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Acoustic microstreaming produced by nonspherical oscillations of a gas bubble.
IV. Case of modes n and m
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This paper is the conclusion of work done in our previous papers [A. A. Doinikov et al., Phys. Rev. E 100,
033104 (2019); 100, 033105 (2019)]. The overall aim of the study is to develop a theory for modeling the velocity
field of acoustic microstreaming produced by nonspherical oscillations of a gas bubble. In our previous papers,
general equations were derived to describe the velocity field of acoustic microstreaming produced by modes m
and n of bubble oscillations. Particular cases of mode interaction were derived, such as the 0-n, 1-1, 1-m, and
n-n interactions. Here the general case of interaction between modes n and m, n > m, is solved analytically.
Solutions are expressed in terms of complex mode amplitudes, meaning that the mode amplitudes are assumed
to be known and serve as input data for the calculation of the velocity field of microstreaming. No restrictions
are imposed on the ratio of the bubble radius to the viscous penetration depth. The n-m interaction results in
specific streaming patterns: At large distance from the bubble interface the pattern exhibits 2|n − m| lobes, while
2 min(m, n) lobes exist in the bubble vicinity. The spatial organization of the recirculation zones is unique for
the interaction of two distinct nonspherical modes and therefore appears as a signature of the n-m interaction.

DOI: 10.1103/PhysRevE.102.043103

I. INTRODUCTION

Microstreaming is a mean flow induced by an oscillating
body submerged in a fluid. In the case of an oscillating bubble
[1], the flow is driven by streaming inside the oscillatory
boundary layer around the bubble interface, the so-called
Stokes layer. Nonlinear second-order effects are responsible
for the extension of the streaming patterns much farther than
the Stokes layer. The flow pattern is directly related to the
bubble oscillation modes. When a bubble oscillates purely
spherically, the spherosymmetry of the first-order acoustic
velocity field prevents the generation of vorticity [2]. In order
to describe bubble-induced streaming flows, it is thus neces-
sary to consider supplementary oscillation modes, including
the translational one, and the surface modes. The interaction
between the radial oscillations and the translational motion
of the bubble was first considered by Wu and Du [3] and
Longuet-Higgins [4]. The physical interest in such an inter-
action lies in the understanding of bubbles oscillating in the
vicinity of a wall, where reflected waves naturally induce
the translational motion of the bubble center at the same
frequency as the radial oscillations. It is worth noting that
theoretical studies on acoustic streaming produced by a bub-
ble on a wall [5] are restricted to the case of interaction
induced by the monopole and dipole modes. The main the-
oretical challenge is the derivation of bubble-induced shear
stress exerted on an elastic wall for medical applications such
as the permeabilization of biological cells [6]. Recently, ex-
perimental observations have highlighted a wide variety of
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microstreaming patterns induced specifically by shape modes
[7,8], with particular interest in targeted and localized drug
delivery. The physical mechanism underlying the nonspheri-
cal instability of the bubble interface is parametric excitation,
meaning that the predominant surface modes oscillate at half
the driving frequency ω [9]. Therefore, if a parametrically
triggered surface mode oscillates at ω/2 in combination with
the monopole oscillation (at frequency ω), then the only con-
tribution to microstreaming comes from the self-interaction of
the nonspherical mode, specifically discussed by Maksimov
[10] and later by Spelman and Lauga [11]. Moreover, a non-
spherical mode would interact with the monopole oscillation
only if it oscillates at the frequency ω and is therefore ex-
cited on its second parametric resonance, as experimentally
described by Cleve et al. [7]. As a consequence, in order
to generate any kind of mode interaction, a secondary non-
spherical mode is required in addition to the parametrically
excited one. Such triggering is possible at sufficient acous-
tic pressures due to the nonlinear energy coupling between
modes. Such coupling has been investigated theoretically by
Doinikov [12] and Shaw [13] and evidenced experimentally
by Guédra et al. [9]. When a mode n is parametrically excited,
secondary translational m = 1 and nonspherical modes m �= n
are expected. In particular, even modes can only excite other
even modes through nonlinear coupling, while odd modes can
excite all other modes [13]. This property may lead to the
generation of a broad spectrum of nonspherical modes. For the
generation of the second-order mean flow, these modes will
interact only if they oscillate at the same frequency. The case
of interactions between modes n and m is thus of particular
importance in order to capture the whole picture of single
bubble-induced microstreaming. At this point, it is necessary
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FIG. 1. Geometry of the system under study. (a) Three-
dimensional representation of the bubble interface, where z is the
axis of axial symmetry. Two axisymmetric modes n = 5 and m = 4,
with equal amplitudes, are depicted. (b) Axial symmetry allows using
polar coordinates (r and θ ) to parametrize the bubble interface rs.

to indicate that all previous theoretical investigations on
bubble-induced microstreaming assumed that the bubble ra-
dius R0 is much greater than the viscous penetration depth
δ. This hypothesis results in an approximate solution for the
fluid velocity field only up to leading terms with respect to the
ratio δ/R0. It makes these theories invalid when this ratio is
not small compared to unity, as is the case with high-viscosity
liquids and/or micron-sized bubbles. In our previous studies
[2,14,15], we have developed a general theory for modeling
the velocity field of acoustic microstreaming produced by ax-
isymmetric nonspherical oscillations of an acoustically driven
gas bubble. The first study [2] was dedicated to the case that
acoustic microstreaming is generated by the interaction of the
radial mode (mode 0) with a mode of arbitrary order m � 1.
In the second study [14], the contribution of the translational
mode was investigated through the self-interacting mode 1-1
and the interaction of translation with any arbitrary nonspher-
ical mode m > 1. In the third study [15], we investigated the
self-interacting contribution of a nonspherical mode n.

In the present study, we derive an exact analytical solution
for the Lagrangian streaming velocity induced by the interac-
tions of two modes n and m �= n, without any restrictions on
the ratio of the bubble radius to the viscous penetration depth.
In Sec. II, the solution for the Lagrangian streaming velocity is
derived. In Sec. III, numerical examples of the microstreaming
induced by the interaction of two modes n and m are provided
and compared to previous theories available in the literature.

II. THEORY

We consider a gas bubble undergoing axisymmetric os-
cillations, which include the radial pulsation (mode 0),
translation (mode 1), and shape modes of order m > 1. The
liquid motion produced by the bubble oscillations is described
in the spherical coordinates r and θ , whose origin is at the
equilibrium center of the bubble, and the axis z is the axis of
symmetry. The geometry of the problem is depicted in Fig. 1.

Our derivation assumes that the amplitudes of the bub-
ble oscillation modes are small compared to the equilibrium
bubble radius. This assumption allows us to linearize the equa-
tions of liquid motion (Navier-Stokes equations) and to find

their solutions, assuming that the amplitudes of the bubble
oscillation modes are given quantities. These solutions give
us the linear velocity field produced by the bubble in the
liquid. This calculation is performed in Sec. II A and leads
to expressions for the linear radial and tangential velocity
components given by in Eqs. (2) and (3). To calculate the
first-order liquid velocity, boundary conditions at the bubble
surface are applied. First, the normal component of the bubble
surface velocity is set equal to the normal component of the
fluid particle velocity at the interface. Second, the tangential
stress is supposed to vanish on the bubble surface when con-
sidering an uncontaminated interface. In the next step, the
equations of liquid motion are written with accuracy up to
terms of the second order of smallness with respect to the
linear solutions and averaged over time. This operation leads
to Eq. (10), which describes the time-independent velocity
field of acoustic microstreaming produced by the bubble os-
cillations. The solution of Eq. (10) is derived in Sec. II B. To
derive the velocity field of acoustic streaming, the boundary
conditions of vanishing normal velocity and tangential stress
of the Lagrangian streaming are applied at the mean position
of the interface. The use of these boundary conditions is
described in the Appendix.

A. Linear solutions

The bubble oscillation is decomposed over N axisymmetric
surface modes, corresponding to the basis of Legendre poly-
nomials [16]. The oscillation frequencies of the modes may
differ due to the parametric behavior of nonspherical bubble
dynamics. The bubble surface is hence represented by

rs = R0 +
N∑

n=0

sne−ıωnt Pn(μ), (1)

where R0 is the bubble radius at rest, sn is the complex ampli-
tude of the nth mode, ωn is the angular frequency of the nth
mode, μ = cos θ , and Pn is the Legendre polynomial of order
n. It is assumed that |sn|/R0 � 1. The values of sn and ωn

are considered as known quantities, possibly experimentally
measured, and serve as input data in the proposed model.

The linearized equations of an incompressible viscous liq-
uid allow us to determine the radial v1r and tangential v1θ

components of the first-order liquid velocity [2]

v1r = − 1

R0

N∑
n=0

(n + 1)e−ıωnt

[
an

(
x̄n

xn

)n+2

+ nbn
x̄n

xn
h(1)

n (xn)

]
Pn(μ), (2)

v1θ = 1

R0

N∑
n=0

e−ıωnt

[
an

(
x̄n

xn

)n+2

− bn
x̄n

xn

{
h(1)

n (xn) + xnh(1)′
n (xn)

}]
P1

n (μ), (3)

where xn = knr, kn = (1 + ı)/δn, δn = √
2ν/ωn, ν is the kine-

matic liquid viscosity, x̄n = knR0, h(1)
n is the spherical Hankel

function of the first kind of order n, h(1)′
n (xn) = dh(1)

n (xn)/dxn,
and P1

n is the associated Legendre polynomial of the first order
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and of degree n, as defined in [17]. The terms an and bn are
linear scattering coefficients of, respectively, the potential and
vortical parts of the scattered wave from the bubble. They are
deduced from the boundary conditions at the bubble interface

v1r

∣∣
r=R0

= drs

dt
, (4)

σrθ = η

(
1

r

∂v1r

∂θ
+ ∂v1θ

∂r
− v1θ

r

)
= 0 at r = R0, (5)

where η is the dynamic liquid viscosity. Their expression is
given by [2]

a0 = ıR0ω0s0, (6)

an = ıR0ωnsn
[−x̄2

nh1′′
n (x̄n) − (n2 + n − 2)h(1)

n (x̄n)
]

(n + 1)
[−x̄2

nh1′′
n (x̄n) + (n2 + 3n + 2)h(1)

n (x̄n)
]

for n � 1, (7)

bn = 2ıR0(n + 2)ωnsn

(n + 1)
[−x̄2

nh1′′
n (x̄n) + (n2 + 3n + 2)h(1)

n (x̄n)
]

for n � 1, (8)

with the coefficient bn undefined for n = 0.

B. Acoustic microstreaming produced by modes m and n

The derivation of the equations of acoustic streaming relies
on taking the nonlinear incompressible Navier-Stokes equa-
tions up to second-order terms with respect to the first-order
fluid velocity and averaging them over time. Time averag-
ing leads to the result that nonzero contributions to acoustic
streaming can come either from pairs of different modes that
oscillate at the same frequency or from the interaction of a
mode with itself. We have already provided exact analytical
solutions for the cases of microstreaming induced by the in-
teraction of the radial mode [2] or the translation mode n = 1
[14] with any arbitrary surface mode n, as well as the case of
the self-interaction of a surface mode [15]. Here the general
case of interacting modes m and n is considered. According to
the theory developed in Paper I [2], for the case of interacting
modes m and n, the Eulerian streaming velocity is represented
by 〈

vnm
2

〉 = ∇ × [〈
ψnm

2 (r, θ )
〉
eε

]
, (9)

where 〈 〉 denotes the time average, eε is the unit azimuthal
vector, and 〈ψnm

2 (r, θ )〉 is the amplitude of the vector potential
of the streaming velocity that is calculated from Eq. (32) of
Paper I,

D2〈ψnm
2

〉 = n + 1

2νr2
Pn(μ)P1

m(μ)Re{G1(xn)}

+m + 1

2νr2
Pm(μ)P1

n (μ)Re{G2(xn)}

− 1

2νr2

√
1 − μ2[Pn1(μ)Pm1(μ)]′Re{G3(xn)},

(10)

where D is the linear operator given by

D = 1

r2

∂

∂r

(
r2 ∂

∂r

)
+ 1

r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
− 1

r2 sin2 θ

= k2
n

x2
n

∂

∂xn

(
x2

n

∂

∂xn

)

+ k2
n

x2
n

[
(1 − μ2)

∂2

∂μ2
− 2μ

∂

∂μ
− 1

1 − μ2

]
(11)

and the functions G1,2,3(xn) are defined by

G1(xn) = k2
nanb∗

m

(
R0

r

)n+1[
(n + 1)h(1)

m (xn) − xnh(1)′
m (xn)

]∗

− nk2
nbnb∗

m

[
xnh(1)′

n (xn)h(1)∗
m (xn)

+ x∗
nh(1)

n (xn)h(1)′∗
m (xn)

]
, (12)

G2(xn) = k2
namb∗

n

(
R0

r

)m+1[
(m + 1)h(1)

n (xn) − xnh(1)′
n (xn)

]∗

− mk2
nbmb∗

n

[
xnh(1)′

m (xn)h(1)∗
n (xn)

+ x∗
nh(1)

m (xn)h(1)′∗
n (xn)

]
, (13)

G3(xn) = b∗
mk2

nh(1)∗
m (xn)

[
an

(
R0

r

)n+1

− bn[h(1)
n (xn) + xnh(1)′

n (xn)]

]

+ b∗
nk2

nh(1)∗
n (xn)

[
am

(
R0

r

)m+1

− bm
[
h(1)

m (xn) + xnh(1)′
m (xn)

]]
, (14)

where the asterisk denotes the complex conjugate. In order
to find an exact solution for the equation ruling the vector
potential ψnm

2 , one may simplify the angular dependence in
Eq. (10), which is decomposed over three terms involving
Legendre polynomials and associated Legendre polynomials.
Such a decomposition is performed along the orthogonal basis
of the Pi

k (μ) functions by using the properties of overlapping
integrals of three associated Legendre polynomials [18]

I (l1, m1, l2, m2, l3, m3) =
∫ 1

−1
Pm1

l1
(x)Pm2

l2
(x)Pm3

l3
(x)dx, (15)

whose exact analytical expression exists in the special case
m3 = m1 + m2,

I = 2(−1)m3

√
(l1 + m1)!(l2 + m2)!(l3 + m3)!

(l1 − m1)!(l2 − m2)!(l3 − m3)!

×
(

l1 l2 l3
0 0 0

)(
l1 l2 l3
m1 m2 −m3

)
, (16)

where we have introduced the Wigner 3- j symbols. The de-
composition of the first two angular terms in Eq. (10) is
straightforward and leads to

Pn(μ)P1
m(μ) =

n+m∑
k=n−m

αknmP1
k (μ), (17)
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Pm(μ)P1
n (μ) =

n+m∑
k=n−m

αkmnP1
k (μ), (18)

assuming n > m in the investigated case and by introducing
the coefficient

αknm = − (2k + 1)

k(k + 1)

√
(m + 1)m(k + 1)k

×
(n m k

0 0 0

)(n m k
0 1 −1

)
. (19)

It is worth noting that the limits of summation n − m � k �
n + m in Eqs. (17) and (18) come from the existence property
of the Wigner 3- j symbols. Based on the same mathemati-
cal framework and by using common identities of associated
Legendre functions [17], the third angular term appearing in
Eq. (10) is decomposed as

√
1 − μ2

[
P1

n (μ)P1
m(μ)

]′ =
n+m∑

k=n−m

γknmP1
k (μ), (20)

with the coefficient γknm defined by

γknm = n(n + 1)

2
αknm + m(m + 1)

2
αkmn − 1

2
βknm − 1

2
βkmn,

(21)

βknm = 2k + 1

k(k + 1)

√
(n + 1)n(k + 1)k

(m + 2)!

(m − 2)!

×
(n k m

0 0 0

)(n k m
1 1 −2

)
. (22)

In the projection of the third angular term on the Pi
k (μ) basis,

the condition n > m � 2 is imposed by the existence property
of Wigner 3- j symbols. By noticing that the particular cases of
m = 0 with any n, m = 1 with any n, and m with n = m have
been previously derived [2,14,15], then all interacting cases
will be considered. Substituting Eqs. (17), (18), and (20) into
Eq. (10), one obtains

D2
〈
ψnm

2

〉 = Re

{
n+m∑

k=n−m

Hk (xn)P1
k (μ)

}
, (23)

Hk (xn) = n + 1

2νr2
αknmG1(xn) + m + 1

2νr2
αkmnG2(xn)

− 1

2νr2
γknmG3(xn). (24)

Solving Eq. (23) requires cumbersome calculations that are
provided in the Appendix. As a result, the solution of Eq. (23)
is found to be〈

ψnm
2 (x, μ)

〉 = Re

{
n+m∑

k=n−m

Fk (xn)P1
k (μ)

}
, (25)

with the functions Fk (xn) defined by Eq. (A6). Equation
(25) leads to expressions for the components of the Eulerian
streaming velocity

〈
vnm

2r

〉 = −1

r
Re

{
n+m∑

k=n−m

k(k + 1)Fk (xn)Pk (μ)

}
, (26)

〈
vnm

2θ

〉 = −1

r
Re

{
n+m∑

k=n−m

[Fk (xn) + xnF ′
k (xn)]P1

k (μ)

}
, (27)

with the functions F ′
k (xn) defined by Eq. (A15).

In the process of calculating Eqs. (26) and (27), we have
also obtained expressions for the components of the Stokes
drift velocity [4] (see the Appendix)

vnm
Sr = Re

{
n+m∑

k=n−m

Tk (xn)Pk (μ)

}
, (28)

vnm
Sθ = Re

{
n+m∑

k=n−m

Uk (xn)P1
k (μ)

}
, (29)

with the functions Tk (xn) and Uk (xn) defined by Eqs. (A36)
and (A40), respectively. The sum of the Eulerian streaming
velocity and the Stokes drift velocity provides the Lagrangian
streaming velocity

vnm
L = 〈

vnm
2

〉 + vnm
S , (30)

for which the radial and tangential components can be cal-
culated using Eqs. (26)–(29). It has been verified that the
Lagrangian streaming velocity given by Eq. (30) corresponds
to the one derived in our previous work [15] for the particular
case n = m and m � 2. A MATLAB code for the calculation
of the Lagrangian velocity is provided in the Supplemental
Material [19].

III. NUMERICAL EXAMPLES

A. Streamlines given by the present model

Numerical simulations were performed for the follow-
ing values of physical parameters: liquid density ρ =
1000 kg/m3, dynamic liquid viscosity η = 0.001 Pa s, driving
frequency f = 50 kHz, and equilibrium radius R0 = 50 μm.
Figure 2 exemplifies Lagrangian streamline patterns produced
by the interaction of two modes n ∈ {3, 4, 5} and m ∈ {2, 3, 4}
with the conditions n �= m and n > m � 2. As one can see, the
main vortices form a two-scale pattern. In the vicinity of the
bubble surface, the vortices have a form of lobes. According
to the presented examples, the number of lobes is equal to
2 min(m, n) for the n-m interaction. For instance, the patterns
resulting from the n-2 interactions always reveal a four-lobe
picture in the bubble vicinity, clearly visible in Figs. 2(a) and
2(b) and noticeable in Fig. 2(d). In the latter figure, each
lobe is decomposed into two counterrotating vortices. Far
from the bubble, the vortices have a lobe shape in which the
number of lobes equals 2|n − m|. In the present analysis, a
specific pattern is revealed and appears as a signature of the
case of the interaction between modes n and m. We recall
that, when considering the 0-n interaction between the radial
mode and a nonspherical mode [2], the streamline patterns
looked like lobes whose number equals 2n. When considering
the interaction between the translational mode and any non-
spherical mode n [14], streamlines form lobes whose number
is equal to 2(n − 1). When considering the self-interacting
case n-n, streamlines exhibit 4n lobes in the bubble vicinity
with a crosslike shape far from the bubble [15]. It is worth
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FIG. 2. Numerical examples of streamline patterns produced by the interaction of modes n and m in cases (a) n = 3 and m = 2, (b) n = 4
and m = 2, (c) n = 4 and m = 3, (d) n = 5 and m = 2, (e) n = 5 and m = 3, and (f) n = 5 and m = 4. The insets show the streaming close to
the bubble interface in the near-bubble region limited by the dashed line.

noting that the presence of the vortices close to the bubble
interface may be difficult to observe experimentally. Thus the
observable streaming pattern will look like that far from the
bubble interface, consisting of 2(n − m) lobes. These patterns
will look similar to the ones obtained through the interac-
tion between the radial mode and any nonspherical mode
n, whose lobe number equals 2n. For instance, the pattern
induced by the 5-2 interaction will be similar to the one
induced by the 0-3 interaction. This highlights the importance
of assessing experimentally the bubble interface dynamics
when discussing the induced streaming flows. Figures 3(a)
and 3(b) show the radial and tangential components of the
Lagrangian streaming velocity as a function of the distance
from the bubble surface r/R0 for various values of the phase
shift �φ between modes n = 3 and m = 2, calculated at the
angle θ = π/4. The velocity components are normalized by
the factor ωn|sn||sm|/R0. For both velocity components, the
amplitude of the streaming velocity increases considerably
as the phase shift varies from 0 to π/2. Another obser-
vation is that the velocity amplitude decays within a short
distance from the bubble surface. As the present model cap-
tures the microstreaming flow whatever the bubble size or
the viscous penetration depth, Figs. 3(c) and 3(d) represent
the dependence of the radial and tangential components of
the Lagrangian streaming velocity for increasing values of the
liquid viscosity and hence increasing ratio of the viscous pen-
etration depth to the bubble radius. Numerical simulations are

performed for the in-phase (�φ = 0) 3-2 interaction, at the
angular position θ = π/4. Results evidence that two orders of
magnitude of values of liquid viscosity are required in order
to significantly modify the Lagrangian streaming velocity.
The full knowledge of the streaming pattern induced by a
nonspherically oscillating microbubble is of particular interest
for applications such as acoustic cleaning [20], biological cell
permeabilization leading to the sonoporation process [6], or
any bubble-induced drug delivery technique. For instance, in
therapeutic applications, it has been evidenced that bubble-
induced microstreaming is responsible for cell deformability
[21] or acts as a transport mechanism for the release of lipids
or nanoparticles from microbubbles [22]. Characterizing the
velocity field of the fluid flow, particularly in the vicinity
of the bubble interface, matters when close bubble-cell in-
teractions occur, such as in the case of capillary-confined
microbubbles or in sonoporation experiments involving a
large number of biological cells and a dense bubble cloud.
Here partitioning of the streaming pattern is observed be-
tween confined lobes in the near field of the bubble interface
that possess higher velocities relatively to the far-field lobes.
The near-field high-velocity lobes act as recirculation vortices
which could enhance the deformation of biological particles,
as well as exerting shear stress on them, possibly until their
rupture. Potential applications of near-interface high-speed
vortices concern ultrasound-induced thrombolysis [23], where
one must guarantee both destruction of blood clots and limited
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FIG. 3. Dependence of the Lagrangian streaming velocity components on the distance from the bubble interface, for the 3-2 interaction at
(a) and (b) various values of the phase shift �φ between modes and (c) and (d) various dynamic viscosity η for the surrounding medium. The
velocity components are normalized by the factor ωn|sn||sm|/R0.

size of the clot fragments in order to avoid secondary vessel
occlusion farther downstream the area of the treated vessel.
By trapping the fragments into near-bubble recirculation vor-
tices, continuous size reduction of these fragments may occur
if they are subjected to sufficiently intense shear stresses.
In addition, a strong mixing efficiency of stably oscillating
bubbles has been shown to hasten enzymatic fibrinolysis, in-
creasing the delivery of plasminogen into blood clots [24]. We
therefore expect that the present model will help in designing
customized microbubbles or ultrasound-emission sequences
in order to enhance specific streaming flows among the large
variety of obtained patterns.

B. Comparison with previous theories

The present model is compared to the theory of Spel-
man and Lauga [11], which considers axisymmetric modes
of arbitrary orders, oscillating at the same frequency. Their
model was the only one describing the microstreaming in-
duced by arbitrary nonspherical modes. We emphasize the
fact that, contrary to the Spelman-Lauga model [11], we do
not assume that the viscous penetration length scale is small
in comparison to the bubble radius. This means that, while
their solutions are derived approximatively, in powers of the
small parameter ε = δ/R0, our solution is available whatever
the liquid viscosity and the bubble size. The Spelman-Lauga
model provides the expression for the external leading-order

Lagrangian streaming

〈ψL(r, μ)〉 =
∞∑

k=1

(
Tkr−k + Skr−(k−2) −

∞∑
n=0

∞∑
m=1

Yknm

×r−(n+m+3)

)(∫ 1

μ

Pk (x)dx

)
, (31)

where the coefficients Tk , Sk , and Yknm result from the match-
ing at the viscous boundary layer between the inner and outer
solutions of the Eulerian streaming. In particular, their cal-
culation depends on the investigated mode pair contribution
and the phase shift between modes. It is shown that, if the
modal amplitudes (sn, sm) are in phase or π out of phase
with each other, then the contribution of these mode pairs
to the steady streaming is identical to zero at the first order
of the expansion over δ/R0. It is thus necessary to derive
expressions to upper order in the expansion, up to the third
order of the ratio δ/R0 in their analysis. For the sake of
simplicity, we here compare the streamline patterns obtained
by the present model and the Spelman-Lauga model in the
case of in-phase interacting modes n and m. We emphasize
that no examples of n-m interacting cases are presented in
Ref. [11]. Figure 4 compares the streamline patterns and La-
grangian streaming velocities given by the theory of Spelman
and Lauga and the present model, in the case of the 3-2 inter-
action. The velocity components are normalized by the factor
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FIG. 4. Comparison of the present model to the theory of Spelman and Lauga [11] for the interaction of modes n = 3 and m = 2. The
upper line shows the streamline pattern according to (a) the theory of Spelman and Lauga and (b) the present model. The evolution of the
normalized (c) radial and (d) tangential components of the Lagrangian streaming velocity, given by both theories and calculated for the angle
θ = π/4, is shown as a function of the normalized distance r/R0. The velocity components are normalized by the factor ωn|sn||sm|/R0.

ωn|sn||sm|/R0. The parameters are as in Fig. 2. The streamline
patterns show good qualitative agreement, except for the lack
of vortices in the Spelman-Lauga model in the vicinity of
the bubble interface. This trend has been noticed for other
n-m interaction cases. Concerning the radial and tangential
components of the Lagrangian velocity [Figs. 4(c) and 4(d)],
both models show quantitative agreement far from the bubble
interface.

IV. CONCLUSION

In the present paper, the general theory developed in our
previous study [2] has been applied to the case that acoustic
microstreaming results from the interaction between two ax-
isymmetric modes n and m such that n > m � 2. Analytical
solutions were derived in terms of complex amplitudes of
oscillation modes, which means that the mode amplitudes
were assumed to be known and served as input data when the
velocity field of acoustic microstreaming was calculated. No
restrictions were imposed on the ratio of the bubble radius to
the viscous penetration depth. The n-m interaction results in a
specific streamline pattern. This pattern exhibits a 2|n − m|
lobelike shape far from the bubble in addition to small re-
circulation zones in the vicinity of the bubble interface. The
number of lobes in the bubble vicinity equals 2 min(m, n). In
summary, this series of theoretical studies has evidenced the

signature of each case of interacting modes. The interaction
of the radial oscillation and a nonspherical mode n results in
a flower-type pattern with 2n lobes. The 1-n interaction gen-
erates a 2(n − 1) lobe pattern, while the self-interacting case
n-n produces a crosslike shape with 4n lobes in the bubble
vicinity. Finally, the n-m (n > m � 2) interaction produces
a 2|n − m| lobelike shape with 2 min(m, n) vortices in the
bubble vicinity. These features highlight the importance of
determining the interface dynamics and the modal content
when analyzing microstreaming flows.
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APPENDIX: SOLUTION OF EQ. (23)

The right-hand side of Eq. (23) suggests that a solution can
be sought in the form

〈
ψnm

2 (x, μ)
〉 = Re

{
n+m∑

k=n−m

Fk (x)P1
k (μ)

}
, (A1)
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where x = xn = knr is introduced for the sake of simplicity and Fk (x) is a function to be found. The action of the operator D2 on
the proposed solution (A1) results in

D2
〈
ψnm

2 (x, μ)
〉 = Re

{
n+m∑

k=n−m

k4
n

x4

{
x4F (IV )

k (x) + 4x3F ′′′
k (x) − 2k(k + 1)x2F ′′

k (x)

+k(k + 1)[k(k + 1) − 2]Fk (x)
}
P1

k (μ)

}
. (A2)

After substituting Eq. (A2) into Eq. (23), the identification for each term over the function P1
k that forms a set of linearly

independent functions provides the equation for the Fk (x) functions

d4Fk

dx4
+ 4

x

d3Fk

dx3
− 2k(k + 1)

x2

d2Fk

dx2
+ k(k + 1)[k(k + 1) − 2]

x4
Fk (x) = 1

k4
n

Hk (x), (A3)

with the function Hk (x) defined by Eq. (24). Equation (A3) can be solved by the method of variation of parameters, also known as
the Lagrange method [25]. According to this method, we first need to find solutions to a homogeneous equation that corresponds
to the left-hand side of Eq. (A3). The solutions are sought in the form xλ. Substitution of xλ into the homogeneous form of
Eq. (A3) leads to a polynomial of fourth order in λ,

λ(λ − 1)(λ − 2)(λ + 1) − 2k(k + 1)λ(λ − 1) + k(k + 1)[k(k + 1) − 2] = 0. (A4)

The roots of this polynomial are −(k − 1), −(k + 1), k, and
k + 2. Therefore, the general solution of the homogeneous
form of Eq. (A3) is written as

Fk (x) = Ck1xk+2 + Ck2xk + Ck3

xk−1
+ Ck4

xk+1
, (A5)

where Cki are constants. According to the Lagrange method,
the solution of the inhomogeneous Eq. (A3) is obtained by
setting the coefficients Cki to be functions of x, such as

Fk (x) = Ck1(x)xk+2 + Ck2(x)xk + Ck3(x)

xk−1
+ Ck4(x)

xk+1
, (A6)

where the Cki functions should obey the following system of
equations:

C′
k1y1 + C′

k2y2 + C′
k3y3 + C′

k4y4 = 0,

C′
k1y′

1 + C′
k2y′

2 + C′
k3y′

3 + C′
k4y′

4 = 0,

C′
k1y′′

1 + C′
k2y′′

2 + C′
k3y′′

3 + C′
k4y′′

4 = 0,

C′
k1y′′′

1 + C′
k2y′′′

2 + C′
k3y′′′

3 + C′
k4y′′′

4 = Hk (x)/k4
n .

(A7)

Here the prime denotes the derivative with respect to x and the
functions yi are given by

y1 = xk+2, y2 = xk, y3 = x−(k−1), y4 = x−(k+1). (A8)

Equations (A7) are a system of algebraic equations with the
unknowns C′

ki. Solving this system and integrating the solu-
tions over x, one obtains

Ck1(x) = Ck10 + 1

2(2k + 1)(2k + 3)

∫ x

xn0

s1−k

k4
n

Hk (s)ds, (A9)

Ck2(x) = Ck20 − 1

2(2k − 1)(2k + 1)

∫ x

xn0

s3−k

k4
n

Hk (s)ds,

(A10)

Ck3(x) = Ck30 + 1

2(2k − 1)(2k + 1)

∫ x

xn0

s2+k

k4
n

Hk (s)ds,

(A11)

Ck4(x) = Ck40 − 1

2(2k + 1)(2k + 3)

∫ x

xn0

s4+k

k4
n

Hk (s)ds,

(A12)

where the constants Cki0, i = 1, 2, 3, 4, have to be determined
according to the boundary conditions. To apply the boundary
conditions, we first calculate the components of the Eulerian
streaming velocity by using Eq. (A1),〈

vnm
2r

〉 = −1

r

∂

∂μ

{〈
ψnm

2

〉√
1 − μ2

}

= −1

r
Re

{
n+m∑

k=n−m

k(k + 1)Fk (x)Pk (μ)

}
, (A13)

〈
vnm

2θ

〉 = −1

r

∂

∂x

{
x
〈
ψnm

2

〉}

= −1

r
Re

{
n+m∑

k=n−m

[Fk (x) + xF ′
k (x)]P1

k (μ)

}
, (A14)

where the first derivative of the Fk function is written as

F ′
k (x) = (k + 2)Ck1(x)xk+1 + kCk2(x)xk−1

− (k − 1)Ck3(x)x−k − (k + 1)Ck4(x)x−k−2. (A15)

The condition of zero streaming velocity at infinity requires
that Fk (x)/r → 0 for r → ∞, which leads to

Ck10 = − 1

2(2k + 1)(2k + 3)

∫ ∞

xn0

s1−k

k4
n

Hk (s)ds, (A16)

Ck20 = 1

2(2k − 1)(2k + 1)

∫ ∞

xn0

s3−k

k4
n

Hk (s)ds. (A17)

In order to calculate the coefficients Ck30 and Ck40, boundary
conditions at the bubble surface have to be applied. Equations
(A13) and (A14) give the components of the Eulerian stream-
ing velocity. To apply the boundary conditions at the bubble
surface, we need to know the Lagrangian streaming velocity,
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which is defined by

vL = 〈v2〉 + vS, (A18)

where vS is the Stokes drift velocity given by [4]

vS =
〈( ∫

v1dt · ∇
)

v1

〉
nm

, (A19)

where v1 is the first-order liquid velocity. For the case of the
interaction between modes n and m, Eq. (A19) reduces to

vnm
S = 1

2ωn
Re{ı(v1n + v1m · ∇)(v1n + v1m)∗}, (A20)

where v1i is the first-order liquid velocity produced by the
mode i. As a result, the components of the Stokes drift velocity
associated with the m-n interaction are given by

vnm
Sr = 1

2ωn
Re

{
ı(vnr + vmr )

∂ (vnr + vmr )∗

∂r
+ ı

r
(vnθ + vmθ )

∂ (vnr + vmr )∗

∂θ

}
, (A21)

vnm
Sθ = 1

2ωn
Re

{
ı(vnr + vmr )

∂ (vnθ + vmθ )∗

∂r
+ ı

r
(vnθ + vmθ )

[
vnr + vmr + ∂ (vnθ + vmθ )

∂θ

]∗}
. (A22)

The components of the first-order liquid velocity induced by the oscillation of any arbitrary axisymmetric mode n have already
been determined in our previous study [2]:

v1nr = − 1

R0
(n + 1)e−ıωnt

[
an

(
R0

r

)n+2

+ nbn
R0

r
h(1)

n (x)

]
Pn(μ), (A23)

v1nθ = 1

R0
e−ıωnt

[
an

(
R0

r

)n+2

− bn
R0

r

[
h(1)

n (x) + xh(1)′
n (x)

]]
P1

n (μ). (A24)

Substituting Eqs. (A23) and (A24) into Eqs. (A21) and (A22) leads to the calculation of the Stokes drift velocity components

vnm
Sr = − 1

2νR0

[
P1

n (μ)P1
m(μ) − n(n + 1)Pn(μ)Pm(μ)

]
Re{S11(x)}

− 1

2νR0

[
P1

n (μ)P1
m(μ) − m(m + 1)Pn(μ)Pm(μ)

]
Re{S12(x)} + 1

2νR0
P1

n (μ)P1
m(μ)Re{S13(x)}, (A25)

vnm
Sθ = (n + 1)

2νR0
Pn(μ)P1

m(μ)Re{S21(x)} + (m + 1)

2νR0
Pm(μ)P1

n (μ)Re{S22(x)}

+ 1

2νR0

√
1 − μ2

[
P1

n (μ)P1′
m (μ) − P1

m(μ)P1′
n (μ)

]
Re{S23(x)}, (A26)

where we introduce the functions

S11(x) = −m + 1

x2
ana∗

m

( x̄

x

)n+m+3

+ m(m + 1)
( x̄

x2

)
bnb∗

mh(1)′
n (x)h(1)∗

m (x) + amb∗
n

( x̄

x

)m+2

(m + 1)
[m + 1

x2
h(1)

n (x) + 1

x
h(1)′

n (x)
]∗

,

(A27)

S12(x) = −n + 1

x2
ama∗

n

( x̄

x

)n+m+3

+ n(n + 1)
( x̄

x2

)
bmb∗

nh(1)′
m (x)h(1)∗

n (x) + anb∗
m

( x̄

x

)n+2

(n + 1)
[n + 1

x2
h(1)

m (x) + 1

x
h(1)′

m (x)
]∗

,

(A28)

S13(x) = x̄

x3
bnb∗

mh(1)
n (x)h(1)∗

m (x)[n(n + 1) − m(m + 1)] + anb∗
m

( x̄

x

)n+2

h(1)∗
m (x)

1

x2
[m(m + 1) − n(n + 1)]

+amb∗
n

( x̄

x

)m+2

h(1)∗
n (x)

1

x2
[n(n + 1) − m(m + 1)], (A29)

S21(x) = x̄

x3

[
an

( x̄

x

)n+1

+ nbnh(1)
n (x)

][
−(m + 3)am

( x̄

x

)m+1

+ bm
{
2h(1)

m − x2h(1)′′
m (x)

}]∗
, (A30)

S22(x) = S21(x)|n↔m, (A31)

S23(x) = x̄

x3

[
an

( x̄

x

)n+1

− bn
{
h(1)

n (x) + xh(1)′
n (x)

}][
am

( x̄

x

)m+1

− bm
{
h(1)

m (x) + xh(1)′
m (x)

}]∗
. (A32)

Now the boundary conditions at the bubble surface can be applied. It is known that, for arbitrary surface periodic deformations,
both the normal velocity component and tangential stress of the Lagrangian streaming must vanish at the mean position of the
interface. These two conditions are written in the following form:

vnn
Lr = 〈

vnn
2r

〉 + vnn
Sr = 0 at r = R0, (A33)

1

r

∂vnn
Lr

∂θ
+ ∂vnn

Lθ

∂r
− vnn

Lθ

r
= 0 at r = R0. (A34)
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In order to apply the first boundary condition (A33), it is required to expand the radial component of the Stokes drift velocity
over the same set of orthogonal Pk (μ) functions as the radial component of the Eulerian velocity. This is performed using the
properties of double and triple overlapping integrals of Legendre polynomials, leading to

vnm
Sr = Re

{
n+m∑

k=n−m

Tk (x)Pk (μ)

}
, (A35)

where the function Tk (x) is defined by

Tk (x) = − 1

2νR0
[aknm − n(n + 1)bknm]S11(x) − 1

2νR0
[aknm − m(m + 1)bknm]S12(x) + 1

2νR0
aknmS13(x) (A36)

and the following coefficients are introduced:

aknm = −(2k + 1)
√

(n + 1)n(m + 1)m

(
k m n
0 0 0

)(
k m n
0 1 −1

)
, (A37)

bknm = (2k + 1)

(
k n m
0 0 0

)2

. (A38)

In order to apply the second boundary condition (A34), it is required to expand the tangential component of the Stokes drift
velocity over the same set of orthogonal P1

k (μ) functions as the tangential component of the Eulerian velocity. This is performed
using the properties of double and triple overlapping integrals of Legendre polynomials, leading to

vnm
Sθ = Re

{
n+m∑

k=n−m

Uk (x)P1
k (μ)

}
, (A39)

where the function Uk (x) is defined by

Uk (x) = n + 1

2νR0
αknmS21(x) + m + 1

2νR0
αkmnS22(x) + 1

2νR0
S23(x)

[m(m + 1)

2
αkmn − n(n + 1)

2
αknm − 1

2
βknm + 1

2
βkmn

]
. (A40)

Substituting Eqs. (A13), (A14), (A35), and (A39) into the conditions (A33) and (A34), after a cumbersome but straightforward
calculation, one obtains the coefficients

Ck30 = −Ck20x2k−1
n0 + R0

2(2k + 1)
xk−1

n0

[
k + 3

k + 1
Tk (xn0) + Uk (xn0) − xn0U

′
k (xn0)

]
, (A41)

Ck40 = −Ck10x2k+3
n0 − R0

2(2k + 1)
xk+1

n0

[
k − 2

k
Tk (xn0) + Uk (xn0) − xn0U

′
k (xn0)

]
. (A42)

To sum up, we have shown that the solution of Eq. (23) is given by Eq. (A1), which in turns leads to the calculation of the
components of the Eulerian streaming velocity given by Eqs. (A13) and (A14). We have calculated all the quantities that appear
in the above equations. In the course of this calculation, we have also calculated the Stokes drift velocity, which, when being
added to the Eulerian streaming velocity, gives the Lagrangian streaming velocity.
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