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Cylinder–flat-surface contact mechanics during sliding
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Using molecular dynamics we study the dependency of the contact mechanics on the sliding speed when
an elastic block (cylinder) with a cos(q0x) surface height profile is sliding in adhesive contact on a rigid flat
substrate. The atoms on the block interact with the substrate atoms by Lennard-Jones potentials, and we consider
both commensurate and (nearly) incommensurate contacts. For the incommensurate system the friction force
fluctuates between positive and negative values, with an amplitude proportional to the sliding speed, but with the
average close to zero. For the commensurate system the (time-averaged) friction force is much larger and nearly
velocity independent. For both types of systems the width of the contact region is velocity independent even
when, for the commensurate case, the frictional shear stress increases from zero (before sliding) to ≈0.1 MPa
during sliding. This frictional shear stress, and the elastic modulus used, are typical for polydimethylsiloxane
rubber sliding on a glass surface, and we conclude that the reduction in the contact area observed in some
experiments when increasing the tangential force must be due to effects not included in our model study, such as
viscoelasticity or elastic nonlinearity.
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I. INTRODUCTION

The contact between a spherical (or cylindrical) body and a
flat surface is perhaps the simplest possible contact mechanics
problem, and is often used in model studies of adhesion and
friction [1–4]. For stationary contact with Fx = 0, where Fx is
the applied tangential force, the adhesive interaction is well
described by the Johnson-Kendall-Roberts (JKR) theory [5,6]
which has been tested in great detail. However, when the
tangential force Fx is nonzero, the problem becomes much
more complex and not fully understood [7–12].

Here, we consider the contact between an elastic block with
a cylinder shape with the height profile z = h0 cos(q0x), and a
rigid solid with a flat surface. We will refer to this system as
curved flat. In Refs. [11,12] we studied the opposite situation
of an elastic block with a flat surface in contact with a rigid
solid with the height profile z = h0 cos(q0x). We will refer
to this system as flat curved. When Fx = 0, the curved-flat
and flat-curved systems are both described by the JKR the-
ory. However, as will be shown here, during sliding the two
systems exhibit very different properties.
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II. MODEL

A curved elastic block can be obtained by “gluing” an elas-
tic slab to a rigid upper surface profile. Here, we use a slab of
thickness Lz ≈ 86 Å attached to a rigid surface with the height
profile z = h0 cos(q0x), where h0 = 100 Å and q0 = 2π/Lx.
During sliding we move the upper rigid profile of the block in
the x direction (see Fig. 1) with a constant speed v while the
normal force squeezing the block against the substrate (see
below) is constant.

We use periodic boundary conditions in the xy plane with
Lx = 254 Å and Ly = 14 Å. The number of atoms in the x
direction is Nx = 128 for the block, and for the substrate we
consider two cases where Nx = 128 (commensurate interface)
and Nx = 206. In the latter case the ratio between the lattice
constant of the block and the substrate is ab/as = 206/128 ≈
1.609, which is close to the golden mean (1 + √

5)/2 ≈
1.618, i.e., the interface is nearly incommensurate. A picture
showing the atoms at the interface before contact is shown in
Fig. 1.

The elastic block is treated using the smart-block descrip-
tion (with 13 layers with the same spacing as for the first
layer plus four layers on top of it, where at every step we
double the lattice spacing in the x and z directions) dis-
cussed in Ref. [11], where the bending and elongation spring
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FIG. 1. Picture of the bottom layer of atoms on the block (blue)
and the top layer of atoms on the substrate (black) before contact.
We use periodic boundary conditions in the xy plane. The block is
elastic and of thickness Lz ≈ 86 Å. The upper surface of the block is
“glued” to a rigid surface with a cosine profile in the x direction.

constants are chosen to give the Young’s modulus and the
Poisson ratio E = 10 MPa and ν = 0.5, respectively. The in-
teraction potential between the block and wall atoms at the
interface is of the Lennard-Jones (LJ) type,

V (r) = 4V0

[( r0

r

)12
−

( r0

r

)6]
,

where V0 = 0.04 meV and r0 = 3.28 Å. With this interac-
tion potential we calculate the (adiabatic) work of adhesion
w ≈ 0.0023 J/m2 for the commensurate interface, and w ≈
0.0027 J/m2 for the incommensurate interface. We note that
in the present system, when the adhesion is removed (w → 0),
the contact width decreases from 85.3 to 25.8 Å when the
nominal pressure p = 0.1 MPa, and from 101.1 to 61.5 Å
when p = 1 MPa. Thus, in spite of the small work of adhe-
sion, the adhesion interaction is very important, which is due
to the small size of the system [in the JKR theory the width of
the contact region depends on the (dimensionless) parameter
w/(pR), where R is a length characterizing the size of the
system; w/(pR) is of order unity in the present case].

Figure 2 shows for the incommensurate interface the
system, in Fig. 2(a) before contact, and in Fig. 2(b) after
squeezing the block against the substrate with the nominal
contact pressure p = Fz/(LxLy) = 0.1 MPa (blue), and p =
1 MPa (red). We also show the contact for the flat-curved case
studied in Refs. [11,12].

III. NUMERICAL RESULTS

Figure 3 shows the friction coefficient μ = Fx/Fz (green
lines) and its (local) average (blue) as a function of the dis-
tance s = vt moved by the upper surface of the block for the
(nearly) incommensurate [Fig. 3(a)] and the commensurate
[Fig. 3(b)] system. The sliding speed v = 0.1 m/s and the
nominal contact pressure p = 0.1 MPa. For the incommen-
surate system the average friction coefficient nearly vanishes
(μ < 10−4) while for the commensurate system it is of order
unity (μ ≈ 0.9). Note that there is nearly no drop in the
friction force at the onset of sliding, i.e., the static and kinetic
friction coefficients are nearly equal which we also observe
for other sliding speeds.

curved-flat

flat-curved

before contact

after contact

(a)

(b)

(c)

P=0.1MPa

P=1MPa

P=0.1MPa

FIG. 2. Contact area between an elastic slab (block) and a rigid
substrate at the temperature T = 0 K. In (a) and (b) the block is cor-
rugated with the height coordinate z = h0 cos(q0x) with q0 = 2π/Lx .
In (c) the substrate has the same corrugation amplitude but with
a double wavelength (i.e., q0 = π/Lx), while the block has a flat
surface. We denote the two different systems as curved flat and flat
curved. For the curved-flat system we show the contact (a) before and
(b) after squeezing the block against the substrate with the nominal
contact pressure p = 0.1 MPa (blue), and p = 1 MPa (red). For the
flat-curved system we show the contact for the nominal contact
pressure p = 0.1 MPa. The Young’s modulus for the elastic block
E = 10 MPa, and the LJ block-substrate atom interaction parameters
are given in the text.
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FIG. 3. The friction coefficient μ = Fx/Fz as a function of the
distance vt moved by the top of the elastic block (curved-flat system).
For (a) the incommensurate and (b) the commensurate interface. The
nominal contact pressure p = 0.1 MPa and the speed v = 0.1 m/s.
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FIG. 4. The friction coefficient μ = Fx/Fz as a function of the
sliding distance for the commensurate system. The sliding speed v =
0.1, 0.2, 0.5, and 1 m/s, and the contact pressure p = 0.1 MPa.

The oscillations in Fx/Fz for the incommensurate system
are due to the abrupt start in sliding where the upper surface of
the block abruptly starts to move with the speed v = 0.1 m/s
at time t = 0 (see the movie [13]). This results in an elastic
wave propagating [with the transverse sound velocity cT =
(G/ρ)1/2 ≈ 56 m/s] towards the interface so that only after
the time t = d/cT will the atoms at the interface start to move.
The periodicity of the fluctuation in the tangential force Fx in
Fig. 3(a) is given by the time it takes for an elastic wave to
propagate back and forth between the two surfaces, i.e., the
distance 2d giving the time �t = 2d/cT or sliding distance
�s = v�t = 2dv/cT. Using v = 0.1 m/s, cT = 56 m/s, and
d = 8.6 nm, this gives �s = 0.031 nm. The numerical calcu-
lations show that the period (in time) of the oscillations in Fx

is independent of the sliding speed v, and the contact pressure
p, while the amplitude of the oscillations is proportional to v.

For the commensurate interface the friction is much larger
and nearly velocity independent (see Fig. 4). This is the ex-
pected result when at the sliding interface rapid slip events
occur, involving velocities independent of the driving speed v.
Observations of the movies (see Ref. [14]) show that the slid-
ing motion involves domain-wall excitation (solitons), which
propagate with high speed (of order of the Rayleigh sound
velocity; see Fig. 5), unrelated to the sliding speed v, while
energy is radiated into the block, giving rise to the observed
high friction force.

For both the commensurate and the incommensurate sys-
tems the contact width does not change with sliding speed in
the studied velocity range (v < 1 m/s). For the incommensu-
rate system this is expected because of the nearly vanishing
(average) friction force, but for the commensurate system the
friction is large but still the contact width is independent of
the sliding speed. In particular, there is no change in the con-
tact width between v = 0 with Fx = 0 and sliding at a finite
velocity where the frictional shear stress is of order 0.1 MPa
[as is typical for polydimethylsiloxane (PDMS) sliding on a
glass surface [15]].

Earlier, we had studied sliding friction for the flat-curved
situation where an elastic block with a smooth surface is slid-
ing on a rigid surface with the height profile z = h0 cos(q0x).
This case differs from the curved-flat configuration studied
above since for the flat-curved system there is an impor-

(a)

(b)

(c)

before sliding (t=0) 

after sliding (t = t0)

after sliding (t = t0 + 20 ps)

soliton-excitation

FIG. 5. For the curved-flat system with a commensurate interface
the sliding motion consists of “long” time periods of no sliding
followed by rapid slip events where the block moves forward by one
substrate lattice spacing. The rapid motion consists of a compres-
sion domain wall (solitonlike excitation) which propagates with a
velocity (≈43 m/s) close to the Rayleigh sound velocity (≈0.95cT ≈
53 m/s). During this rapid motion, elastic waves (phonons) are radi-
ated into the block which is the origin of the observed friction force.

tant contribution to the friction from phonon emission from
the opening and closing crack tips. In fact, for the system
sizes we have studied, for the flat-curved case, even for the
commensurate interface the contact edge contribution to the
friction is larger than the contribution from the internal region
of the contact. This is illustrated in Fig. 6, which shows the
nominal frictional shear stress Fx/(LxLy) as a function of the
sliding distance for the flat-curved case with an incommensu-
rate interface (red curve), and for the commensurate interface
(blue curve). In the calculations we have assumed the nominal
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FIG. 6. The nominal shear stress as a function of the sliding
distance for the flat-curved system with different communicabilities
for the sliding speed v = 0.1 m/s.
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FIG. 7. (a) Normal stress σzz and (b) shear stress τzx acting on
the block as a function of the spatial coordinate x. For the curved-flat
system (red curves), and for the flat-curved system (green curves),
in both cases with a commensurate interface. The sliding speed v =
0.1 m/s, and the nominal contact pressure p = 0.1 MPa.

contact pressure p = 0.1 MPa. The figure also shows the re-
sult for a higher contact pressure, p = 0.3 MPa (green line).
Note that the incommensurate interface gives the largest fric-
tion. For this system there is a negligible contribution to the
friction from the internal region of the contact. That is, the
friction is entirely due to the phonon emission associated with
the rapid atomic snap-out and snap-in at the crack edges (see
Refs. [11,12]). It is remarkable that the commensurate system
gives lower friction than the incommensurate system, in spite
of the fact that for this system there is both a contribution from
the internal region of the contact and from the crack edges.
However, the contribution from the crack edges is smaller than
for the incommensurate system due to the higher density of
substrate atoms for the incommensurate system (the ratio is
206/128 ≈ 1.61).

Figure 7 shows the normal stress σzz [Fig. 7(a)]and the
shear stress τzx [Fig. 7(b)] acting on the block as a func-
tion of the spatial coordinate x. The red lines are for the
curved-flat system, and the green lines for the flat-curved
system, in both cases with a commensurate interface (with
ab/as = 128/128 = 1). The sliding speed v = 0.1 m/s, and
the nominal contact pressure p = 0.1 MPa. Note that in both
cases at the edge of the contact region the normal stress σzz

is tensile and maximal, as expected from the JKR theory, and
from the theory of cracks, which predicts that the stress has
an r−1/2 singularity at r = 0 (where r is the distance from
the crack tip). Because of the curved contact region in the

flat-curved system, at the edge of the contact region the stress
τzx will exhibit a similar singular form as the normal stress.
However, for the curved-flat system the contact region is flat
and only the σzz stress exhibits the singular form.

IV. DISCUSSION

We have shown above that within linear elasticity the-
ory the contact area between an elastic cylinder and a rigid
flat countersurface does not depend on the applied tangential
force, at least not for the systems studied above. This is in con-
trast to some experimental results for PDMS spheres sliding
on smooth glass surfaces. This indicates that the origin of the
area reduction in the size of the contact area in Refs. [16–19]
may be due to some effect not being taken into account in the
model study, such as material viscoelasticity, elastic nonlin-
earity, or contact time-dependent work of adhesion.

In an interesting study Lengiewicz et al. [20] have found
that the observed contact area reduction for a PDMS rubber
sphere in contact with a glass surface can be explained by
a theory based on nonlinear elasticity without invoking ad-
hesion. They found quantitative agreement with the recent
experimental results of Sahli et al. [17,18,20] on sphere-plane
elastomer contacts, without adjustable parameters, using the
neo-Hookean hyperelastic model. The importance of elastic
nonlinearity for the explanation of the contact area reduction
have been suggested by us in some earlier papers, in particular,
in Ref. [21]. In another paper [11] we observed that for a dry,
clean human finger there is no macroscopic adhesion to a flat
glass plate (due to the large surface roughness of the skin), so
the fact that for this case too the contact area is reduced upon
application of a tangential force must clearly be a nonlinear
elastic effect. That adhesion itself may not result in a reduction
in the contact area upon application of a tangential force was
also shown theoretically to be the case in the paper by Menga,
Carbone, and Dini [9]. Finally, we note that in at least one
study the rubber-glass contact area was found to increase
upon sliding, indicating that other mechanisms may con-
tribute to the dependency of the contact area on the tangential
force [22].

If the reduction in the contact area upon application of a
tangential force can be interpreted as an effective stiffening of
the rubber elastic properties by the tangential deformations,
then we expect also that the penetration is decreasing by in-
creasing tangential force. This could explain the experimental
observation in Ref. [21] that a sharp tip indented in a rubber
surface with a given normal force moves upwards when a
parallel force is applied in addition to the normal force. Within
(small deformation) linear elasticity theory this result is unex-
pected as there is no coupling between the parallel and the
perpendicular deformations when the Poisson ratio is equal to
0.5 (incompressible solid), as is the case in the rubbery region
for rubberlike materials.

In this paper, and in Refs. [11,12], we have assumed sim-
ple crystalline solids. Rubberlike materials are more complex
materials with cross-linked long-chain molecules, and may
have nanometer-thick surface layers with liquidlike mobility
of the polymer segments, which can rearrange in the substrate
surface potential and form small regions which are pinned by
the substrate. In this case, during lateral motion of the rubber
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FIG. 8. The sliding friction for a polyoxymethylene (POM) poly-
mer block sliding in a POM substrate. For a nominal flat interface
with a nominal contact pressure 1 MPa and temperature T = 20 ◦C.
See Ref. [28] for experimental details.

block, the chain stretches, detaches, relaxes, and reattaches to
the surface to repeat the cycle. Here, “detaches” stands for
the rearrangement of molecule segments (in small domains)
parallel to the surface from pinned (commensuratelike) to
depinned (incommensuratelike) domains. This results in an
“area-dominated friction” where the shear stress is uniform
within the contact area as observed experimentally [15]. In
this case the friction force arises from a stick-slip type of
motion of nanometer-sized regions everywhere within the
contact region. Theoretical model studies of this process were
presented in Refs. [23,24].

That systems with a (nearly) incommensurate interface
exhibit smaller friction than systems with a commensurate
interface, as found above, is well known, but in practice there
are several “complications.” Thus, even if the interface is
incommensurate, mobile adsorbed contamination molecules
will always exist in the normal atmosphere, which will adjust
their positions and pin the surfaces together, which may re-
sult in a large and nearly velocity-independent friction force
[25,26]. Nevertheless, even if there are no strictly incommen-
surate systems, one expects a smaller friction force the closer
an interface becomes to a perfect incommensurate system. As
an example, if two polymers, say, A and B, with very different

natures of the bed units, slide on top of each other, a relatively
small friction coefficient may prevail, while for A sliding on
A, or B on B, the friction may be much higher due to the
more commensuratelike contact [27,28]. In the latter cases
the friction coefficient is also expected to be nearly velocity
independent, assuming the sliding speed is not so high that
frictional heating becomes important, or so low that thermal
activation becomes important. As an example illustrating this,
in Fig. 8 we show experimental results for the velocity depen-
dency for a polyoxymethylene (POM) polymer block sliding
on a POM substrate. Note that the friction coefficient is large
(μ ≈ 0.4) and nearly velocity independent.

V. SUMMARY AND CONCLUSIONS

We have presented molecular dynamics simulations for an
elastic cylinder sliding on a rigid flat countersurface (curved
flat). For this system, within linear elasticity theory, the con-
tact area does not depend on the applied tangential force.

The sliding friction of commensurate and incommensurate
interface contacts was investigated. For the commensurate
interface the friction is large and nearly velocity indepen-
dent due to rapid slip events involving domain-wall excitation
(solitons), which propagate at the interface with a speed of
order of the sound velocity, radiating energy to the block,
giving rise to the observed high friction force.

The geometry of contact, whether a curved-(rigid)flat
contact or flat-(rigid)curved contact, decides the energy dis-
sipation mechanism during sliding, resulting in the observed
difference in frictional force. For the curved-flat case the
friction force is mainly due to processes occurring inside the
contact area, while for the flat-curved case, for the system we
studied, the friction force is mainly due to phonon emissions
at the crack edges associated with the rapid atom snap-out (at
the opening crack) and snap-in (at the closing crack) events.
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