
PHYSICAL REVIEW E 102, 042909 (2020)

Role of energy in ballistic agglomeration
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We study a ballistic agglomeration process in the reaction-controlled limit. Cluster densities obey an infinite
set of Smoluchowski rate equations, with rates dependent on the average particle energy. The latter is the same for
all cluster species in the reaction-controlled limit and obeys an equation depending on densities. We express the
average energy through the total cluster density that allows us to reduce the governing equations to the standard
Smoluchowski equations. We derive basic asymptotic behaviors and verify them numerically. We also apply our
formalism to the agglomeration of dark matter.
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I. INTRODUCTION

In aggregation, clusters merge irreversibly upon collisions.
Aggregation is ubiquitous in nature with applications rang-
ing from Brownian coagulation [1–6] and polymerization [7]
to atmospheric phenomena [8–11] and astrophysical systems
[12–22]. A complete description of aggregation is very com-
plicated. A spectacular example of merging massive black
holes has been studied theoretically, numerically, and experi-
mentally; this is a very complicated process. Still, the details
of the merging processes in ordinary phenomena like Brown-
ian coagulation could be as complicated as in the black holes
or neutron stars merging. Moreover, the mass spectrum is very
broad. Hence the merging is usually modeled just postulating
that it occurs with a certain rate depending on the parameters
of the merging clusters. Clusters are also simply modeled by
a single number, the mass of the cluster. Clusters are often
built from minimal-mass entities, the monomers. In this situa-
tion the mass spectrum mk = m1k is parametrized by integers
k = 1, 2, . . ..

The transport mechanism plays a crucial role in aggre-
gation. In earlier applications of aggregation to Brownian
coagulation, polymerization, and other physical and chemi-
cal processes, diffusion is the dominant transport mechanism
(e.g., Refs. [2–6]). Thus the particles have random rather
than deterministic trajectories. Such aggregation processes are
well understood [23,24]. The main quantities of interest are
cluster densities nk (t ) which depend only on the mass k and
time t . In the homogeneous setting, these densities evolve ac-
cording to Smoluchowski rate equations. For infinite systems,
Smoluchowski’s equations are an infinite system of nonlinear
coupled ordinary differential equations depending on merging
rates. Smoluchowski equations have been analytically solved
only in a few cases, namely, for the general bilinear kernel
[9,25]; more recently, exact solutions have been established
for the parity kernel [26] and the q-sum kernel [27]. Scaling
analysis [28,29] often provides a good qualitative understand-
ing of the most interesting large-time behavior.

Ballistic transport also underlies many aggregation pro-
cesses such as aggregation of dust in interplanetary space and
particles in planetary rings [14–19]. Since diffusive transport
is usually tacitly assumed when aggregation is mentioned, we
use the term ballistic agglomeration (BA) to describe aggrega-
tion processes with ballistic transport. The BA processes have
diverse applications ranging from in-space manufacturing to
the evolution of the dark matter [20–22].

Despite numerous studies of the BA processes [30–41], our
understanding of such systems is much less complete than
the understanding of the diffusion-driven aggregation. The
key difference of the BA from diffusion-driven aggregation
is the primary role of the kinetic energy which is partially
lost in merging events. In aggregation processes, each cluster
is characterized by its mass; in the BA processes, we must
also account for velocities and rely on a joint mass-velocity
distribution satisfying Boltzmann-Smoluchowski equations
[19,36,37,42]. The Boltzmann equation is already notoriously
difficult; the Boltzmann-Smoluchowski equations form an in-
finite set of nonlinear coupled integrodifferential equations,
each one more complicated than the Boltzmann equation. One
very general solution of the Boltzmann equation, the Maxwell
distribution, describes equilibrium. If different cluster species
were at equilibrium, then velocity distributions would be
known. Temperature equilibrium (temperature equipartition)
is violated for the BA: The temperatures of each species
defined via the corresponding average kinetic energy are
different.

Fortunately, there is a special limit when all species
are close to temperature equilibrium. This is the reaction-
controlled limit [35] (see also Refs. [3–6] for the diffusive
transport) when, in contrast to the collision-controlled limit,
merging occurs in a tiny fraction of collisions—clusters
mostly undergo elastic collisions and therefore are near
equilibrium. The entire system is then characterized by the
same temperature T (t ); it evolves in time, manifesting the
nonequilibrium nature of the process. An important feature
of the reaction-controlled BA is the validity of the mean-field
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(a) (b)

FIG. 1. Sketch of the (a) bouncing and (b) aggregative impact
of clusters of size i and j. The collision is specified by the impact
parameter b, the angle φ, and the relative velocity vi j .

description; in the collision-controlled BA, the mean-field
Boltzmann-Smoluchowski description fails in all spatial di-
mensions [24] although the failure becomes pronounced only
at a very large time and at intermediate times the deviations
are usually small.

Previous work [35] on the reaction-controlled BA was
focused on average quantities. In this paper, we develop a
general framework that allows one to determine both the mass
distribution and the evolution of temperature. This framework
is presented in Sec. II. In Sec. III we apply our formalism to
the agglomeration of dark matter. We conclude in Sec. IV.

II. RATE EQUATIONS FOR BALLISTIC AGGREGATION

A. Derivation of the rate equations

Equations governing the dynamics of the BA are derived
in the realm of the Boltzmann equation [43,44] approach.
The main object is fk (vk, t ), the density of clusters of mass
k and velocity vk . To illustrate the basic physics, we provide
a transparent derivation based on the direct computation of
the collision rates and energy losses. We consider diluted and
spatially uniform three-dimensional (3D) systems. We ignore
the shape of clusters and effectively assume that clusters are
balls: a cluster of “size” k has mass mk = m1k and the diame-
ter σk = σ1k1/3.

To determine the merging rate consider a collision of
two clusters with mass-velocity parameters (i, vi ) and ( j, v j ).
In the coordinate system attached to (i, vi ), another cluster
moves with the velocity vi j = vi − v j . When projected onto
the plane, perpendicular to the velocity vi j , the position of
the second cluster can be specified in the polar coordinates
by the radius b (the impact parameter) and the polar angle
φ (see Fig. 1). Take clusters of mass i with velocities in the
tiny region of volume dvi around vi, and similarly for clusters
of mass j. The number of collisions between such ensembles
of clusters happening during the time interval �t in a small
volume dr reads

fi(vi )dvi f j (v j )dv j vi j�t bdφdb dr. (1)

The densities fi(vi ) and f j (v j ) do not depend on the spatial
location (we consider only spatially uniform systems) or on
the direction of the velocity (due to isotropy). The factor
bdφdbvi j�t gives the volume of the collision cylinder (see
Fig. 1) specified by the impact parameter b ∈ [b, b + db] and
the angle φ: bdφdb is the cross section and vi j�t is the
length of the cylinder. Equation (1) is based on the assumption
that the velocities of colliding clusters are uncorrelated. This
assumption, first applied to molecular gases, was called a

“molecular chaos hypothesis.” Here it is applied to particle
physics and is expected to be accurate for diluted systems in
the reaction-controlled setting. The use of the molecular chaos
hypothesis in the collision-controlled setting is not completely
justified.

To find the number of collisions between clusters of size
i and j we integrate Eq. (1) over parameters specifying the
collision, that is, over φ ∈ [0, 2π ] and b ∈ [0, σi j] with σi j =
(σi + σ j )/2, and also over all possible velocities vi and v j .
The agglomeration rate is therefore

Bi j =
∫ 2π

0
dφ

∫ σi j

0
bdb

∫
dvi fi(vi)

∫
dv j f j (v j )vi j

= πσ 2
i j

∫∫
dvi dv j vi j fi(vi ) f j (v j ). (2)

In the reaction-controlled limit, a tiny fraction of collisions
leads to merging. We assume for simplicity that this fraction
does not depend on the cluster size and/or on the relative
velocity of the collision, although generally, this could be
violated (see, e.g., Refs. [5,6]). With this assumption, we can
put the fraction into the time variable to avoid cluttering the
formulas.

Since almost all collisions are as in the classical gas,
the velocity distribution functions are Maxwellian: fi(vi ) =
nie−v2

i /v2
0,i/(π3/2v3

0,i ), where ni is the number density of clus-
ters of size i and v0,i = √

2T/mi is the thermal velocity of
such clusters (T is the temperature measured in the units of
energy; equivalently, we set the Boltzmann constant to unity).

To compute the integral in Eq. (2) we first make the trans-
formation, (vi, v j ) → (V, vi j ), to the center of mass velocity
V = (mivi + mjv j )/(mi + mj ) and the relative velocity vi j =
vi − v j . The product of the velocity distribution functions
becomes

fi(vi ) f j (v j ) = nin j

π3v3
0,iv

3
0, j

exp

[
−μi jv

2
i j + (mi + mj )V 2

2T

]
,

where μi j = mimj/(mi + mj ) is the reduced mass. Inserting
this expression into Eq. (2) and using the identity dvidv j =
dVdvi j we get a product of two Gaussian integrals. Com-
puting the integrals we find that the agglomeration rates are
proportional to

√
T :

Bi j =
√

T Ki jnin j . (3)

The mass-dependent factor of the rates is given by

Ki j = K0(i1/3 + j1/3)2
√

i−1 + j−1, (4)

where K0 = σ 2
1

√
π/(2m1) (see Refs. [19,37,42] for details of

such calculations). The governing equations for the densities
are the Smoluchowski equations

dnk

dt
= T 1/2

[
1

2

∑
i+ j=k

Ki jnin j − nk

∑
i�1

Kkini

]
(5)

with a temperature-dependent factor.
Next, we derive the evolution equation for the total kinetic

energy density, 3
2 nT , where n = ∑

k�1 nk is the total cluster
density. In a collision between clusters i and j leading to merg-
ing, the total energy of the pair is reduced by the energy of
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the relative motion of the pair, μi jv
2
i j/2. We treat the merged

cluster as a single entity and thus do not account for the kinetic
energy of the inner motion, which remains after the collision.
To obtain the rate equation for the decay of the energy 3

2 nT ,
we multiply the integrand in Eq. (2) by μi jv

2
i j/2, integrate over

all possible velocities vi and v j , and sum over all i and j. This
gives the energy equation

d

dt
nT = −2

3
T 3/2

∑
i�1

∑
j�1

Ki jnin j . (6)

We ignore the energy loss in the bouncing collisions.
Hence these elastic collisions do not contribute to the evo-
lution of the kinetic energy in Eq. (6). The generalization for
inelastic collisions (as in granular gases [44]) is straightfor-
ward but would complicate the notations.

B. Analysis of the rate equations

Summing Eqs. (5) yields

dn

dt
= −1

2
T 1/2

∑
i�1

∑
j�1

Ki jnin j . (7)

Massaging Eqs. (6) and (7), we obtain a neat result

dT

dn
= 1

3

T

n
, (8)

implying that the temperature is a purely algebraic function of
the total density:

T (t )/T (0) = [n(t )/n(0)]1/3. (9)

We emphasize that Eq. (8) holds independently of such details
as the shape of clusters or the fraction of the aggregation
events (which can also depend on cluster sizes). However, one
still needs to assume a complete elasticity of the bouncing
collisions and that the fraction of merging events does not
depend on the collision speeds.

We can absorb the factor
√

T in Eqs. (5) into the time
variable by introducing the modified time

τ =
∫ t

0
dt ′ √T (t ′). (10)

The corresponding Smoluchowski equations

dnk

dτ
= 1

2

∑
i+ j=k

Ki jnin j − nk

∑
i�1

Kkini (11)

with rates (4) are analytically intractable. Fortunately, the
rates (4) are homogeneous; namely, they satisfy

Ksi,s j = sλKi, j . (12)

For rates (4), the homogeneity index is λ = 1/6. The scal-
ing approach [24,28] tells us that the total density decays as
n ∼ τ−1/(1−λ), so in the present case n ∼ τ−6/5. Using this
asymptotic together with Eqs. (9) and (10) we obtain

t ∼
∫ τ

0
dτ ′ [T (τ ′)]−1/2 ∼

∫ τ

0
dτ ′ [n(τ ′)]−1/6 ∼ τ 6/5,
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FIG. 2. (a) The reduced density distribution nk (t )/n2(t ) as a
function of kn(t ) for different times for the 3D system [n(0) =
T (0) = K0 = 1]. The convergence to the scaled distribution �(x)
with x = kn(t ) is observed already at t = 10. The scaled distri-
bution is well fit by ( 0.785

x0.28 + 0.65
x )e−0.61/

√
x−0.81x . (b), (c) The time

dependence of temperature, the total density, and monomer density.
Solid lines are numerical results; dashed lines are the asymptotic
predictions, Eqs. (13) and (16). The data presented in (a) and
(c) are obtained by numerically solving ordinary differential equa-
tions (ODEs). The data in (b) are from Monte Carlo simulations (see
Appendix A for detail).

implying that

n ∼ t−1 , T ∼ t−1/3. (13)

The scaling approach further predicts [23,24,28] that the
cluster-mass distribution approaches a scaling form

nk = n2�(kn) (14)

in the scaling limit t → ∞ (τ → ∞), k → ∞, kn = finite.
Here nk and n depend either on t or τ ; that is, the scaling
distribution �(x) is universal. Figure 2 illustrates that for the
temperature-dependent agglomeration, Eqs. (5) and (6), the
distribution �(x) quickly settles and coincides with the one
for the standard Smoluchowski equations.

The behavior of the scaled mass distribution �(x) depends
on homogeneity indexes μ and ν defined via

Ki, j ∼ iμ jν when j � i. (15)

Thus λ = μ + ν and the reaction rates satisfying Eqs. (12)
and (15) are characterized by two independent homogeneity
indices. For such homogeneous rates, qualitative behaviors
are understood (see Refs. [28,29,45,46]); it greatly depends
on whether the index μ is larger or smaller than zero. Reac-
tion rates with μ < 0 are known as type III rates [28]. The
mass distribution in this case is bell shaped [28,29], with
an exponential decay in the large-mass limit, and stretched
exponential decay ln[1/�(x)] ∼ x−|μ| in the small-mass limit.

For reaction rates (4), which are of type III, the indexes are
μ = − 1

2 and ν = 2/3. Adopting the treatment of Ref. [29] one
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can deduce a rather precise decay law

− ln[n1(t )/n(0)] = C1t1/2 + C2t1/6 + O(1) (16)

for the density of monomers as we explain below.

C. Ballistic aggregation: General dimension

The generalization of Eqs. (5) and (6) to arbitrary spa-
tial dimension d is straightforward. The agglomeration rate
is given by the same integral as in Eq. (2) multiplied by

d−1σ

d−1
i j instead of the factor πσ 2

i j for the 3D systems. Here

d = πd/2/�(1 + d/2) is the volume of a unit d-dimensional
ball. Then one derives Eqs. (5) with mass-dependent rates

Ki j = K0(i1/d + j1/d )d−1
√

i−1 + j−1. (17)

Since the loss of energy in collisions is the same as in three
dimensions, 1

2μi jv
2
i j , the energy equation becomes

d

dt
nT = −d + 1

2d
T 3/2

∑
i�1

∑
j�1

Ki jnin j, (18)

where we have taken into account that (d/2)nT gives the total
kinetic energy in the d-dimensional case.

Using Eqs. (5) and (18) and repeating analysis that has led
to Eq. (8) we derive

T (t )

T (0)
=

[ n(t )

n(0)

]1/d

. (19)

The rates (17) are homogeneous, with homogeneity index
λ = (d − 2)/(2d ). The same analysis as in three dimensions
gives the asymptotic decay laws

n ∼ t−2d/(d+3), T ∼ t−2/(d+3). (20)

The density of monomers in three dimensions decays ac-
cording to Eq. (16) in the large-time limit. We now derive this
result, as well as the more general small-mass asymptotic. We
also outline a generalization to an arbitrary spatial dimension.
Our derivation adopts the procedure developed in Ref. [29].
By inserting the scaling form (14) into the Smoluchowski
equations (11) and using (17) we obtain

w[2�(x) + x�′(x)]

= �(x)
∫ ∞

0
dy �(y) K (x, y)

− 1

2

∫ x

0
dy �(y)�(x − y)K (y, x − y), (21)

where

dn

dτ
= −wn2−λ, λ = 1

2
− 1

d
, (22a)

w = −1

2

∫ ∞

0
dx

∫ ∞

0
dy �(x) �(y) K (x, y), (22b)

K (x, y) = K0(x1/d + y1/d )d−1
√

x−1 + y−1. (22c)

In the y → ∞ limit, the kernel K (x, y) admits an expansion

K (x, y) =
∑
n�0

Knxμn yλ−μn (23)

with μ0 = μ = − 1
2 universal in all dimensions; μ1 = 1

d − 1
2

and K1 = (d − 1)K0; μ2 = 2
d − 1

2 , K1 = 1
2 (d − 1)(d − 2)K0

when d > 2 and μ2 = 1
2 , K1 = 1

2 K0 when d = 2; etc. Insert-
ing Eq. (23) into Eq. (21) and focusing on the small-mass
behavior, x ↓ 0, we find

w[2�(x) + x�′(x)] 
 �(x)
∑
n�0

Knxμn Mλ−μn , (24)

where Mp is the pth moment of the scaled mass distribution:

Mp =
∫ ∞

0
dy �(y) yp. (25)

Integrating Eq. (24) one obtains [29]

�(x) ∼ x−2 exp

[∑
n�0

KnMλ−μn

wμn
xμn

]
(26)

with sum running over such n that μn < 0 if μn �= 0 for all
n; if μn = 0 for some value n, the term xμn/μn should be
replaced by ln x.

Since μ0 = − 1
2 , μ1 = − 1

6 , μ2 = 1
6 in three dimensions,

Eq. (26) becomes

�(x) ∼ x−2 exp[−A1x−1/2 − A2x−1/6]. (27)

Thus n1 = n2�(n) ∼ exp[A1n−1/2 − A2n−1/6], leading to the
announced asymptotic behavior (16) in three dimensions.

In two dimensions, μ0 = − 1
2 and μ1 = 0, so Eq. (26)

yields n1 ∼ exp[−A1n−1/2 − A2 ln n], from which

− ln
n1(t )

n(0)
∼ C1t

2
5 + C2 ln t + O(1). (28)

When d = 4, we get μ0 = − 1
2 , μ1 = − 1

4 , and μ2 = 0, from
which

− ln
n1(t )

n(0)
∼ C1t

4
7 + C2t

2
7 + C3 ln t + O(1). (29)

The constants C1, C2, etc. appearing in Eqs. (16) and (28) are
different, even if denoted by the same letter. These constants
are unknown as they depend on the moments of the scaled
mass distribution which are analytically unknown.

Thus the monomer density exhibits the stretched exponen-
tial decay

ln
n1(t )

n(0)
∼ −t

d
d+3 (30)

in the leading order. The leading behavior of the mass distri-
bution in the small-mass limit is

ln
nk (t )

n(0)
∼ −k− 1

2 t
d

d+3 for k � t
2d

d+3 . (31)

In Fig. 3 we present the density distribution and asymptotic
behavior for n(t ) and T (t ) for two-dimensional systems.

III. BALLISTIC AGGREGATION: APPLICATION
TO DARK MATTER

For many years, dark matter was thought of as a single
stable and weakly interacting particle, but this paradigm is
being challenged by a wider view where dark matter is part
of a larger dark sector. In this framework, the formation of
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FIG. 3. (a) The reduced density distribution nk (t )/n2(t ) as a
function of kn(t ) for different time t for the two-dimensional (2D)
system. The convergence to the scaling function �(x) with x = kn(t )
is observed already at t = 10. The scaled mass distribution �(x) is
well fit by ( 2.13

x0.25 + 1.03
x1.28 )e−1.05/

√
x−1.035x . (b), (c) The time dependence

of the total density and temperature. Solid lines, numerical results;
dashed lines, theoretical predictions, Eqs. (20) for d = 2. (a) and fit
function are from the ODE solution; (b) and (c) are from Monte Carlo
simulations (see Appendix A for detail).

dark nuclei with a very wide spectrum of masses becomes
plausible. The agglomeration of dark nuclei from dark nucle-
ons has been studied in Refs. [20–22]. In our framework, the
governing equations are Eqs. (5) and (6), with replacement
d
dt → d

dt + 3H , where H = H (t ) is the Hubble parameter ac-
counting for the expansion of the universe. The transformation

nk = hmk, h(t ) = exp

[
−3

∫ t

t0

dt ′ H (t ′)
]
, (32)

recasts these equations into

1

hT 1/2

dmk

dt
= 1

2

∑
i+ j=k

Ki jmimj − mk

∑
i�1

Kkimi, (33)

1

hT 3/2

d mT

dt
= −2

3

∑
i�1

∑
j�1

Ki jmimj, (34)

that differ from Eqs. (5) and (6) only by an extra factor
h(t ). In Ref. [20] it was assumed that the dark nuclei were
in contact with a bath of lighter particles, which determined
their temperature. The temperature of the bath was gradually
decreasing during the evolution of the universe. Here we
only take into account collisions between dark nuclei, so the
temperature is defined by the agglomeration and Hubble ex-
pansion only; that is, the system of dark nucleons is assumed
to be completely isolated.

Agglomeration begins at sufficiently low temperatures, say,
when the temperature drops below T0. Initially, the temper-
ature decreases mainly due to radiation, which is especially

important at high temperatures in the early stages of the uni-
verse. However, we assume that at T = T0 this type of energy
loss is already quite slow, so that the aggregation quickly
becomes dominant when it starts. In the definition (32) of h(t )
we set the lower limit t0 as the time when this occurs, T0 =
T (t0). The natural initial condition is mk (t0) = n0δk,1, where
n0 = n(t0). Using Eqs. (33) and (34) we find that for t � t0 the
temperature and the auxiliary total density are related via

T (t )/T0 = [m(t )/n0]1/3. (35)

We rescale mk → n0mk , T → T0T , and K0 → n0T 1/2
0 K0,

where K0 is defined by Eq. (4), and keep, for simplicity, the
same notations for these quantities. Then with the dimension-
less time

T = K0

∫ t

t0

dt ′ h(t ′) (36)

we recast Eqs. (33) and (34) into the temperature-dependent
Smoluchowski equations (5) and (6) for mk (T ), whose prop-
erties have been analyzed previously.

To determine h(t ), we need a bit of cosmology. There is
solid observational evidence in favor of the flat universe with
positive cosmological constant 
 representing dark energy.
Then the Friedmann equation for the scaled factor a(t ) reads

ȧ2

a2
= 8πGρ + 
c2

3
. (37)

Here G is the Newton constant, ρ the density, c the speed of
light, and H = a−1ȧ. Density ρ can be determined from the
Friedmann acceleration equation

ä

a
= −4πG

3

(
ρ + 3p

c2

)
+ 
c2

3
, (38)

where p is pressure. Combining Eq. (38) with Eq. (37) we
find ρ̇ = − 3ȧ

a (ρ + p/c2). If agglomeration of dark matter
indeed occurs, it begins in the radiation-dominated era of
the expansion [20]. At this stage the equation of state is
p = ρc2/3 and from the previous equation for ρ̇ one finds
ρ(t )/ρ0 = (a0/a(t ))4. Using this result together with 
c2 �
8πGρ which is valid in the radiation era (see Ref. [47]), we
simplify Eq. (37) to

a
da

dt
=

√
8πGρ0a4

0

3
. (39)

Integrating Eq. (39), using Eq. (32) with H = a−1ȧ we find

h(t ) = [1 + 2H0(t − t0)]−3/2 (40)

with H0 = H (t0) = (8πGρ0/3)1/2. Equation (36) then yields

T (t ) = K0

H0

(
1 − 1√

1 + 2H0(t − t0)

)
. (41)

The modified time T remains finite and the agglomeration
effectively ceases in the radiation-dominated era, namely
when H0(tr − t0) � 1.

If t0 is close to the end of the radiation era tr , the agglom-
eration continues for t > tr . The freezing then occurs in the
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FIG. 4. The modified densities mk (t ) as a function of size k for
different agglomeration time t − t0. For tr = 200t0 the agglomeration
ceases in the radiation-dominated era (left), while for t0 = tr it ceases
in the matter-dominated era (right). In both cases the distribution con-
verges to the frozen one [Eq. (45)]. The particular value m(Tmax) is
determined by K0/H 
 2K0t0, which is assumed to be large enough
to guarantee scaling. Results are obtained by the ODE solution (see
Appendix A).

matter-dominated era, so one can use [47]

a1/2 da

dt
=

√
8πGρ0a3

0

3
. (42)

Solving this equation one can find H (t ) = ȧ(t )/a(t ) for the
matter-dominated era, h(t ), and eventually T (t ). The details
of the derivation are presented in Appendix B; here we just
quote the result:

T (t ) = 2K0t0

[
1 −

√
t0
tr

(3tr + t

3t + tr

)]
. (43)

For simplicity, we have assumed a sharp transition from the
radiation- to matter-dominated era. Hence the modified time
remains finite:

T < Tmax = 2K0t0(1 −
√

t0/9tr ). (44)

The evolution thus freezes, and if Tmax is large enough, the
modified densities, mk (T ); the frozen scaled form is

mfrozen
k = m2(Tmax)�[km(Tmax)], (45)

where the scaling function �(x) is the same as for the standard
or temperature-dependent Smoluchowski equations. Evolu-
tion with the freezing has been also reported in Ref. [20].
Figure 4 illustrates the convergence of mk to the frozen dis-
tribution (45) for increasing t for two scenarios: the freezing
within the radiation-dominated and matter-dominated eras.

IV. CONCLUSION

We have investigated the ballistic agglomeration process
in the reaction-controlled limit. Cluster densities satisfy an
infinite set of Smoluchowski rate equations, with rates pro-
portional to

√
T , where T is the kinetic temperature whose

evolution is described by an energy equation. Remarkably,
the temperature admits an expression through the total cluster
density alone. In the reaction-controlled limit, the exponents
describing the evolution of the total density and energy
have been established in Ref. [35]. Our more comprehensive

description additionally gives the mass distribution. In partic-
ular, we have obtained an unexpected stretched exponential
decay for the density of monomers. Our theoretical findings
are in good agreement with simulation results.

We emphasize that the ballistic agglomeration pro-
cess in the collision-controlled limit is not yet analyti-
cally understood in three dimensions, and generally when
d � 2; the one-dimensional model is exactly solvable
[32–34]. Some quantities exhibit drastically different behav-
iors in the reaction-controlled and collision-controlled cases.
For instance, in one dimension the density of monomers de-
cays as exp[−Ct1/4] in the reaction-controlled case, while in
the collision-controlled limit n1 ∼ t−1, that is, the decay is
much slower.

We have applied our formalism to the evolution of dark
matter, namely, to a model of asymmetric dark matter [20–22]
where dark nuclei are formed via agglomeration of elementary
dark nucleons. We have assumed that collision events rarely
lead to merging. In this reaction-controlled limit, the sys-
tem reaches the temperature equipartition for different cluster
species without the need for the bath of light particles [20,22].
The size distribution of the dark nuclei tends to a final frozen
distribution whose functional form follows from the solution
of the standard Smoluchowski equations. A wide spectrum of
masses calls for novel strategies for direct detection of heavy
dark matter nuclei [48]. Among possible directions for future
work, we mention symmetric dark matter models where the
agglomeration should be supplemented by annihilation.

ACKNOWLEDGMENTS

This study has been supported by Research funded by
Russian Foundation for Basic Research (RFBR) through the
Research Projects No. 18-29-1919 and No. 20-31-90022.

APPENDIX A: NUMERICAL METHODS

In our study we used two different numerical methods: the
ODE solution and Monte Carlo simulations. Both methods are
popular and efficient tools to study the aggregation kinetics
(see, e.g., Refs. [2,4–6]).

Monte Carlo simulations have been used to obtain the
results for Figs. 2(b), 3(b) and 3(c); it allows directly prove the
validity of Eq. (19). The detail of the Monte Carlo approach
exploited here may be found in Refs. [49,50]. The only dif-
ference of the present implementation of this method is that
the speeds of the particles were generated from the Maxwell
distribution before each collision, without the use of a bath, as
in Refs. [49,50]. This follows from the fact that the particles
have time to exchange kinetic energy between the aggregation
events. We used 107 particles and doubled them every time
when their number decreased by a factor of 2.

In other figures [Figs. 2(a), 2(c), 3(a), and 4] we solved
the ODE system of Eqs. (5) and (6) directly, after limiting the
total number of equations to 50 000. While the Monte Carlo
and ODE methods converge to the same solution, when the
time step goes to zero and the number of particles goes to
infinity, the ODE solution converges much faster and does not
have stochastic noise. For better accuracy, we used a second-
order predictor-corrector scheme with an adaptive time step of
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τ = 0.01. In this case, the time step is calculated as

�tk = τ

max
i

|ni(tk−1)|
max

i
|ni(tk−1) − ni(tk )| , tk+1 = tk + �tk . (A1)

To speed up the solution of the ODE system, we used the
method for generalized Smoluchowski equations [51], which
is based on a low-rank approach from Refs. [52,53]. The same
solution can be obtained by solving the Smoluchowski equa-
tions directly like any other finite system of ODEs. However,
the application of the low-rank approximation and adaptive
time step technique accelerates the computations enormously
[51–53].

APPENDIX B: DERIVATION OF EQ. (43)

If the agglomeration starting time t0 is close to the end of
the radiation-dominated era, tr ≈ 50 000 years, a significant
number of collisions still happen for t > tr in the matter-
dominated era. For t > tr , the pressure becomes very small,
so ρ̇ = − 3ȧ

a (ρ + p/c2) reduces to ρ̇ = −3(ȧ/a)ρ.
Obviously, the transition from the state with the nonvanish-

ing pressure pr in the radiation-dominated era to the state with
p ≈ 0 in the matter-dominated era is not instantaneous. The
evolution of pressure for the transient period may be described
(see Ref. [47]) as

p ≈ pr

1 + Teq/T
,

where Teq is the temperature of matter-radiation equilibrium.
This makes the analysis of the transient period extremely com-
plicated and does not allow us to obtain an explicit relation for
the modified time τ . Therefore, for the qualitative analysis, we
assume that the transition period is short enough, as compared
to the total time of the formation of the density distribution of
dark matter. Hence we effectively postulate that this transition
is instantaneous. Combining ρ(t )/ρ(tr ) = (a(tr )/a(t ))3 and
Eq. (37) we obtain

a1/2 da

dt
=

√
8πGρra3

r

3
(B1)

for t > tr , where ρr and ar are the quantities at the end of the
radiation-dominated era. This equation is solved to yield the
behavior H (t ) = ȧ(t )/a(t ) for the matter-dominated era. The
quantity h(t ) defined in Eq. (32) reads

h(t ) = hr

[
1 + 3

2
Hr (t − tr )

]−2

, t > tr, (B2)

where Hr = H (tr ) and hr = h(tr ) are again the quantities at
the end of the radiation-dominated era. Note that one can
ignore the cosmological constant 
 which becomes relevant
only when the universe is older than about 10 billion years.

To determine the modified time T for t > tr we first need
to find T (tr ) from Eq. (B1) and then add the corresponding
integral with h(t ) given by Eq. (B2). To simplify the com-
putations, let us assume that t0 is far from cosmic inflation
(otherwise, everything would have already aggregated in the
radiation-dominated era). Then since a(t ) ∼ t1/2, as it follows
from Eq. (39) we obtain the estimates for the beginning of the
agglomeration and the end of the radiation era:

H0 = ȧ(t0)

a0

 1

2t0
, Hr 
 1

2tr
. (B3)

Then we arrive at

T (t ) = T (tr ) + [T (t ) − T (tr )]

= K0

H0

(
1 − 1√

1 + 2H0(tr − t0)

)
+

∫ t

tr

dt ′ K0h(t ′).

Massaging this expression we simplify it to

T (t ) 
 2K0t0

(
1 −

√
t0
tr

)

+ 4K0tr
3

( t0
tr

)3/2
(

1 − 1

1 + 3
4tr

(t − tr )

)

= 2K0t0

[
1 −

√
t0
tr

(3tr + t

3t + tr

)]
.

This completes the derivation of Eq. (43). In the long-time
limit, one can further simplify to obtain Eq. (44).

[1] M. V. Smoluchowski, Z. Phys. Chem. 92, 129 (1917).
[2] F. Family, P. Meakin, and T. Vicsek, J. Chem. Phys. 83, 4144

(1985).
[3] R. C. Ball, D. A. Weitz, T. A. Witten, and F. Leyvraz, Phys. Rev.

Lett. 58, 274 (1987).
[4] M. Thorn and M. Seesselberg, Phys. Rev. Lett. 72, 3622

(1994).
[5] G. Odriozola, A. Moncho-Jordá, A. Schmitt, J. Callejas-

Fernández, R. Martínez-García, and R. Hidalgo-Álvarez,
Europhys. Lett. 53, 797 (2001).

[6] G. Odriozola, R. Leone, A. Schmitt, J. Callejas-Fernández, R.
Martínez-García, and R. Hidalgo-Álvarez, J. Chem. Phys. 121,
5468 (2004).

[7] P. J. Flory, Principles of Polymer Chemistry (Cornell University
Press, Ithaca, NY, 1953).

[8] G. R. Hidy and J. R. Brock, The Dynamics of Aerocolloidal Sys-
tems, International Reviews in Aerosol Physics and Chemistry
(Pergamon Press, Oxford, 1970).

[9] R. L. Drake, in Topics in Current Aerosol Research, Vol. 3,
Part 2, edited by G. M. Hidy and J. R. Brock (Pergamon Press,
New York, 1972).

[10] R. C. Shrivastava, J. Atmos. Sci. 39, 1317 (1982).
[11] S. K. Friedlander, Smoke, Dust and Haze, 2nd ed. (Oxford

University Press, Oxford, 2000).
[12] G. B. Field and W. C. Saslaw, Astrophys. J. 142, 568 (1965).
[13] J. J. Lissauer, Annu. Rev. Astron. Astrophys. 31, 129 (1993).
[14] A. Chokshi, A. G. G. Tielens, and D. Hollenbach, Astrophys. J.

407, 806 (1993).
[15] C. Dominik and A. G. G. Tielens, Astrophys. J. 480, 647 (1997).
[16] V. Ossenkopf, Astron. Astrophys. 280, 617 (1993).

042909-7

https://doi.org/10.1515/zpch-1918-9209
https://doi.org/10.1063/1.449079
https://doi.org/10.1103/PhysRevLett.58.274
https://doi.org/10.1103/PhysRevLett.72.3622
https://doi.org/10.1209/epl/i2001-00210-x
https://doi.org/10.1063/1.1779571
https://doi.org/10.1175/1520-0469(1982)039<1317:ASMOPC>2.0.CO;2
https://doi.org/10.1086/148318
https://doi.org/10.1146/annurev.aa.31.090193.001021
https://doi.org/10.1086/172562
https://doi.org/10.1086/303996


BRILLIANTOV, OSINSKY, AND KRAPIVSKY PHYSICAL REVIEW E 102, 042909 (2020)

[17] F. Spahn, N. Albers, M. Sremcevic, and C. Thornton, Europhys.
Lett. 67, 545 (2004).

[18] L. Esposito, Planetary Rings (Cambridge University Press,
Cambridge, UK, 2006).

[19] N. V. Brilliantov, P. L. Krapivsky, A. Bodrova, F. Spahn, H.
Hayakawa, V. Stadnichuk, and J. Schmidt, Proc. Natl. Acad.
Sci. USA 112, 9536 (2015).

[20] E. Hardy, R. Lasenby, J. March-Russell, and S. W. West, J. High
Energy Phys. 06 (2015) 011.

[21] G. Krnjaic and K. Sigurdson, Phys. Lett. B 751, 464
(2015).

[22] M. I. Gresham, H. K. Lou, and K. M. Zurek, Phys. Rev. D 97,
036003 (2018).

[23] F. Leyvraz, Phys. Rep. 383, 95 (2003).
[24] P. L. Krapivsky, A. Redner, and E. Ben-Naim, A Kinetic View

of Statistical Physics (Cambridge University Press, Cambridge,
UK, 2010).

[25] J. Spouge, J. Phys. A 16, 3127 (1983).
[26] F. Calogero and F. Leyvraz, J. Phys. A 33, 5619 (2000).
[27] F. Calogero and F. Leyvraz, J. Phys. A 32, 7697 (1999).
[28] P. G. J. van Dongen and M. H. Ernst, Phys. Rev. Lett. 54, 1396

(1985).
[29] P. G. J. van Dongen and M. H. Ernst, J. Stat. Phys. 50, 295

(1988).
[30] G. F. Carnevale, Y. Pomeau, and W. R. Young, Phys. Rev. Lett.

64, 2913 (1990).
[31] E. Trizac and J.-P. Hansen, Phys. Rev. Lett. 74, 4114 (1995).
[32] L. Frachebourg, Phys. Rev. Lett. 82, 1502 (1999).
[33] L. Frachebourg, Ph. A. Martin, and J. Piasecki, Physica A 279,

69 (2000).
[34] P. Valageas, Physica A 388, 1031 (2009).
[35] E. Trizac and P. L. Krapivsky, Phys. Rev. Lett. 91, 218302

(2003).

[36] N. V. Brilliantov and F. Spahn, Math. Comput. Simul. 72, 93
(2006).

[37] N. Brilliantov, A. Formella, and T. Poeschel, Nat. Commun. 9,
797 (2018).

[38] J. Midya and S. K. Das, Phys. Rev. Lett. 118, 165701 (2017).
[39] S. Paul and S. K. Das, Phys. Rev. E 97, 032902 (2018).
[40] C. Singh and M. G. Mazza, Sci. Rep. 9, 9049 (2019).
[41] C. Singh and M. G. Mazza, Phys. Rev. E 97, 022904 (2018).
[42] N. V. Brilliantov, A. S. Bodrova, and P. L. Krapivsky, J. Stat.

Mech. (2009) P06011.
[43] S. Chapman and T. G. Cowling, The Mathematical Theory of

Non-uniform Gases (Cambridge University Press, New York,
1970).

[44] N. V. Brilliantov and T. Pöschel, Kinetic Theory of Granular
Gases (Oxford University Press, Oxford, 2004).

[45] C. Connaughton, A. Dutta, R. Rajesh, and O. Zaboronski,
Europhys. Lett. 117, 10002 (2017).

[46] C. Connaughton, A. Dutta, R. Rajesh, N. Siddharth, and O.
Zaboronski, Phys. Rev. E 97, 022137 (2018).

[47] M. T. Meehan and I. B. Whittingham, J. Cosmol. Astropart.
Phys. 12, 011 (2015).

[48] A. Coskuner, D. M. Grabowska, S. Knapen, and K. M. Zurek,
Phys. Rev. D 100, 035025 (2019).

[49] A. Bodrova, A. Osinsky, and N. Brilliantov, Sci. Rep. 10, 693
(2020).

[50] A. Osinsky, A. S. Bodrova, and N. V. Brilliantov, Phys. Rev. E
101, 022903 (2020).

[51] A. Osinsky, J. Comput. Phys. 422, 109764 (2020).
[52] S. Matveev, E. Tyrtyshnikov, A. Smirnov, and N. Brilliantov,

Num. Meth. Prog. 15, 1 (2014).
[53] S. A. Matveev, P. L. Krapivsky, A. P. Smirnov, E. E.

Tyrtyshnikov, and N. V. Brilliantov, Phys. Rev. Lett. 119,
260601 (2017).

042909-8

https://doi.org/10.1209/epl/i2003-10301-2
https://doi.org/10.1073/pnas.1503957112
https://doi.org/10.1007/JHEP06(2015)011
https://doi.org/10.1016/j.physletb.2015.11.001
https://doi.org/10.1103/PhysRevD.97.036003
https://doi.org/10.1016/S0370-1573(03)00241-2
https://doi.org/10.1088/0305-4470/16/13/037
https://doi.org/10.1088/0305-4470/33/32/301
https://doi.org/10.1088/0305-4470/32/44/309
https://doi.org/10.1103/PhysRevLett.54.1396
https://doi.org/10.1007/BF01022996
https://doi.org/10.1103/PhysRevLett.64.2913
https://doi.org/10.1103/PhysRevLett.74.4114
https://doi.org/10.1103/PhysRevLett.82.1502
https://doi.org/10.1016/S0378-4371(99)00585-3
https://doi.org/10.1016/j.physa.2008.12.033
https://doi.org/10.1103/PhysRevLett.91.218302
https://doi.org/10.1016/j.matcom.2006.05.031
https://doi.org/10.1038/s41467-017-02803-7
https://doi.org/10.1103/PhysRevLett.118.165701
https://doi.org/10.1103/PhysRevE.97.032902
https://doi.org/10.1038/s41598-019-45447-x
https://doi.org/10.1103/PhysRevE.97.022904
https://doi.org/10.1088/1742-5468/2009/06/P06011
https://doi.org/10.1209/0295-5075/117/10002
https://doi.org/10.1103/PhysRevE.97.022137
https://doi.org/10.1088/1475-7516/2015/12/011
https://doi.org/10.1103/PhysRevD.100.035025
https://doi.org/10.1038/s41598-020-57420-0
https://doi.org/10.1103/PhysRevE.101.022903
https://doi.org/10.1016/j.jcp.2020.109764
https://doi.org/10.1103/PhysRevLett.119.260601

