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Spreading of Normal Liquid Helium Drops
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We have used video imaging and interferometric techniques to investigate the dynamics of spreading of drops
of 4He on a solid surface for temperatures ranging from 5.2 K (near the critical point) to 2.2 K (near Tλ).
After an initial transient, the drops become pancake-shaped with a radius that grows as R(t ) ≈ tα, with α =
0.149 ± 0.002. The drops eventually begin to shrink due to evaporation driven by gravitational and curvature
effects, which limits their lifetime to about 1000 s. Although helium completely wets the substrate, and the
spreading takes place over a pre-existing adsorbed film, a distinct contact line with a contact angle of order one
degree is visible throughout this process.
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I. INTRODUCTION

When a drop of fluid is deposited on a solid surface, surface
tension and gravitational forces will cause it to spread. If
the fluid partially wets the solid, then the drop will come
to equilibrium with a contact angle θc given by the Young
equation cos(θc) = (σsv − σsl )/σlv where σsv, σsl, and σlv are
the solid-vapor, solid-liquid, and liquid-vapor interfacial ener-
gies, respectively. If the characteristic size of the drop is small
compared to the capillary length Lc = √

σlv/(gρ), where g is
the acceleration due to gravity and ρ is the fluid mass density,
then the drop assumes a spherical cap shape which minimizes
the surface energy; while if the characteristic size is greater
than Lc, then gravitational energy dominates and the drop
evolves into a pancake shape [1].

In contrast, if the fluid completely wets the substrate (i.e.,
if σlv < σsv − σsl), then the drop will eventually spread into
a molecularly thin flat film. Because of its importance in
coating technologies, the kinetics of the spreading process has
been extensively studied both theoretically [2,3] and experi-
mentally [4–6]. Much of the experimental work has utilized
silicone oil as the working fluid. Even if the fluid completely
wets the substrate and the equilibrium contact angle is zero,
during the spreading process there is a well-defined advancing
contact line and contact angle. Experiments using conven-
tional fluids show that the drop spreading footprint radius
R(t ) typically grows as a power of time t , R(t ) ∼ tα , with
0.1 < α < 0.15, and with a prefactor which depends on the
fluid viscosity. One common theoretical approach is to model
the fluid flow in the drop using the hydrodynamic lubri-
cation approximation, which quantitatively balances surface
tension and gravitational forces against viscous forces with
the additional constraint of volume conservation. For axisym-
metric spherical cap drops driven by surface tension forces,
a well-known asymptotic solution often called Tanner’s law
[7] yields R(t ) ∼ t1/10. The spherical cap approximation is

only valid for drops with characteristic size less than the
capillary length. For larger drops, gravity dominates surface
tension forces, and for this case of gravity driven spreading,
the lubrication approximation yields [8,9] R(t ) ∼ t1/8.

Another approach to contact line dynamics focuses atten-
tion on dissipative processes at the contact line rather than
viscous dissipation in the bulk flow. This molecular kinetic
theory (MKT) models contact line motion as a sequence of
thermally activated steps in a washboard potential that de-
scribes the driving force for spreading and pinning forces
at the substrate. For a spherical cap drop driven by surface
tension [10–12], the MKT asymptotic dynamics are R(t ) ∼
t1/7, but pancake drop geometries or gravitational driving
forces yield different exponents. It is important to note that
the value of the exponents is independent of the magnitude
of the dissipation, which only appears as a prefactor to the
power law. A simplified discussion of these spreading laws
and the crossover regimes between the various power laws is
discussed in the Appendix.

There are several motivations for studying spreading of
liquid helium. Helium has a very low surface tension and
wets all substrates except cesium [13–15]. Even in the normal
state, the viscosity is approximately a million times lower
than silicone oils. (Spreading in the superfluid state is quite
unusual and is discussed in a separate recent publication [16].)
Liquid heluim has some unusual properties (at a tempera-
ture of 2.5 K, Helium has a density ρ of 144.8 kg/m3, a
surface tension σ of 262.3 μN/m, and a dynamic viscosity
η of 3.259 × 10−13kg/m ∗ s). Conventional room tempera-
ture spreading experiments usually take place in air, and the
spreading drop advances into a dry region with a possible
precursor film [17] that advances ahead of the three phase
contact line. The helium experiments, in contrast, are done
at the saturated vapor pressure, so the drop advances into a
“moist” region covered by a liquid film of typical thickness
40 nm which is stabilized by the van der Waals interaction
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FIG. 1. Schematic diagram of cryogenic and optical apparatus.
Drops were delivered from a capillary tube approximately 1 cm
above the substrate, which was usually a sapphire plate. The spread-
ing drop was illuminated with collimated and filtered LED light,
which was shone at a shallow angle for the edge-on view, or reflected
from a 45 degree mirror to produce normal incident light for the bot-
tom view. The level of the bulk liquid in the cell was approximately
1 cm below the top of the substrate.

with the solid substrate. We find that the most appropriate
model for the conditions of our experiment is surface tension
driven spreading of a pancake-shaped drop which corresponds
to a spreading exponent of 1/7.

II. EXPERIMENT

The cryogenic and optical setup of our apparatus is shown
in Fig. 1. The experimental cell was housed in a continuous
pulse tube/4He evaporation cryostat with multiple optical
access ports. An optical grade sapphire substrate or quartz
crystal microbalance (QCM) was mounted within the cell as
the impacting surface. A dropper was mounted above the sap-
phire through a metallic mirror positioned at a 45◦ angle. All
experiments were performed with bulk liquid at the bottom of
the experimental cell, ensuring a saturated vapor environment.
Helium drops were produced by increasing the pressure in the
dropper line sufficiently above the cell vapor pressure for the
given temperature. A 5 μm ID tube in the dropper line acts
as a flow impedance to limit the drop rate from once every
2 min to once every 20 min. Because the pressure in the cell
is always at the saturated vapor pressure, the substrate was
covered in a thin film of liquid helium even before the drop
impacts. The film thickness was measured to be 12–40 nm by
the QCM.

An LED was used in pulsed mode to minimize heat input
in the cell due to the light. The light from the LED traveled
through a series of collimating lenses limiting illumination to
the area of interest, with a bandpass filter for performing in-
terferometry on the drops. The camera was mounted opposite
and pointing toward the LED to form a side view image in
reflected light, or mirrors were used to form a bottom view
image in transmitted light. In the side-view configuration,
the LED source and camera were tilted downward at an an-
gle of 6.4◦. In the bottom view configuration, the LED and
the camera were horizontal and an additional mirror outside
the cryostat was used to reorient the image.

In the side view, the camera is tilted at a 6.4◦ angle, al-
lowing interference fringes to be imaged, as seen in Fig. 2.
The drops are sufficiently flat that they locally can be de-
scribed as a thin liquid film with change in film thickness

FIG. 2. Drop seen from the side, approximately 2 s after impact.
Temperature is 2.5 K. Interference lines show the changing thickness
of the drop and are visible due to the slight angle of the imaging
system.

per fringe δh (light to light or dark to dark). This thickness
δh can be calculated using Eq. (1), with light wavelength λ,
helium index of refraction nfilm = 1.03, and incident angle
θinc. These interference lines can be used to determine the drop
topography and dynamic contact angle as discussed in the next
section.

δh = λ

2
√

n2
film − sin2 θinc

. (1)

III. THERMAL EFFECTS

Drop duration was measured from the time of impact to the
total disappearance of the drop. Initial experiments showed
that the drop duration varied over a range from 1 to 15 min
and seemed to depend on subtle variations in the thermal
environment. To investigate this effect systematically, excess
power was intentionally injected into the sapphire substrate
using a 50 ohm heater epoxied to the side of the sapphire sub-
strate; the very high thermal conductivity of sapphire at low
temperature ensured that heat was distributed almost instantly
through the substrate with minimal thermal gradients remain-
ing. It became apparent that the normal drop duration was
highly sensitive to heat input. Figure 3 shows drop lifetimes
as a function of power inserted into the substrate for various
temperatures. Unlike superfluid drops (which are discussed in
a separate recent publication [16]), the normal helium drops
were strongly affected by the heat input, with power inputs as
low as 15 μW having an effect on the total drop duration.

The sensitivity of the normal helium drop duration to heat
input indicates evaporation as the controlling factor. The can-
didates for the driving force for evaporation are the Laplace
pressure (σlvh/R2), where h is the thickness of the drop, and
the gravitational pressure difference in the vapor from the
bottom of the cell (mgHPsat/kbT ), where H is the height of
the substrate above the bulk liquid bath, and m is the mass
of a helium atom, Psat is the saturated vapor pressure, and kb

is Boltzmann’s constant. Assuming the local vapor pressure
near the drop is lower than the saturated vapor pressure at the
cell temperature T by an amount 	P = ρvgH where the vapor
density ρv = mPsat(T )/(kbT ) implies an inward flux from the
vapor into the drop Ṅin with

Ṅin = (Psat(T ) − ρvgH )

kbT

√
3kbT

m
. (2)

If the temperature of the drop is Td , then there is an outward
flux from the drop Ṅout given by

Ṅout = (Psat(Td ) + 2σlvh/R2)

kT

√
3kbT

m
. (3)
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FIG. 3. Effect of heat input on drop lifetime and evolution. Power
is applied to the sapphire substrate via an ohmic heater epoxied to
the side. (a) Drop duration as a function of heat input for various
temperatures. At low temperatures, superfluid drops, shown in blue,
have short lifetimes that are independent of heater power. Superfluid
drops near Tλ, shown in black, have a longer lifetime, which is never-
theless independent of power. The lifetime of drops in the normal
state, shown in red, ranges from ≈300–1000 s at nominally zero
power to a few seconds with 0.1 mW of power. (b) Drop spreading
radius as a function of time for several values of input power. The
radius grows roughly proportional to t1/7 until evaporation dominates
and the drop starts to shrink. Microwatts of power were sufficient to
noticeably increase the evaporation rate.

Assuming isothermal conditions (i.e., T = Td ), the net flux
out of the drop for isothermal conditions Ṅiso is

Ṅiso =
(

ρvgH + 2σlvh

R2

)√
3

kbT m
. (4)

For a typical drop at 2.5 K with a R ≈ 0.005 m, h ≈ 10−5 m,
and H ≈ 0.01 m, this flux would evaporate the drop in a
fraction of a second, which is much shorter than the observed
lifetime. Isothermal conditions are not realistic, however, be-
cause the outward flux of atoms generates a heat flux Q̇evap =
(Ṅin − Ṅout ) hv , where hv is the latent heat of vaporization.
This heat flux cools the drop, which lowers the vapor pressure
and reduces the evaporation rate. In thermal steady state, the
temperature of the liquid drop is determined by a balance
of the heat flux due to evaporation at the liquid-vapor inter-

FIG. 4. Schematic diagram of a drop on a sapphire substrate.
The sapphire and the vapor above the drop are at cell temperature
T . The pressure in the vapor is Psat(T ) at the bulk liquid-vapor
interface, which is a distance H ≈ 1 cm below the drop; the vapor
pressure above the drop is lower than Psat(T ) by an amount ρvgH .
The pressure in the drop is larger than Psat(T ) due to the Laplace
pressure σlvH/R2. These pressure differences drive an evaporative
flux out of the drop, which lowers the drop temperature Td .

face and the steady-state heat flux Q̇s into the drop at the
liquid solid interface. The heat flux from the solid is mainly
determined by the thermal boundary resistance, or Kapitza
resistance Rk , with

Q̇s = Td − T

Rk
. (5)

The Kapitza resistance at a sapphire-helium interface has typ-
ical values of Rk ≈ 4 × 10−4/T 3 m2K/W [18]; the thermal
resistance of the drop itself is negligible compared to the
boundary resistance, so the drop can be considered isothermal.
In steady state, Q̇evap = Q̇sub (with substrate heat flux Q̇sub),
which provides an equation for Td . The calculation yields a
perhaps surprisingly small value of 	T = T − Td ≈ 10−5K.
The nonisothermal number flux Ṅnoniso in this case is

Ṅnoniso =
(

ρvgH + σlvh

R2
− 	T

dPsat

dT

)√
3

kbT m
, (6)

where dPsat/dT is the slope of the vapor pressure curve, with
a typical value ≈104 Pa/K in our case. Substituting a value
of the steady state value 	T = 10−5 K into Eq. (6) yields a
flux which would require ≈106 s to evaporate the drop, which
is much longer than is observed. The large value of dPsat/dT
implies, however, that the drop lifetime is very sensitive to
the value of 	T , and nanokelvin deviations from the nom-
inal steady-state value results in drop lifetimes in the range
of 102–103 s that we observe. Figure 4 shows a schematic
diagram of a drop on a sapphire substrate.

IV. SPREADING DYNAMICS

A. Experimental results

The impact and spreading of a drop on a surface can be
divided into two stages [19,20]. In the initial stage, the kinetic
energy of the drop is dissipated as the drop footprint expands
to about three times the diameter of the original drop. In this
regime, the radius of the position of the contact line at R grows
as t1/2. In helium with impact velocities of ∼1 m/s, this phase
of spreading is completed in less than 100 ms. The short-time
dynamics are essentially independent of temperature and the
state (superfluid or normal) of the helium and will not be dis-
cussed further here. After a quiescent period of a few seconds,
the drop continues to spread with a slow creeping flow which
is often characterized by a power law R(t ) ∼ tα , with α in
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FIG. 5. Drop profile constructed from the interference patterns as
a function of time. The horizontal and vertical scales differ by almost
a factor of 1000, so the physical drops are exceedingly flat.

the range 0.1–0.15. Because our experiments take place at
saturated vapor pressure, the flow occurs over a preexisting
film 20–40 nm thick. Although helium completely wets the
substrate and the viscosity of 4He is very low (∼3 × 10−6 Pa
s), a drop deposited on the substrate has a clearly visible
contact line that persists throughout its lifecycle as it expands
and then eventually retracts due to evaporation.

Both the position of the contact line and the height pro-
file of the spreading drop can be determined by analyzing
interferometric images such as those shown in Fig. 2. For a
red LED with an optical bandpass filter centered at 632 nm,
each fringe in the side view represents a 1167 nm change in
drop height. Figure 5 shows the drop profiles for several times,
reconstructed from the interference fringes. The macroscopic
contact angle calculated from the profile is initially ∼1.5◦ and
approaches 0.4◦ at long times.

The radius of the drop footprint as a function of time as
deduced from these images is shown in Fig. 6. The best-fit
power law for the data in the range 4 s < t < 140 s (to avoid
the initial transient and the effects of evaporation at long
times) yields R(t ) ∼ t0.149±0.002.

As described below in the Appendix, various models and
assumptions lead to power laws with exponents such as 1/10,
1/8, or 1/7, and experimentally distinguishing among these is
a delicate task. One measure of the quality of the fit is χ2, the
sum of the squares of the residuals normalized by the square
of the uncertainty (estimated to be 0.02 mm) as a function of
the exponent α with R(t ) ∼ tα . The minimum at α = 0.149
is very close to 1/7=0.143, and the residuals for α = 1/10
or 1/8 are more than an order of magnitude higher. A plot of
χ2 as a function of α is shown in Fig. 7. An alternative way
to represent the data is a model with the functional form R ∼
A(t + t0)(1/n), which is proposed in reference [9]. For gravity
driven flow, their analysis suggests that n = 7 is valid in a
crossover regime between n = 10 for drops smaller than the
capillary length and n = 8 for large drops, but their data using

FIG. 6. Drop radius as a function of time for drops at T = 2.5 K.
The best-fit spreading exponent of 0.149 ± 0.002 using the data with
4 s < t < 140 s is shown as the black line. The best-fit exponent is
slightly greater than 1/7 = 0.143.

PDMS shows no region over which n = 7 is applicable [21].
The best-fit parameters for their functional form applied to our
data yield n = 6.27 and t0 = 1.35.

B. Discussion

The spreading flow of a drop is driven by the gravitational
potential energy due to the excess thickness and the excess
surface energy of the drop, while viscous forces retard the
flow. There are two standard ways of quantitatively analyzing
the balance between these forces. One is based on solving
approximations to the hydrodynamic equations of motion (ex-
pressed as a PDE), while the other equates the rate of change
of potential energy to the rate of dissipation (expressed as an
ODE). We have used both techniques to model the spreading
of drops in our system which is somewhat unusual because
spreading takes place at the saturated vapor pressure.

When the thickness of the spreading drop is small com-
pared to its lateral extent, the spreading dynamics can be
described by the lubrication approximation, which can be
written in terms of a partial differential equation for the
time evolution of the drop height h(r, t ) as a function of
the radial coordinate r and time. The conservation of mass

FIG. 7. Plot of χ 2 for fits of the form R(t ) ∼ tα to the data of
Fig. 6 as a function of α.
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for an axisymmetric drop can be expressed as ∂h/∂t = ∇ ·
[h(r, t )v(r, t )], where v(r, t ) is the fluid velocity in the radial
direction averaged over the height of the drop. In keeping
with the lubrication approximation, the inertial terms are
neglected in the Navier-Stokes equations, so there is a bal-
ance between the pressure gradient ∇P(r) and viscosity, with
∇P(r) = η∇2v(r, t ). The pressure is the sum of a Laplace
pressure term proportional to σlv∇2h(r, t ) and a gravitational
term proportional to ρ gh(r, t ). The equation of motion for the
drop profile h(r, t ) is

∂h

∂t
= 1

3η
{∇ · [h3∇(ρgh − σlv∇2h)]}. (7)

If only one driving term of this equation is important (i.e.,
if either σlv or g can be neglected), then self-similar solu-
tions can be constructed [22,23] using the standard ansatz
h(r, t ) ∼ t−γ /β f (rt−1/β ), where α and β are constants. The
contact line corresponds to a point at which f = 0. If the
contact line is at r1 at time t1, then at time t the contact line will
move to r = Ct1/β , where C = r1 t−1/β

1 , so the scaling ansatz
implies a power law for the time evolution of the drop radius
with exponent 1/β. For the curvature-driven flow, Eq. (7)
provides one relation between β and γ , γ = (β − 4)/3, and
mass conservation in the form∫

h(r, t )2πrdr = const (8)

requires γ = 2, which uniquely determines β = 10, which is
the conventional Tanner’s law result. A similar analysis for
purely gravity-driven flow yields β = 8.

If both terms are retained in Eq. (7), then there are no
strictly self-similar solutions. A naive estimate of the relative
size of the terms assumes that if the typical height is H and
the radial length scale is Rc, the gravitational term is of order
ρgH while the surface tension term is of order σlvH/R2

c . This
leads to the somewhat counterintuitive conclusion that gravity
becomes the dominant term when the drop footprint becomes
large and the thickness is small. This estimate is valid for
spherical cap drops, but not for the pancake drops we see in
our experiments. An experiment which shows the crossover
between t1/10 behavior at short times and t1/8 at long times
when gravity dominates is described in Ref. [8].

Although the complete form of Eq. (7) is analytically in-
tractable, some insight can be obtained from direct numerical
solutions. The axially symmetric version was put into nondi-
mensional form using the capillary length Lc as the length
scale and η/(gρσlv ) as the timescale. The nondimensional
equations were solved with an initial condition of a Gaussian
or hyperbolic tangent shaped drop of width 1 and height
0.5 in reduced units. Using the lubrication approximation to
propagate the contact line into a completely dry surface has
well known numerical instabilities [24], so the initial condi-
tion included a thin film of liquid (∼0.001 of the initial drop
thickness) that covered the entire solid surface. Typical results
are shown in Fig. 8. The initial drop shape quickly evolves
into a very flat pancake shape with noticeable curvature only
in a region near the contact line which is one capillary length
long; these features correspond to what is observed in the ex-
periments, as shown in Fig. 6. Plots of the characteristic radial
scale of the pancake as a function of time yields respectable

FIG. 8. Numerical solutions for the evolution of the drop profile,
showing the drop height in mm as a function of the footprint radius
R in mm for various values of the the time t in seconds.

power laws, but the value of the exponent varied by about
±10% depending on the initial shape and the background
film thickness, so we were unable to definitively establish the
asymptotic behavior of Eq. (8) from the numerical solutions.

Another approach to the determination of the asymptotic
spreading law is to invoke the principle that the rate of
decrease of the potential energy of the drop which drives
spreading must be balanced by dissipation. In particular, the
dynamics of spreading is controlled by a balance between
the rate of decrease of the gravitational and excess surface
energy and viscous dissipation in the bulk flow or dissipative
processes at the contact line, together with the constraint of
constant volume and the assumption of complete wetting. Us-
ing essentially dimensional estimates of the various quantities,
a differential equation for the drop footprint radius R(t ) can be
constructed with asymptotic solutions of the form R ≈ tα . The
numerical value of α depends on the choice of drop geometry
and the dominant source of spreading energy and dissipation.
The dominant terms in the balance may change as the drop
thins, so there are typically several power-law regimes with
crossover regions between them. The disk and cone are simple
self-similar representative shapes for which the energy and
dissipation integrals can be done in closed form. The disk
geometry is especially simple and captures most of the phys-
ical features of the drops in our experiments, in particular the
localization of the excess surface near the contact line. The
analysis for the disk leads to a power-law exponent α = 1/7,
in good agreement with the the value we observe. For com-
pleteness, a similar analysis for cone and pancake shaped
drops and an alternative dissipation mechanism is presented
in the Appendix. In the following discussion, the subscripts
may be identified thus: d for disk, s for surface, g for gravity,
c for crossover or cone, and p for pancake.

The disk is characterized by a thickness h(t ) and a radius
R(t ). The volume �d is

�d = πR(t )2 h(t ). (9)

We are interested here in the spreading of a drop over an
existing thin film of fluid which nevertheless has bulk-like
surface properties, so the difference in surface energy between
an equilibrium flat film and a disk-shaped drop is due only to
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the surface area of the curved vertical edge, which is

Eds = σlv2πR(t ) h(t ) = 2σlv�d

R(t )
, (10)

where Eq. (9) has been used to eliminate h(t ). Similarly, the
gravitational potential energy is

Edg =
∫ h(t )

0
ρgzπR(t )2 dz = ρg�2

d

2πR(t )2
. (11)

A comparison of Eqs. (10) and (11) shows that surface energy
is the dominant effect in the limit of large R(t ). It is important
to note that this ordering of Eds > Edg is the opposite of the
the conventional analysis of the lubrication Eq. (7) and for
the cone shaped drops discussed below, both of which lead
to an R(t ) ∼ t1/8 asymptotic behavior. The volume density
of viscous dissipation is η∇U 2, which, in the lubrication
approximation, reduces to η(∂U/∂z)2, where U is the flow
velocity. We further assume that U = 0 at z = 0 and U = Ṙ(t )
at the vapor interface z = h(t ), where Ṙ(t ) is the velocity of
the contact line. An estimate for the total power dissipated by
flow in the disk is

Ėdisk =
∫

η

[
Ṙ(t )

h(t )

]2

dV = η π2R(t )4Ṙ(t )2

�d
. (12)

Equating the rate of change of surface energy to the viscous
dissipation yields a differential equation for the contact line
velocity Ṙds(t ) driven by surface tension in the disk:

Ṙds(t ) = 2σlv�
2
d

π2ηRds(t )6
⇒ Rds(t ) ≈

(
σlv �2

d

η

)1/7

t1/7. (13)

A similar analysis for the gravitational energy yields

Ṙdg(t ) = ρg�3
d

π3ηRdg(t )7
⇒ Rdg(t ) ≈

(
ρ g�3

d

η

)1/8

t1/8. (14)

The crossover between these two power laws is determined
by equating the rate of change of the surface energy and
the gravitational energy Ėds = Ėdg, so the crossover value of
R(t ) = Rdc is

Rdc = gρ�d

2πσlv
. (15)

The crossover value depends on the volume of the drop; for
the helium drops in our experiments, Rdc is a fraction of a
millimeter, so we expect to always observe the surface energy
driven result from Eq. (13) with R(t ) ∼ t1/7.

V. CONCLUSION

We have used video imaging and interferometry to study
spreading of 4He drops in the normal state. Spreading in
this system differs from many previous spreading experiments
because spreading takes place in a single-component system
at the saturated vapor pressure, so the fluid drop is always at
its boiling point. In this single-component system at saturated
vapor pressure, the drop does not spread onto a solid sub-
strate, but rather onto a pre-existing thin adsorbed liquid film.
Despite the low viscosity, high wettability, and low optical
index of liquid helium, there is an easily observable contact
line that moves via a creeping flow with a contact angle

of approximately one degree. Even at the saturated vapor
pressure, drops are always out of equilibrium because of the
curvature and the height difference from the bulk liquid, so
drops always have a finite lifetime, which imposes an intrinsic
limit on the observations of spreading dynamics. The life-
time of the drop is determined by a delicate balance between
cooling due to evaporation and heat transport from the solid,
and microkelvin temperature variations cause large changes
in the lifetime. During the spreading process, the growth of
the footprint radius of the drop can be described by a power
law with R(t ) ∼ t0.149. The exponent is very close to 1/7,
but experimentally distinguishable from 1/8, the conventional
result for gravity-driven spreading for a large drop [21]. A
simple model which balances surface energy near the contact
line against bulk viscous dissipation leads to an exponent of
1/7.
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APPENDIX

Balancing the rate of decrease of potential energy to the
dissipation rate in the flow yields an asymptotic growth law
for axisymmetric drops of the form R(t ) ∼ tα . The value of
α depends on the geometry of the drop and the assumptions
about the various energy terms, in particular how each term
scales with R at constant volume. We argue above that a sim-
ple disk geometry captures the essential physical features of
our pancake drops; we include here a similar analysis for other
geometries and dissipation mechanisms for completeness and
to make contact with previous similar discussions [9,25].

1. Cone Geometry

The cone is characterized by a height h(t ) and a radius
R(t ). In contrast to the disk, the cone has a contact angle
θc ∼ h[t]/R[t] that varies as the drop spreads. The volume �c

is

�c = πh(t )R(t )2/3. (A1)

The excess surface energy which drives spreading is propor-
tional to the difference between the area of the base and the
area of the upper curved surface of the cone:

Ecs = σlv

(
πR(t )2

√
h(t )2

R(t )2
+ 1 − πR(t )2

)
≈ 9σlv�

2
c

2πR(t )4
.

(A2)

The gravitational energy is

Ecg =
∫ h(t )

0
ρgzπ

(
R(t ) − zR(t )

h(t )

)2

dz = 3gρ�2
c

4πR(t )2
. (A3)

Comparing Eqs. (A2) and (A3), we expect the gravitational
term to dominate at large R(t ). Assuming again that the ve-
locity varies from zero at z = 0 to Ṙ(t ) at the vapor interface,
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the volume density of dissipation is

ηṘ(t )2

h(t )2
(
1 − r

R(t )

)2 . (A4)

The integral of the dissipation has a well-known singularity
at the corner of the wedge formed by the contact line due to
the divergence of the velocity gradient. The standard cure is
to introduce a microscopic cutoff length ε,

Ėcone =
∫ R(t )−ε

0

∫ h(t )(1− r
R(t ) )

0

2πrηṘ(t )2

h(t )2
[
1 − r

R(t )

]2 dzdr

∼ 2π2ηL f R(t )4Ṙ(t )2

3�c
, (A5)

and the result can be expressed in terms of a logarithmic factor
L f ∼ O{Log[ε/R(t )]}. Equating the rate of change of surface
energy Ecs to the viscous dissipation yields an equation for
the contact line velocity Ṙcs(t ) driven by surface tension in
the cone:

Ṙcs(t ) = 27σlv�
3
c

π3ηL f Rcs(t )9
⇒ Rcs(t ) ≈

(
σlv �3

c

L f η

)1/10

t1/10.

(A6)

The classical Tanner’s law which balances surface energy
against viscous dissipation in a spherical cap yields the same
1/10 exponent as above; the slight difference in the curvature
does not affect the asymptotic spreading law.

Repeating the analysis for the gravitational energy yields

Ṙcg(t ) = 9gρ�3
c

4π3ηL f R(t )7
⇒ Rcg(t ) ≈

(
ρ g�3

c

L f η

)1/8

t1/8.

(A7)

The crossover between these two power laws is determined
by equating the rate of change of the surface energy and
the gravitational energy Ėcs = Ėcg, so the crossover value of
R(t ) = Rcc is

Rcc = 2
√

3σlv√
gρ

, (A8)

which is the capillary length, to within a numerical factor.
For our helium drops, Rcc ∼ 1 mm and is independent of
volume, so for larger conical drops, the spreading law will
be determined by the gravity driven exponent of 1/8.

2. Pancake

A pancake drop can be regarded as a combination of a disk-
shaped central portion with an end section with a contact line
region similar to the cone. The pancake drop is characterized
by a height h(t ), a disk radius R(t ), and a capillary length
Lc which is the width of the region in which the drop thins
from h(t ) to zero at the contact line; in helium throughout
our temperature range, the capillary length is approximately
half a millimeter. Because of this additional length scale in the
problem, some of the integrals cannot be done in closed form,
so the results are reported to first order in Lc. The pancake
volume is

�p = π Lc h(t )R(t ) + πh(t )R(t )2. (A9)

The excess surface energy which drives spreading is due to the
area of the nonhorizontal section of the drop near the contact
line:

Eps = 2σlv �p

R(t )
− Lc σlv�p

R(t )2
. (A10)

The gravitational energy is

Epg = ρg�2
p

2πR(t )2
− 2gLc ρ�2

p

3πR(t )3
. (A11)

Comparison of Eqs. (A10) and (A11) suggest that the sur-
face term will dominate for large drops. Equating the rate
of change of the surface energy and the gravitational en-
ergy Ėps = Ėpg, the crossover value of R(t ) = Rpc is simply
Rpc = 2Lc, which is about 1 mm for our drops. For larger
pancake drops, the main driving force for spreading is surface
tension. The viscous dissipation in the pancake drop consists
of two terms: one has the same form as dissipation in the
disk, and the other is similar to the dissipation in the corner
of the cone,including the logarithmic factor L f , but since the
integral extends over a length Lc rather than R(t ), the result is
proportional to Lc. The total dissipation is

Ėpan = π2η Lc (1 − 2L f )R(t )3R′(t )2

�p
+ π2ηR(t )4Ṙ(t )2

�p
.

(A12)

Equating the rate of change of surface energy Eps to the
viscous dissipation yields an equation for the contact line
velocity Ṙps(t ) driven by surface tension in the pancake drop:

Ṙps(t ) = 2�2
p[Lc σ − σR(t )]

π2ηR(t )6[2Lc L f − Lc − R(t )]

≈ 2σ�2
p

π2ηR(t )6
+ 4Lc(L f σ − σ )�2

p

π2ηR(t )7
. (A13)

To zeroth order in Lc, the asymptotically large R(t ) pancake
result is identical to the disk result and leads to an exponent
of 1/7; for smaller drops, there is a correction term R(t ) ∼
O(t1/8).

3. Molecular Kinetic Dissipation

An alternate approach to contact line spreading dynam-
ics is called molecular kinetic theory [11,26,27]. The model
ignores dissipation in the bulk fluid and focuses on forces
and dissipation at the contact line. The basic idea is that a
contact line with an external force F can be pinned by local
inhomogeneities in the substrate, but the the contact line can
make thermally activated jumps of length 	x at a rate ν. If
the jump is in the direction of the external force, then the
energy goes down by an amount 	E = F 	x, and if it makes
a transition against the force, the energy goes up by the same
amount. The sum of the transitions leads to motion of the
contact line with velocity ṘMKT(t ) given by

ṘMKT(t ) = 	x ν
(
e

	E
kbT − e− 	E

kbT
) ≈ 2	E	x ν

kbT
(A14)

This expression is presumably valid only near equilibrium.
Determining the asymptotic behavior of RMKT(t ) requires
making assumptions about the R(t ) dependence of 	E , or
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equivalently, the force per unit length on the contact line
which can be calculated from the R(t ) derivative of the surface
or gravitational energy for a given drop geometry. For exam-
ple, for surface-tension-driven spreading of a conical drop, the
force per unit length is the derivative at constant volume of the
surface energy from Eq. (A6):

Ṙ(t ) ∼ − 1

2πR(t )

∂Ecs

∂R(t )
∼ σ�c

R(t )6
⇒ R(t ) ∼ t1/7. (A15)

The t1/7 power law for the surface tension driven flow with
molecular kinetic friction for a spherical cap drop is well-

known [10–12]. The value of the exponent depends crucially,
however, on the shape of the drop; for surface tension driven
flow for a disk or pancake shaped drop with energy described
by Eq. (10), the molecular kinetic theory yields

Ṙ(t ) ∼ − 1

2πR(t )

∂Eds

∂R(t )
∼ σ�d

R(t )3
⇒ R(t ) ∼ t1/4. (A16)

The molecular kinetic t1/4 power law for disklike or pancake
drops seems to be incompatible with our experimental results.
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