acts to in-
tensify the rates of heat and mass transfer in the falling
film [21–24].
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FIG. 1. Schematic of the flow showing fluid entering through an
inlet at the top of a cylinder of radius R, with velocity uz0 and height
h0, adhering to the cylinder wall which rotates at constant speed �,
resulting in a film with height, h = R − r. The computational domain
has lengths Lz and Lh in the axial and radial directions, and covers a
90◦ cylinder sector in the azimuthal direction.

In the present work, we consider the dynamics of a film
falling under gravity on the inside of a cylinder, which is
undergoing steady rotation; this study is carried out in con-
nection with applications such as evaporators in which the
rotation provides an additional degree of freedom to intensify
heat and mass transfer rates [25]. Notably, it has been shown
that the rotation increases the heat transfer coefficients by
25% in the case of a centrifugal thin-film evaporator, while
even greater increases are found in other geometries such as
spinning disks [26,27]. Furthermore, rotation provides greater
control over the flow dynamics in comparison to the nonrotat-
ing falling film case. It is also noteworthy that the problem of a
rotating, thin falling film is related to that involving a thin-film
flow down an inclined plane; in both flows, the films are in-
fluenced by a body force, which corresponds to centrifugation
and gravity in the rotating and nonrotating cases, respectively.
In the inclined plane case, for angle γ above the horizontal,
the Kapitza instability, which eventually leads to wave for-
mation, as described above, is present for Re > 5/6 cot γ
[28,29]. For angles past the vertical, the films, which are on
the underside of an inclined plane, are also vulnerable to a
Rayleigh-Taylor instability [30], as summarized in Fig. 1 of
Rietz et al. [31].

If one considers the forces acting on the system, then
the gravity component can be separated into a contribution

in the streamwise direction and one normal to this into the
plane. Inertia and the streamwise gravity component serve to
destabilize the flow, whereas surface tension and the gravity
component normal to the flow have a stabilizing effect. This
is comparable to the current case, in which the normal com-
ponent of gravity in the inclined plane case plays the role of
the centrifugal force due to rotation of the cylinder. Thus,
the angle of inclination can be equated to the ratio of the
centrifugal and gravitational accelerations. Rietz et al. [31]
have made use of this parameter to classify the results of
their experimental study of thin-film flow on the outside of
a vertical, rotating cylinder that feature the formation of 2D
and 3D waves, rivulet formation, and dripping.

Linear stability analyses of a thin film on the surface of a
rotating cylinder have been performed by Chen et al. [32] and
Davalos-Orozco et al. [33] using the lubrication approxima-
tion. Davalos-Orozco et al. [33] have noted that for flow on
the inside of the cylinder, inertial, and capillary forces have
a destabilizing effect, whereas the centrifugal force stabilizes
the flow. From this analysis, a critical, so-called centrifugal
number can be determined, suggesting that the flow is stable
for a sufficiently large rotational speed.

Although films falling on the exterior of a rotating cylin-
der have rich dynamics due to the simultaneous presence
of Kapitza, Rayleigh-Taylor, and centrifugal instabilities
[31,34,35], we focus on the effect of the stabilizing centrifugal
force associated with flow on the inner surface of a rotating
cylinder. In contrast to Rietz et al. [31] where the flow was on
the outside of the cylinder, and the centrifugal force served to
destabilize the flow by forcing fluid away from the cylinder
wall, here the flow is on the inner surface of the cylinder.
Therefore, the centrifugal force acts on the fluid by forcing
it toward the cylinder wall and suppressing wave formation.
This force will act in competition with the destabilizing grav-
itational force that leads to the Kapitza instability. Notably
the centrifugal force is weakest at the crest of the waves
making this region more susceptible to instabilties. Here we
will perform a numerical investigation of the flow, which is
yet to be studied in the nonlinear regime beyond the onset
of linear instabilities [33,36,37]. The role that rotation has on
the dynamics and stability of the flow will be examined and
our results will demonstrate the emergence of large-amplitude
waves that travel at a well-defined angle to the axis of the
vertical cylinder.

The rest of this paper is organized as follows: In Sec. II, the
problem formulation is presented, highlighting the key nondi-
mensional parameters associated with the flow via scaling of
the governing equations; a brief exposition of the numerical
methods deployed is also provided. In Sec. III, the results
from two-dimensional simulations, within a rotating frame
of reference, are presented, while in Sec. IV, the predictions
from the three-dimensional simulations are discussed. Finally,
conclusions and an outlook for future work are presented in
Sec. V.

II. PROBLEM FORMULATION

We consider a Newtonian liquid film of density ρl and
viscosity μl flowing due to gravity down the inner surface
of a rigid and impermeable cylinder of radius R, oriented
vertically, and rotating with a constant angular velocity �.

043106-2



NUMERICAL SIMULATIONS OF A FALLING FILM ON … PHYSICAL REVIEW E 102, 043106 (2020)

A gas phase of density ρg and viscosity μg is also present
in the cylinder, and the gas and liquid phases are separated
by an interface with surface tension σ . We use cylindrical
coordinates, r, θ , and z, defined as shown in Fig. 1, with
associated velocity components, ur , uθ , and uz, to describe the
flow. The film has thickness h(θ, z, t ) such that the gas-liquid
interface is located at r = R − h. The fluid is considered to
be incompressible, isothermal, and can be described by the
continuity and momentum equations, respectively given by:

∇ · u = 0, (1)

ρ

(
∂u
∂t

+ u · ∇u
)

= −∇p + μ∇2u + ρgẑ + σκnδ, (2)

where u is the velocity, p the pressure, g the gravitational
acceleration, κ , the curvature of the interface, n the unit
normal at the interface, δ represents the Dirac delta function
concentrated at the interface, and ẑ is the unit vector in the z
direction. Here we have used the CSF model [38] in order to
model the surface tension between two fluids.

We use a volume-of-fluid (VOF) interface-capturing ap-
proach to simulate the interfacial dynamics within the
open-source environment OpenFOAM. According to the VOF
method, a species transport equation is used to determine the
volume fraction, α, of each phase in every computational cell.
The function α allows one to define the local density and
viscosity as

ρ = αρg + (1 − α)ρl , (3)

μ = αμg + (1 − α)μl , (4)

and α is advected using the following equation:

∂α

∂t
+ ∇ · (αu) = 0. (5)

The continuum surface force approach to model the surface
tension force according to which the normal n and curvature
κ are respectively expressed by

n = ∇α

|∇α| , and κ = −∇ ·
( ∇α

|∇α|
)

. (6)

In order to construct a sharper interface, Eq. (5) is modified
to compress the surface and reduce smearing; further details
can be found in Ref. [39]. Roenby et al. [40], recently imple-
mented an isoAdvector scheme within OpenFOAM, allowing
for higher Courant numbers than the standard solver with
MULES. This uses the concept of isosurfaces to calculate
more accurate face fluxes, specifically for the cells containing
the interface. This geometric method has an optimum perfor-
mance at Co ≈ 0.5, compared to Co � 0.1 for the algebraic
VOF approach implemented in the interFoam solver [40]. This
isoAdvector solver (interFlow) was used in the current study.

The governing equations are rendered dimensionless via
introduction of the following scaling:

ũ = u
uN

, x̃ = x
hN

, t̃ = t

hN/uN
, p̃ = p

ρu2
N

, κ̃ = κ

1/hN
,

(7)
in which hN and uN correspond, respectively, to the Nusselt
thickness and velocity for a planar falling film in the absence

of rotation:

hN = 3

√
3μl qN

ρl g
, uN = ρl gh2

N

3μl
, (8)

where qN = hN uN . Note that we have also set δ̃ = hNδ, since
the δ function can be defined as δ = ∇H (x − xs), where H
and xs are the Heaviside function and position of the interface
respectively, whereby H is approximated numerically [41].
Above and below, tildes designate dimensionless variables.
Applying these scalings to the mass and momentum equa-
tions, we obtain

∇̃ · ũ = 0, (9)

∂ũ
∂ t̃

+ ũ · ∇̃ũ = −∇̃ p̃ + 1

Re
∇̃2ũ + 1

Fr2 ẑ + 1

We
κ̃ δ̃, (10)

where the dimensionless parameters that appear in Eq. (10)
correspond to the Reynolds, Froude, and Weber numbers,
respectively given by:

Re = ρuN hN

μ
, Fr = uN√

ghN
, We = ρu2

N hN

σ
. (11)

At the cylinder surface, located at r̃ = 1/β, we impose a
no-slip boundary condition such that the dimensionless az-
imuthal velocity is as follows:

ũθ |r=R = �R

uN
= Ek

Re
, (12)

in which Ek is the Ekman number given by

Ek = ρ(�R)hN

μ
, (13)

and β ≡ hN/R. Outflow boundary conditions are imposed at
the outlet and gas boundary, and thus properties have zero
gradient at these boundaries. At the inlet a uniform velocity
is applied such that

u(r, θ, t )|z=0 = uN ẑ, h(t )|z=0 = hN . (14)

In dimensional terms, the flow is initiated as a stationary
film with thickness hN , such that

u(r, θ, z)|t=0 = 0, h|t=0 = hN . (15)

Here hN and uN correspond to the Re given below. A
90◦ sector of the cylinder was used with periodic boundary
conditions in the azimuthal direction so as to reduce the
computational requirement. The choice of sector size was
validated against numerical solutions obtained for a full cylin-
der. As will be shown below, the computational domain is
sufficiently large so as to accommodate the fine-scale fea-
tures of the emergent waves. The waves have sufficiently
small wavelengths in the azimuthal direction to support the
choice of utilizing a cylindrical sector with periodic boundary
conditions.

In order to simulate rotation within a two-dimensional do-
main it is necessary to be in the rotating frame of reference.
The Navier-Stokes equations can be expressed in a noninertial
frame using a Lagrangian approach [42]. We can then model
the system in the r-z plane, accounting for the rotation through
the reference frame. For this approach to be valid one must
take into account the curvature of the cylinder. Chen et al.
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[32] found that the influence of the curvature on stability
was negligible for 1/β � 10; in the present case, 1/β = 146,
which demonstrates the validity of our approach. Likewise,
the centrifugal acceleration varies marginally across the film
since β is small. Equation (2) can be reexpressed as follows
in a rotating reference frame:

ρ

(
∂u′

∂t
+ u′ · ∇u′

)
= −∇p + μ∇2u′ + ρgẑ + σκnδ

− � × (� × r) − 2� × u′, (16)

where � = −�ẑ. Velocity is in the rotating reference frame
such that u′ = u − �r. The fifth and sixth terms on the
right-hand side of Eq. (16) correspond to the centrifugal and
Coriolis forces, respectively. Substitution of the scalings in
Eq. (7) into Eq. (16) yields

∂ũ′

∂ t̃
+ ũ′ · ∇̃ũ′ = −∇̃ p̃ + 1

Re
∇̃2ũ′ + 1

Fr2 ẑ + 1

We
κ̃ δ̃

− Ek

Re

{
β2

(
Ek

Re

)
[ẑ × (ẑ × r̃)] + 2(ẑ × ũ′)

}
.

(17)

The two-dimensional domain encompasses 0 � z � Lz

and R − Lh � r � R in the axial and radial directions, respec-
tively. A dimensionless domain size of L̃h ≈ 7.5 and L̃z ≈ 725
minimized the effect of the gas dynamics on the interface
and ensured that there was sufficient space for the transition
between wave regimes to occur unhindered. Mesh refinement
in the region of the film, 1

β
− 2.5 < r̃ < 1

β
was performed

such that the mesh size was 0.09 in the film region and 0.45
in z̃, broadly similar to the 2D domain employed by Gao
et al. [17]. The 3D case was constructed by extruding the 2D
geometry and mesh in the azimuthal direction, producing a
cylindrical sector with a mesh size of 0.46 in θ in the region
of the film. A dynamic time step was selected such that the
Courant number Co < 0.5 was satisfied as per the optimum
performance of the solver [40].

An air-water system was used such that the gas phase
had density ρg = 1.27 kg m−3 and kinematic viscosity νg =
1.42 × 10−5 m2 s−1. The liquid film has density ρl =
1000 kg m−3, kinematic viscosity νl = 1.14 × 10−6 m2 s−1,
and surface tension σl = 7.28 × 10−2 N m−1. The dimension-
less parameters based on these conditions are Re = 53, Fr =
4.2, We = 0.18, and β = 1.4 × 10−4 while Ek varies between
0 � Ek � 484.

III. TWO-DIMENSIONAL SIMULATION

A. Direct numerical simulations using VoF

Figure 2 depicts the flow characteristics of a typical film
evolution for Ek = 193, which corresponds to an intermediate
rotational speed; the rest of the parameter values are fixed
at Re = 53, Fr = 4.2, and We = 0.18. Small-amplitude
perturbations originating near the domain inlet are amplified
downstream under the action of gravity leading to a tran-
sition from an essentially waveless to a wavy flow regime.
The structure of the emergent waves shown in the time-space

(a)

(b)
(c)

(d)

FIG. 2. Flow dynamics for the Ek = 193 case: (a) time-space
plot of interface showing a transition toward the point at which the
temporal evolution of the interface does not vary significantly; (b) a
snapshot of the film thickness profile at t̃ = 1540 with the color bar
showing the magnitude of the azimuthal velocity component, ũθ ;
(c) temporal evolution of the kinetic energy, Ek

′, and film waviness,
ψ ; d) axial velocity component ũz with streamlines in the reference
frame of the wave celerity, c, for t̃ = 1540. The rest of the parameters
are Re = 53, Fr = 4.2, and We = 0.18.

plot and the snapshot at t̃ = 1540 in Figs. 2(a) and 2(b),
respectively, is due to a delicate interplay between gravi-
tational, centrifugal, capillary, inertial, and viscous forces.
This structure is characterized by large-amplitude features
that interact as they flow in the streamwise direction. It is
also clear on close inspection of Fig. 2(b) that the magnitude
of the azimuthal velocity component, ũθ , in the film varies
over a relatively narrow range, close to the imposed cylinder
rotation.
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In Fig. 2(c) we track the kinetic energy, Ek
′, and the film

waviness, ψ , respectively, given by

Ek = 2π

∫ L̃z

0

∫ 1/β

1/β−h̃
r̃|ũ′|2dr̃dz̃, (18)

ψ =
∫ L̃z

0
|h̃ − 1|dz̃, (19)

where Ek is the kinetic energy in a rotating frame of refer-
ence and Ek

′ = Ek/2π . The film waviness ψ is defined as a
measure of the fluctuations of the film from the Nusselt film
height. Figure 2(c) shows clearly the point at which the tempo-
ral evolution of the flow characteristics begin to plateau after
approximately t̃ = 600 (though there remain low-amplitude
fluctuations in ψ past this point in time).

The time-space plot depicted in Fig. 2(a) can be used to
estimate the wave speed or celerity, c, by tracking a single
wave in the domain and noting the distance moved �z in
time �t . This was found to be approximately 0.4 m s−1

essentially independent of Ek and, in turn, of the rotational
speed of the cylinder, which acts in the azimuthal direction;
it is primarily influenced by the constant gravitational force
in the axial direction. In some cases, the local wave speed
can exceed c leading to the formation of a recirculation zone
in the reference frame of the wave celerity [20,43], which
gives rise to enhanced mixing. These flow characteristics are
less prevalent at high Ek as the impact of rotation mitigates
the formation of large, fast waves due to the increased stabi-
lization. This is industrially relevant, as operating at higher
rotational speeds may be preferential for certain applications
for transport control, for instance, but will demote mixing
within the waves. Streamlines in the reference frame of the
wave celerity are plotted in Fig. 2(d) where the recirculation
zone is clear in the larger, faster-moving wave but absent in
the smaller one.

Having analyzed the flow for a single intermediate Ek
value, Fig. 3 shows the effect on the dynamics across a range
of Ek with all other parameters kept constant at Re = 53,
Fr = 4.2, We = 0.18, and β = 6.9 × 10−3. Time-space plots
of the simulation (t̃ > 800) are shown for Ek = 0 in Fig. 3(a)
and Ek = 339 in Fig. 3(b), and while the natural evolution
from a waveless to a wavy regime is notable in both cases,
there are distinct differences. Qualitatively the reduction in
the degree of waviness is apparent due to the stabilizing effect.
There is also a clear extension in the waveless regime with an
increase in Ek, which can be quantified by estimating the tran-
sition from the waveless to a wavy regime, beyond a length
L2D computed according to z̃ = L2D, if h̃ < 0.98 or h̃ > 1.02.
As shown qualitatively in Figs. 3(a) and 3(b), this entry length,
establishing the onset of 2D waves, increases monotonically
with Ek. This length will be dependent on the relative acceler-
ation in both the centrifugal and axial directions, �2R and g,
respectively. Therefore, one expects L2D to have the following
dependence on the operating parameters:

L2D

hN
∼ �2R

g
. (20)

From the definition of Ek, Re, hN , and β, this relation can be
reexpressed as follows:

L2D

hN
∼ β

Ek2

Re
, (21)

thus L2D ∼ Ek2 for fixed β and Re.
The dynamic evolution of Ek

′ and ψ for a range of Ek
is also shown in Figs. 3(c) and 3(d), respectively. It is seen
clearly that variation of Ek has a profound effect on the film
waviness: We observe that there is a decrease in the film wavi-
ness with an increase in Ek. At the largest Ek examined, the
film waviness is suppressed significantly, with ψ approaching
a steady value close to zero, compared with lower Ek. This is
as expected as an increase in Ek is tantamount to an increase
in the rotational speed, which increases the centrifugal force,
stabilizing the flow. In contrast, the temporal variation of Ek

′
is weakly dependent on Ek though it provides an indication
of when the temporal evolution of the flow characteristics
plateau (beyond t̃ ≈ 500).

In Fig. 4(a), we show a comparison of waves formed at
different Ek with the rest of the parameters kept unaltered
from Fig. 3; each one of these waves corresponds to a traveling
wave extracted from the domain at distances beyond L2D.
The first observation that can be made is the decrease in the
amplitude of the wave peaks with an increase in Ek, due to the
increasing stabilizing force. It is also seen that at high Ek the
wave structure is altered significantly with a severe depression
in the peak and a much less pronounced distinction between
the primary wave and the capillary waves downstream, which
is characteristic of solitary waves in falling film flows. It
should be noted that the wave depicted for Ek = 484 in
Fig. 4(a), however, does not belong to the nearly sinusoidal
wave family but a solitary one. Indeed, we have found that the
centrifugal forces arising from the imposed rotation simply
delay the emergence of the solitary waves, which is in accor-
dance with the observation made in Fig. 3(e) that illustrates
the monotonic growth of L2D with Ek. Further investigation
into the nature of fully developed waves is conducted below.

Due to the complex nature of the waves, one would expect
the velocity profiles within the thin films to be nonparabolic
[44]. We show in Figs. 4(b)–4(f) the shape of these profiles at
the designated points in Fig. 4(a). Inspection of Fig. 4(b) re-
veals that the velocity profiles are close to parabolic upstream
of the wave peaks, in the region in the which a flat film is
approached. This is in contrast to Fig. 4(c), where profile 3
specifically bulges over the parabolic curve. This feature still
exists for Ek = 97 in Fig. 4(e), though to a lesser extent, re-
flecting the stabilizing effect of cylinder rotation that promotes
more parabolic-type profiles. This trend is also apparent on
inspection of the profiles within the capillary waves, shown
in Figs. 4(d) and 4(f), with the profiles tending toward the
parabolic reference curve with increasing Ek. The profiles can
also be used to determine the extent of recirculation within
the wave. In Figs. 4(c) and 4(e), profiles 2 and 3 bulge below
and above the parabolic profile, respectively, and cross one
another, indicative of a recirculation zone within the wave, a
common feature of solitary wave profiles [17].

We have also performed fast Fourier transforms (FFT) of
the time-averaged interface profiles in the wavy regime (for
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(a) (b)

(c) (d)

(e)

FIG. 3. Effect of Ek on the flow: [(a) and (b)] Time-space plots of the interface for Ek = 0 and 484, respectively; [(c) and (d)] temporal
evolution of the film waviness, ψ , and kinetic energy, Ek

′, respectively, for Ek = 0, 97, and 484; (e) variation of the domain length beyond
which a transition to 3D structures is observed, L2D, with Ek. The rest of the parameter values remain unaltered from Fig. 2.

z > L2D for every Ek value considered) after subtracting the
mean film height; this is shown in Fig. 5. This subtraction
is to account for the νz = 0 m−1 wave number that would be
prevalent with a signal with a nonzero mean amplitude. The
time-averaging was performed for times that exceeded those
associated with the establishment of the simulation stabilizing
for each Ek. In Figs. 5(a) and 5(b), we show example snap-
shots of the spatial development of the interface for Ek = 0
and Ek = 339, with their power spectra shown in Figs. 5(c)
and 5(d), respectively. It is clearly seen that the profile asso-
ciated with Ek = 0 are significantly wavier than its higher Ek
counterpart, characterized by large-amplitude peaks preceded
by high-wave-number capillary waves. This is reflected by
the higher-energy content of the wave-number modes, partic-
ularly at relatively low νz, as demonstrated via comparison of
Figs. 5(c) and 5(d). Applying a moving average allows us to
compare the power spectra associated with the two Ek values
in Fig. 5(e). This shows that the dominant mode is weakly

dependent on Ek though the associated amplitude is larger in
the purely falling film case. In Fig. 5(f), we plot the variation
of the wave number associated with the dominant mode with
Ek. It is seen that the dominant modes have wave numbers that
are in the range 65–80 m−1 for the range of Ek studied, with
no strong dependence on Ek suggesting that the structure in
the axial direction is not dominated by the centrifugal forces
due to cylinder rotation.

We analyze the flow further in both the z and θ directions
by plotting the axial and azimuthal flow rates, which are
respectively expressed by

f̃z =
∫ 1/β

1/β−h̃
r̃ũzdr̃, f̃θ =

∫ 1/β

1/β−h̃
r̃ũθ dr̃, (22)

where ũz and ũθ denote the axial and azimuthal velocity
components, respectively, and ( f̃z, f̃θ ) = ( fz, fθ )/2πh2

N uN . In
Fig. 6(a), we plot the axial variation of f̃z for the falling film
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(a) (b)

(c) (d)

(e) (f)

FIG. 4. Velocity profiles in the film underneath the the solitary
waves for various Ek with the rest of the parameters remaining
unaltered from Fig. 2: (a) three interfacial profiles for Ek = 0, 97,
and 484, with the points 1–6 marking the locations at which the radial
variation of the axial velocity component normalized by its maximal
value, uz/U , is plotted in (b), (c) and (d), and (e) and (f) for Ek = 484,
0, and 97, respectively; also shown in (b)–(f) is a parabolic profile for
reference. The radial coordinate is normalized by the local maximum
film height H .

(a) (b)

(c) (d)

(e) (f)

FIG. 5. Single case (t̃ = 955) input for FFT for (a) Ek = 0 and
(b) Ek = 339; single case FFT output result for (c) Ek = 0 and
(d) Ek = 339; (e) time-averaged FFT distributions for Ek = 0 and
Ek = 339; (f) time-averaged axial wave number at each Ek. The rest
of the parameters remain unchanged from Fig. 2.

(a)

(b)

FIG. 6. Axial (a) and azimuthal (b) flow rates for a range of Ek
at t̃ = 1193. The rest of the parameters remain unaltered from Fig. 2.

and Ek = 339 cases where it is seen that the waviness in f̃z,
which closely relates to that of the interface, is suppressed
for the high Ek case; here, the rest of the parameters remain
unchanged from Fig. 2. This result is matched by that depicted
in Fig. 6(b) in which it is shown that the average f̃θ increases
with Ek due to the rise in the influence of centrifugal forces
on the flow. Despite this trend, close inspection of Fig. 6(b)
also reveals that the amplitude of the oscillations in f̃θ is
maximized for an intermediate range of Ek. This is because
an increase in Ek results in an increase in ũθ , which promotes
f̃θ , but also leads to suppression of interfacial waviness.
These competing effects give rise to the results presented in
Fig. 6(b).

B. Simulations using WRIBL method

The presence of recirculation is an important feature of
falling films, with relevance in industrial applications due
to enhanced mixing. We have shown that the presence of
rotation has a marked effect on the shape of the waves and
hence the degree and presence of recirculation. The interplay
between the inertial instability in the axial direction and
the centrifugal stabilization determines the wave formation.
It is instructive to construct a phase diagram with these
parameters determining whether recirculation is present,
for which we require a model to optimize processing time,
compared to the use of full DNS. Rohlfs et al. [45] have
recently developed WaveMaker, a Matlab-based software,
which simulates periodic waves in 2D and 3D domains,
utilizing a WRIBL approach. In WaveMaker, to replicate flow
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(a) (b)

(c) (d)

(e) (f)

1.5

1.5

1.
5

FIG. 7. Comparison of 2D wave formation for (a) VOF, Ek = 0; (b) WRIBL, Ek = 0; (c) VOF, Ek = 339; and (d) WRIBL, Ek = 339;
(e) temporal evolution of the maximum film height normalized by the Nusselt film thickness, hmax/hN , generated via the VOF and WRIBL
methods; (f) Re-Ek phase diagram showing the boundary separating waves wherein recirculation is observed in a frame-of-reference moving
with the wave celerity and for which hmax/hN ≈ 1.5. The rest of the parameters remain unaltered from Fig. 2.

on the surface of a rotating cylinder, the flow is subjected to
gravitational acceleration in the streamwise and cross-stream
directions equaling standard gravitational acceleration and
centrifugal acceleration, respectively [45], whereby Coriolis
force is neglected compared to the two-dimensional DNS
performed above; however, it should be noted that the
Coriolis force is often considered neglibible at small scales
[46]. Both two-dimensional and three-dimensional domains
are utilized and compared to the results from the VOF DNS
approach, with the 2D full second-order WRIBL model used
to construct a phase diagram in Re-Ek space.

One notes that the VOF simulations are of a developing
wave and are periodic in the azimuthal direction, compared
to the WRIBL model, which is for spatially periodic waves
in both the streamwise and spanwise directions. However, a
comparison can be made between more developed waves in
the latter part of the domain z̃ > L2D and those created via
the WRIBL approach. A domain size of 0.0143 m was chosen
based on an axial wave number that has been shown to be
νz ≈ 70 m−1 for the range of Ek investigated in Fig. 5(f).
We employ the analogy that the simulation in the case of a

film on the inside of a rotating cylinder corresponds to that
of its counterpart on a plane inclined at an angle γ set by
γ = tan−1 (g/�2R). For a chosen Ek value, the corresponding
� is then used to determine γ whence the Reynolds number
for the inclined plane WRIBL simulation is given by

ReWRIBL = h3
N

3v2
g sin γ . (23)

It is important to check the curvature of the cylinder in the
VOF simulations is such that an inclined plane analogy is
valid. As stated previously the curvature 1/β � 10 making
the influence of the curvature on the stability negligible [32].

Figures 7(a) and 7(b) provide a comparison for Ek = 0
of the 2D waves from the VOF and WRIBL simulations,
respectively. With no centrifugal force suppressing wave for-
mation, the recirculation within the solitary wave is evident.
Furthermore, the capillary waves are significantly smaller
than the preceding main hump. In contrast, at Ek = 339, as
observed in Fig. 7(c) and Fig. 7(d), recirculation is absent
from the main wave hump. We then compare the WRIBL
results to those obtained from the VOF simulations in terms of
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(d)

(e) (f)

(a) (b) (c)

FIG. 8. Snapshots taken at t̃ = 955 showing contour plots of the interface that demonstrate the formation of angled waves for (a) Ek =
97 and (b) Ek = 339; dynamic evolution of the film waviness ψ and kinetic energy Ek

′, shown in (c) and (d), respectively, for a range of Ek;
(e) narrowing of the film height distribution with an increase in Ek. The rest of the parameters remain unaltered from Fig. 2; (f) comparison
of the angle φ values obtained from simulations with those determined from Eq. (26) with U from extracted wave celerities and Nusselt
theory.

temporal evolution of the maximal film thickness normalized
by the Nusselt film thickness, hmax/hN . Figure 7(e) shows that
the WRIBL results converge to a steady state, with a lower
hmax/hN for the higher Ek case, due to the increased stability.
This hmax/hN for each Ek matches well with the quasi–steady
state obtained from the VOF simulations, suggesting that the
developed waves where z̃ � L2D are comparable to those
obtained by the WRIBL model, further supported qualita-
tively through Figs. 7(a)–7(d). These results indicate that the
WRIBL approach provides a reasonably good approximation
of the VOF DNS predictions. On this basis, the WRIBL
method was used to construct the phase diagram shown in
Fig. 7(f). Notably, the level of inertia, characterized by Re,
required to have recirculation increases with Ek. The critical
boundary for recirculation in Re-Ek space coincides with the
hmax/hN = 1.5 contour; thus, the latter provides an effective
criterion for the onset of recirculation. As will be discussed
below, this can be applied in the three-dimensional case to

determine the presence of recirculation, to which we now turn
our attention.

IV. THREE-DIMENSIONAL SIMULATIONS

In this section, we present the results of our 3D simulations
of the interfacial dynamics. Our aim is to uncover details of
the flow masked by the axisymmetric assumption made in the
previous section; details of the simulation setup are found in
Sec. II. In Figs. 8(a) and 8(b), we show snapshots of the inter-
face in the “unwrapped” (θ, z) plane for Ek = 97 and Ek =
339, respectively, wherein the color represents the thickness of
the film. Similarly to the 2D predictions discussed in Sec. III,
these figures show clearly the development of a wavy interface
from an essentially waveless region near the domain inlet. In
3D, however, it is seen that the effect of rotation causes the
formation of waves that appear to be oriented to the horizontal
with a reasonably well-defined angle φ. In Fig. 8(c), it is seen
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that the film waviness, ψ̄ , decreases with Ek, just as in the 2D
case, and its temporal variation reaches a steady state beyond
a dimensionless time whose value is not a strong function of
Ek. In Fig. 8(d), we also see that the kinetic energy, which, just
as in the 2D case, is weakly dependent on Ek, also reaches
a steady-state albeit at an earlier time than ψ̄ . Here ψ̄ and
Ēk

′ = Ēk/2π represent the film waviness and kinetic energy,
in the fully three-dimensional domain:

ψ̄ =
∫ π/2

0

∫ L̃z

0
|h̃ − 1|dz̃dθ, (24)

Ēk = 2π

∫ π/2

0

∫ L̃z

0

∫ 1/β

1/β−h̃
r̃|ũ′|2dr̃dz̃dθ. (25)

The distribution of film heights is also obtained from the
3D simulations and shown in Fig. 8(e). We observe a nar-
rowing of the distribution around the Nusselt film height as
Ek increases due to the stabilizing effect of an increase in
the rotational speed, as the suppression of wave formation
reduces fluctuations around hN . The “angled” waves occur
due to a competition between the axial flow due to gravity
and the azimuthal flow due to the rotation of the cylindrical
surface. On this basis, we propose an expression that provides
an estimate of the angle, φa, which assumes the direction of
mean wave motion to be aligned with that of the resultant
of axial and azimuthal characteristic velocities, U ẑ and V θ̂,
respectively:

φa = tan−1
(U
V

)
, (26)

where ẑ and θ̂ denote the unit vectors in the axial and az-
imuthal directions, respectively, V = �R, and a reasonable
estimate for U is given by the wave celerity that can be
extracted readily from the time-space plots in the 2D simu-
lations. In Fig. 8(f), we plot the variation of φ with Ek, where
it can be seen that φ decays as a function of Ek. If one were
to choose the Nusselt solution, uN , for U then using the defi-
nitions for Re and Ek, it is seen readily that tan φa = Re/Ek,
thus tan φa ∼ Ek−1 for fixed Re. This corresponds to the as-
sumption that the falling film has a uniform film thickness. As
can be seen from Fig. 8(f), this approximation gives rise to
a similar qualitative trend to that already discussed but a sig-
nificant quantitative discrepancy; the latter is attributed to the
presence of the waves, which are not taken into account in the
Nusselt solution. Also shown in Fig. 8(f) is the prediction from
Eq. (26) utilizing the wave celerity, c, whereby Rec = ρchN

μ
,

which shows excellent agreement with those obtained from
the 3D numerical simulations.

We perform two-dimensional FFTs of the interface contour
in the (θ, z) plane, as shown in Fig. 9(a), with the contour plot
of the power spectra shown in Fig. 9(b); here νz and νθ de-
note the wave numbers in the axial and azimuthal directions,
respectively. The discrete Fourier transform Y of an m-by-n
matrix X is given by:

Yp+1,q+1 =
m−1∑
j=0

n−1∑
k=0

ω j p
m ωkq

n Xj+1,k+1, (27)

FIG. 9. (a) Input signal to 2D FFT for Ek = 0; (b) FFT output of
Ek = 0 case; (c) input signal to 2D FFT for Ek = 339; (d) FFT output
of Ek = 0 case; (e) variation of axial and azimuthal wave numbers,
νz and νθ , with Ek. The rest of the parameters remain unaltered from
Fig. 2.

where ωm and ωn are complex roots of unity:

ωm = e−2π i/m, ωn = e−2π i/n, (28)

i is the imaginary unit, p and j are indices that span 0 to
m − 1, and q and k are indices that span 0 to n − 1. Here
the m × n input is the matrix of film heights in the (θ, z)
plane. We require similar modifications to the input as in the
2D case, in order to avoid biasing the result via the waveless
section of the flow or through the nonzero mean amplitude
bias inherent within the FFT. As seen in Fig. 9(a), we modify
the input using L2D and h̃ − ¯̃h, for this case Ek = 0. Af-
ter applying the FFT, the result is mapped onto the (νθ , νz )
plane, as shown in Fig. 9(b), where the peak of maximum
amplitude is highlighted in yellow. From Fig. 9(a), we can
qualitatively estimate 8 waves within the domain yielding
νz ≈ 70 m−1. This coincides with νz readings computed from
the 2D simulation and the FFT result in Fig. 9(b). We also
note in this no-rotation, Ek = 0, case, that the waves are not
angled, which is reflected in the FFT result as νθ = 0 at the
primary peak, showing the absence of a contribution from the
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FIG. 10. Comparison of 3D simulations for (a) Ek = 0 and (b) Ek = 339. In each panel the VOF and WRIBL solutions are shown in the
left and right panels, respectively. The rest of the parameters are unaltered from Fig. 2.

azimuthal wave number νθ . As Ek is increased, the waves
become angled leading to a nonzero contribution to νθ . An
example of this is provided by the Ek = 339 case for which
the interface contour is shown in Fig. 9(c). The associated FFT
output is shown in Fig. 9(d), with the peak at νz = 63 m−1 and
νθ = 16 m−1. As demonstrated above, the angles of the waves
strongly depend on Ek and we expect a similar relationship
between Ek and νθ . In a similar manner to the results of the
FFT for the 2D simulation for which νz is weakly dependent
on Ek [see Fig. 5(f)], Fig. 9(e) shows that while νz remains
approximately constant with Ek, νθ decreases for Ek > 0 and
follows a similar trend to that shown in Fig. 8(e) for angle φ

vs. Ek. One expects the length scale of a coherent structure
in the azimuthal direction, λθ , to be the product of a linear
velocity set by the cylinder rotation, �R, and a timescale set
by the gravitational forces, hN/uN . From the definitions of
Re and Ek, λθ ∼ �RhN/uN ∼ (Ek/Re)hN . Thus, λθ ∼ Ek and
νθ ∼ λ−1

θ ∼ Ek−1 for fixed Re.
The full second-order WRIBL can be run in 3D space

in order to draw a comparison with the VOF simulations,
as in Fig. 7. The 3D domain size was selected in order to
obtain a single wave in the domain, similarly to the 2D case,
with the exception that it imposes double periodic boundary
conditions. Hence, accounting for the wave number computed
from the FFT, a 0.0143 m2 domain was selected. The analogy
with a falling film on an inclined plate proposed for the 2D
analysis was also employed for this 3D configuration. As
stated in Sec. III the comparison is valid for 1/β � 10 [32]
as is the case here. A developed wave profile from the VOF
simulation is compared to that obtained from the WRIBL
model in Fig. 10, using the same domain area. The variation
in film height in the the Ek = 0 case is much more significant,
reflecting the enhanced stability due to rotation. Furthermore,
the capillary waves are smaller and more numerous, reflected
in both simulations. From Fig. 10(b), we observe the angled
waves are not captured using the WRIBL model, as this uses
a normal acceleration compared to a physically moving wall.
Comparing the maximum film height to the 2D case in Fig. 7
we note that hmax is systematically 5% lower in the 3D case,
possibly due to spanwise surface tension interactions. Despite
this, after applying the criteria of hmax/hN > 1.5 for recircula-
tion, we yield the same result, with sufficient Ek suppressing
wave formation and recirculation, reflected in Fig. 10. While
there is a clear difference in the wave orientation with the
rotationally resolved DNS in Fig. 10(b), the ability of the
WRIBL method to predict the effects of rotation on wave

formation and recirculation in a developed state appears
advantageous for rapidly establishing operating conditions for
the intensification and control of convective transport within
the film.

V. CONCLUSION

We have investigated the flow of a thin film falling under
gravity on the inside of a vertical cylinder undergoing steady
rotation by studying the interfacial dynamics in two and three
dimensions via numerical simulations using the VOF method.
We have shown that the cylinder rotation, characterized by
an Ekman number has a significant effect on the structure
of the interfacial waves. Increasing the relative magnitude of
the centrifugal force enhances interfacial stability, suppresses
the wave formation brought about by the Kapitza instability
and extends the development length from the domain inlet
prior to the appearance of the waves. Furthermore, our three-
dimensional simulations demonstrate the formation of angled
waves where the angle is dependent on the wave celerity and
azimuthal velocity. FFT’s of the interface are performed in
both the two- and three-dimensional cases, finding that the
axial wave number is independent of the rotational speed,
while the azimuthal wave number is closely aligned with
the angle of the waves, and hence decreases with an in-
crease in Ek. We have also compared the predictions from
a Matlab-based weighted residual integral boundary-layer
method approach [45] to the two- and three-dimensional VOF
results and used it to construct a phase diagram, in which
we highlighted the regions in Ekman-Reynolds number space
wherein recirculation within the wave peaks is expected to
arise.
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