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Intruder dynamics in a frictional granular fluid: A molecular dynamics study
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We study the dynamics of an intruder moving through a fluidized granular medium in three dimensions (d =
3). The intruder and grains have both translational and rotational degrees of freedom. The energy-dissipation
mechanism is solid friction between all pairs of particles. We keep the granular system fluidized even at rather
high densities by randomly perturbing the linear and angular velocities of the grains. We apply a constant external
force of magnitude F to the intruder and obtain its steady-state velocity Vs in the center-of-mass frame of the
grains. The F -Vs relation is of great interest in the industrial processing of granular matter and has been the
subject of most experiments on this problem. We also obtain the mobility, which is proportional to the inverse
viscosity, as a function of the volume fraction φ. This is shown to diverge at the jamming volume fraction. For
φ below the jamming fraction, we find that Vs ∼ F for small F and Vs ∼ F 1/2 for large F . The intruder shows
diffusive motion in the plane perpendicular to the direction of the external force.
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I. INTRODUCTION

A granular material or powder consists of an assembly
of solid particles or grains, which are polydispersed in size
and shape and have many internal degrees of freedom [1–5].
Granular materials show many unusual properties because
of the dissipative interactions between the particles [6–16].
In this context, the study of their flow properties is partic-
ularly important. Granular flow plays a significant role in
many industrial applications such as transport of processed
chemicals, pharmaceuticals, mineral ores, food stuff, pow-
dered ceramics, and building materials. The flow properties
of granular systems are quite different from those of ordinary
liquids [17–21]. This is because kinetic energy in powders
is dissipated via inelastic collisions or friction and stored in
intragranular degrees of freedom [5,22].

A significant problem in amorphous materials is the mo-
tion of an intruder through a system. A thorough study of
the intruder motion helps us to understand the mechanical
properties of various systems such as granular media [23,24],
foams [25], emulsions [26], suspensions or structural glasses
[27], etc. At high volume fractions, such materials show jam-
ming and support a finite shear stress before yielding. Thus, a
nonzero critical force is required to drive an intruder through
such media.

The motion of an intruder in granular matter is a well-
studied experimental problem. Unfortunately, the results from
different experiments are not consistent. The experiment can
be done in a constant-force (F ) or a constant-velocity (V ) con-
figuration. In the first case, the intruder acquires a steady-state
velocity Vs. In the second case, the intruder experiences an
effective drag force Fd . Most studies focus on the drag of slow
intruders in a dense granular medium [28–36]. (Of course, the

volume fraction φ < φJ , where φJ is the jamming fraction.
For a frictionless granular assembly, φJ = 0.843 in d = 2,
and φJ = 0.639 in d = 3 [37].) In this limit, the intruder
motion does not fluidize the granular material. In general,
the observed results depend on the type of granular medium,
density, intruder shape, boundary conditions, and so on. Geng
and Behringer [32] studied the drag force acting on an intruder
in a d = 2 granular material consisting of bidisperse disks.
They found that (a) Fd shows a power-law dependence on the
area fraction and (b) V ∼ exp(Fd ). Further, the mobility of the
intruder depends strongly on V [31]. Hilton and Tordesillas
[36] showed that the drag force acting on a spherical intruder
in a d = 3 granular bed depends on the Froude number Fr =
2V/

√
gR, where g is the gravitational acceleration and R is

the radius of the intruder. For a frictional system with Fr > 1,
V ∼ Fd . For Fr < 1, they observe a deviation from the above
linear behavior.

There exist very few studies of intruder dynamics in a
dense granular medium in the high-velocity regime. The ex-
perimental study of Takehara et al. [38] showed that V ∼ F 1/2

d
for φ = 0.797 in d = 2. They also presented a scaling argu-
ment for this result. Later, Takehara and Okumura [39] studied
the drag force that acts on an intruder disk in d = 2 with
several values of φ � 0.76. They confirmed the V -Fd relation
reported in Ref. [38].

In constant-force experiments also, there is ambiguity
about the precise Vs-F relation in the low-velocity regime.
Habdas et al. [26] studied the motion of an intruder (magnetic
bead) through a colloid in d = 3 near the glass-transition
volume fraction φg. In their study, the Vs-F relation becomes
nonlinear as φ → φg, viz., Vs ∼ F 3. Hastings et al. [27] re-
ported that Vs ∼ F 3/2 for an intruder moving in a glassy

2470-0045/2020/102(4)/042905(8) 042905-1 ©2020 American Physical Society

https://orcid.org/0000-0003-0243-4710
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.102.042905&domain=pdf&date_stamp=2020-10-20
https://doi.org/10.1103/PhysRevE.102.042905


DAS, PURI, AND SCHWARTZ PHYSICAL REVIEW E 102, 042905 (2020)

background in d = 2. The results in this regime probably
depend on the nature of interaction forces among the particles
and the dimensionality. Candelier and Dauchot [24] studied
the creep motion of an intruder in a vibrated granular material
close to jamming in d = 2. They did not study the Vs-F
relationship.

There also exist a few simulation studies of Fd acting on
an intruder in a d = 2 granular medium [40–43]. Bharadwaj
et al. [42] obtained Fd for an immersed cylinder in a stream
of solid particles. In their study, the drag force obeys the same
relationship for both frictionless and frictional particles, i.e.,
V ∼ F 1/2

d . More recently, Takada and Hayakawa [43] studied
Fd acting on an intruder for both frictionless and frictional
granular disks. They also considered cases with and without
dry friction between the supporting base and the granular
disks. In all cases, they reported that V ∼ F 1/2

d .
To the best of our knowledge, there are no detailed simu-

lations available for the intruder problem in d = 3. However,
most experiments and industrial applications are realized in
d = 3 geometries. In this paper, we address this gap in the
literature and numerically study the dynamics of an intruder in
a fluidized granular medium for a wide range of volume frac-
tions. Our primary goal in this paper is to obtain a systematic
understanding of the V -F relationship in both the low-velocity
and high-velocity regimes.

We performed simulations in a constant-force configura-
tion. In real experiments, the velocities of grains around the
intruder are affected by the force gauge attached to it. In
our simulations, no such complicating factors are present.
The dissipative grain-grain and intruder-grain interactions are
modeled by solid friction [15,16,44,45]. We focus on how
the Vs-F relation is affected by (a) the volume fraction of the
grains and (b) the relative diameter of the intruder particle
vis-à-vis the grains. For low volume fractions and small F ,
we intuitively expect the relation between Vs and F to follow
Stokes law: Vs ∼ F . For higher volume fractions (but below
φJ ), experimental studies have been unclear about the precise
form of the Vs-F relationship. The main results of our numer-
ical simulations and scaling arguments are as follows:

(a) At all values of φ, Vs ∼ Fβ , with β crossing over from
1 to 1/2 as F increases.

(b) The inverse mobility of the intruder, which is propor-
tional to the viscosity of the granular system, diverges as a
power law of (φJ − φ) for φ → φ−

J .
(c) The intruder performs Brownian motion in the plane

perpendicular to the direction of the external force.
This paper is organized as follows. In Sec. II, we present

details of our modeling and simulations. We present compre-
hensive numerical results in Sec. III. Finally, we end this paper
with a summary and discussion in Sec. IV.

II. MODELING AND NUMERICAL DETAILS

We use standard molecular dynamics (MD) techniques
[46–48] to simulate the motion of an intruder in a granular
medium. The grains are identical: spherical in shape and of
equal mass m. Two particles with position vectors �ri and �r j

interact via a two-body potential with a hard-core of diameter
R1 and a thin-shell repulsive potential of diameter R2 [15,16].
To be specific, we choose the interaction potential to be of the

following form:

V (r) = ∞, r < R1,

= V0

(
R2 − r

r − R1

)2

, R1 � r < R2,

= 0, r � R2. (1)

Here r = |�ri − �r j | is the separation between the two particles,
V0 is the amplitude of the potential, and R2 − R1 < R1. Equa-
tion (1) models a repulsive potential which rises steeply from
0 at the outer boundary of the shell to infinity at the hard
core. The normal force acting on the ith particle due to the
jth particle is given by

�F n
i j (r) = −�∇iV (r), (2)

where �∇i is the gradient with respect to �ri. In earlier work, we
have used this interaction potential to study freely evolving
granular gases [15,16] and heated granular systems in the low
and high-density limits [49]. We confirmed numerically that
the results were analogous to those for hard-sphere systems,
Hertzian spheres, and Hookeian spheres. Therefore, we be-
lieve that the usage of the interaction potential in Eq. (1) does
not introduce any artifacts in our simulation.

Let (�vi, �ωi ) and (�v j, �ω j ) denote the linear and angular ve-
locities of the ith and jth particles, respectively. The velocity
�vi j of the ith particle relative to the jth particle at the effective
touching point (�ri + �r j )/2 is given by

�vi j = �vi − �v j − 1
2 (�ωi + �ω j ) × �ri j, (3)

where �ri j = �ri − �r j [50]. The corresponding solid friction
force on the ith particle is given by

�F f
i j (r) = −μ

∣∣ �F n
i j

∣∣ �vi j

|�vi j | , (4)

where μ is the friction coefficient. In Eq. (4), the frictional
force �F f

i j has both tangential and normal components. (In
principle, it is easy to remove the normal component but
this reduces the computational efficiency.) Further, the normal
component does not play a significant role due to the stiffness
of the radial potential. Equation (4) reduces to Coulombic
friction when the thickness of the repulsive shell tends to
zero. In that limit, our model reduces to a hard-sphere model
where the relative velocity cannot have a normal component
at the point of contact. Thus, �F f

i j becomes perpendicular to �F n
i j

[15,16].) The torque on particle i due to j is given by

�τi j = − 1
2 �ri j × �F f

i j . (5)

We use the following units for various relevant quantities:
Lengths are expressed in units of R1, energy in units of u =
V0/10, temperature in terms of u/kB, and time as a multiple of√

mR2
1/V0. For the sake of convenience and numerical stabil-

ity, we set R1 = 1, R2 = 1.1R1, V0 = 10, kB = 1, and m = 1.
Therefore, the time unit is t0 = 1/

√
10, and this allows us to

use relatively large �t in our simulation.
Next we discuss the properties of the intruder, which is

also spherical in shape. The diameter and mass of the in-
truder are, respectively, Rint = kR1 and mint = k3m1 (k > 1),
i.e., the mass densities of the grains and the intruder are the
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same. The diameter of the repulsive shell for the intruder is
kR2. The intruder-grain potential is the same as Eq. (1) with
R1 → (1 + k)R1/2 and R2 → (1 + k)R2/2. We apply a con-
stant external force F on the intruder along the +x direction.

We perturb the linear and angular velocities of the grains
at regular intervals, which keeps the granular medium in the
fluidized phase [49,51,52]. Our modeling of the system is mo-
tivated by the experiment of Candelier and Dauchot [24]. The
method of perturbing the grain velocities mimics the experi-
ments of Ojha et al. [53], where translational and rotational
velocities are perturbed in all directions. Then, the equations
of motion for the ith particle can be written as follows:

m
d�vi

dt
= �F tot

i + �ηi, (6)

I
d �ωi

dt
= �τ tot

i + �σi. (7)

Here

�F tot
i =

∑
j �=i

( �F n
i j + �F f

i j

)
, (8)

�τ tot
i =

∑
j �=i

�τi j, (9)

are the total force and torque acting on the ith particle, respec-
tively. We consider all the grains to be solid spheres, i.e., their
moment of inertia is I = mR2

1/10.
The noises �ηi and �σi in Eqs. (6) and (7) are uncorrelated

and satisfy the following relations:

〈�ηi〉 = 0, (10)

〈ηi,α (t )η j,β (t ′)〉 = m2ξ 2δi jδαβδ(t − t ′), (11)

〈�σi〉 = 0, (12)

〈σi,α (t )σ j,β (t ′)〉 = I2ξ 2δi jδαβδ(t − t ′). (13)

Here α, β = x, y, z, and ξ characterizes the strength of the
stochastic force. The noises associated with the translational
and rotational degrees of freedom stem from the same vi-
bration of the system. The right-hand side of Eqs. (11) and
(13) is chosen so that the kinetic temperatures associated with
both noises are equal. During the simulations, we perturb the
system after a time step dt = m�t (m = 200), where �t is
the integration time step. This is done by adding a random
increment to the linear and angular velocities of each particle
as

vi,α (t + �t ) = vi,α (t ) +
√

�
√

dt θi,α, (14)

ωi,α (t + �t ) = ωi,α (t ) +
√

�
√

dt ϕi,α, (15)

where α = x, y, z and � is the strength of the noise: � =
12ξ 2. The random numbers θ, ϕ are uniformly distributed in
the interval [−0.5, 0.5]. We have confirmed through small-
scale simulations that the results obtained for a uniform
noise distribution are comparable to those for a Gaussian
noise distribution.

TABLE I. Number of grains (N).

Rint φ = 0.10 φ = 0.30 φ = 0.45

3R1 12 007 36 070 55 960
5R1 11 910 35 972 55 879

The corresponding equations of motion for the intruder are
analogous to Eqs. (6) and (7) but without the noise terms:

mint
d�vint

dt
= �F tot

int , (16)

Iint
d �ωint

dt
= �τ tot

int . (17)

The details of our simulation are as follows. The velocity
Verlet algorithm [46–48] with the integration time step �t =
0.0005 is implemented to update the positions and velocities
in the MD simulation. The granular system is confined to a
d = 3 box of size 70 × 30 × 30. The longer side is in the
x direction, along which the force on the intruder acts. To
obtain the desired volume fraction (φ), we vary the number of
grains (N) in the system as given in Table I. We apply periodic
boundary conditions in all directions.

The system is prepared at t = −50 by randomly placing
the grains and the intruder in the simulation box, such that
there is no overlap between the cores of any two particles. The
grains are assigned the same speed, but the directions of veloc-
ity vectors are random so that

∑N
i=1 �vi = 0. Clearly, this does

not correspond to a Maxwell-Boltzmann (MB) distribution.
The unperturbed (ξ = 0, F = 0) system is allowed to evolve
without dissipation (μ = 0) until t = 0. This elastic evolution
relaxes the system to an MB velocity distribution and a uni-
form density field, as we have confirmed numerically.

At t = 0, we also start with an MB distribution for an-
gular velocities at the same “temperature” as the velocity
distribution. This serves as the initial condition (t = 0 state)
for our simulation of inelastic spheres with μ �= 0, ξ �= 0,
and F > 0 acting on the intruder along the +x direction.
We use μ = 0.1 and ξ = 1.0. The results presented here are
obtained as an average over 25 independent runs. In earlier
work [49], we have studied the temperature and the velocity
distribution of the grains (without an intruder) with friction
and a thermostat. At long times, the temperature settles to a
near-constant value Ts ∼ ξ 4/3, which can be understood by
a simple scaling argument. Further, the steady-state velocity
distribution is approximately Gaussian, with small departures
which can be characterized by a Sonine polynomial expansion
about the MB distribution.

III. DETAILED NUMERICAL RESULTS

As discussed above, we start the simulation with a homo-
geneous density field. The linear and angular velocity fields
are distributed via MB distributions with equal temperatures.
At t = 0, we apply a constant external force F on the in-
truder along the +x direction. A steady state is established by
ts � 100 for all parameter values considered here. In Fig. 1,
we plot the linear velocities of the grains in the steady state.
We show all grains whose centers lie within a distance 7.5R1
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FIG. 1. Linear velocities of the grains in the steady state, plotted in the laboratory reference frame. The external force on the intruder is
�F = Fx̂. We show only aligned particles, whose velocities make an angle <0.2π with the +x direction, and which lie within a distance 7.5 R1

(R1 = 1) from the center of the intruder. The center of the solid particle represents the position of the intruder, which is shifted to the origin.
The starting point of a velocity vector represents the position of the center of a grain. The diameter of the intruder hard core is Rint = 3R1. The
values of F and φ are as follows: (a) F = 10, φ = 0.10, (b) F = 600, φ = 0.10, (c) F = 10, φ = 0.30, and (d) F = 600, φ = 0.30.

from the center of the intruder, and whose velocities make an
angle 0 → 0.2π with respect to the +x direction. The lengths
of the velocities are normalized to unity. For F = 10 and
φ = 0.10 [Fig. 1(a)], most of the grains around the intruder
have random velocities. We see that only a few grains have
velocities aligned along the +x direction. As we increase F ,
velocities of more grains become aligned along the direction
of F , as shown in Fig. 1(b) for F = 600 and φ = 0.10. For
φ = 0.30, we also observe a similar behavior, as shown in
Figs. 1(c) and 1(d) for F = 10 and F = 600, respectively.
The alignment range of grain velocities vis-à-vis the intruder
depends on both F and φ.

In Fig. 2, we plot the drift velocity of the intruder [V (t )
vs t] for different values of F and φ. This is obtained as
an average over 25 different runs. The intruder velocity is
measured in the reference frame of the center of mass of the
grains. For φ = 0.10 and very small F (< 0.1), the velocity of
the intruder fluctuates around 0 over the simulation window.
As we increase F , V (t ) grows and the intruder drifts along the
direction of the force, as shown in Fig. 2(a). At later times, the
intruder acquires a steady velocity Vs. For φ = 0.30 [Fig. 2(b)]
and φ = 0.45 [Fig. 2(c)], we observe a similar dependence of
the drift velocity on time. Clearly, to achieve a given Vs, we
need larger F for denser systems.

0 100 200 300 400 500
t

0

2

4
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8

V
(t)

(a) φ = 0.10
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(b) φ=0.30
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(c) φ=0.45
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F=1000

F=3000

FIG. 2. The instantaneous velocity V (t ) of the intruder for different volume fractions: (a) φ = 0.10, (b) φ = 0.30, and (c) φ = 0.45. We
plot V (t ) vs t for different values of F , as indicated. The diameter of the intruder hard core is Rint = 3R1.
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FIG. 3. Log-log plot of the steady-state velocity Vs of the intruder vs the driving force F for different volume fractions: (a) φ = 0.10,
(b) φ = 0.30, and (c) φ = 0.45. We show data for Rint = 3R1, 5R1, denoted by the indicated symbols. The solid lines denote the limiting
dependencies: Vs ∼ F in the Stokes regime and Vs ∼ F 1/2 in the non-Stokes regime, respectively.

Let us present some scaling arguments to understand the
limiting behavior of the Vs-F relationship. We first consider
the case with small φ and F . In the steady state, the intruder
is not accelerating, i.e., F is balanced by the force applied by
the grains on the intruder in the opposite direction. The latter
force is proportional to the number of grains met by the in-
truder per unit time multiplied by the momentum transfer per
event. It does not matter whether that event is an instantaneous
collision, or a deformation event of longer duration. When F
is small, the intruder is slow and the momentum transfer is
determined by the much faster, vibrated grains. As the number
of particles met by the intruder per unit time is proportional to
its velocity, we obtain

F ∼ π (Rint + R1)2Vsφmvrms, (18)

where vrms is the root-mean-squared velocity of the grains.
Equation (18) yields Vs ∼ F , which is identified as the Stokes
law for particle motion through a viscous medium.

However, in the limit of large F , the intruder moves fast
compared to the grains. Then, the momentum transfer on col-
lision is proportional to Vs, which becomes the only relevant
velocity scale in the problem. In this case,

F ∼ π (Rint + R1)2VsφmVs, (19)

yielding the non-Stokes behavior, Vs ∼ F 1/2. This result de-
pends only on the fact that the velocity of the intruder is
considerably larger than that of the grains. The Stokes → non-
Stokes crossover occurs at V cross

s ∼ vrms (which is independent
of φ), and F cross ∼ φ v2

rms.
Figure 3 shows the variation of Vs with the external force

F for different φ and intruder sizes Rint . [We obtain Vs by
time-averaging V (t ) in the steady state.] For φ = 0.10, 0.30
[Figs. 3(a) and 3(b)], we observe the Stokes regime Vs ∼ F for
small forces, which crosses over to Vs ∼ F 1/2 for large forces.
It is clear from Figs. 3(a) and 3(b) that V cross

s is independent
of φ, and F cross increases linearly with φ, as argued above.
In Fig. 3(c), we plot Vs vs F for φ = 0.45. We do not see
a clear indication of the Stokes regime in this case. At these
higher values of φ, grains create a weak solid structure due to
mutual overlap. Therefore, a critical force must be applied to
the intruder to break this structure. Below the critical force,

the intruder shows creep motion, giving rise to the non-Stokes
behavior. For F > F cross, we again obtain Vs ∼ F 1/2.

Next we calculate the mobility of the intruder μm for dif-
ferent volume fractions of the grains. This quantity measures
how easily the intruder can move with a constant velocity. It
is defined as follows:

μm = dVs

dF

∣∣∣∣
F=0

, (20)

and is proportional to the inverse viscosity of the granular
system. We numerically obtain μm as the slope of the Vs-F
curve for F  F cross. In Fig. 4, we plot μ−1

m vs φ for Rint =
5R1 and φ ∈ [0.04, 0.45], i.e., more than a decade in density.
Clearly, as we approach the jamming fraction of the grains,
μ−1

m diverges. Recall that φJ � 0.639 for frictionless hard
spheres. In our simulation, the grains are frictional and their
outer radius is R2 = 1.1. We estimate the effective jamming
fraction as φeff

J = φJ/R3
2 � 0.48. We find that μ−1

m increases
with intruder size, as the number of grains interacting with the
intruder becomes larger. Further, φeff

J (the point of divergence
of μ−1

m ) is independent of the intruder size. Our data for
Rint = 5R1 are consistent with μ−1

m ∼ (φeff
J − φ)−γ , as shown

0.1 0.2 0.3 0.4
φ

101

102

103

104

μ m

0.1
φJ

eff - φ
101

102

103

-1

0.05 0.2

(φJ
eff-φ)-1.75

(b)(a)

FIG. 4. Plot of inverse mobility of the intruder μ−1
m as a function

of the volume fraction φ. We show data for intruder size Rint = 5R1.
(a) Linear-log plot of μ−1

m vs φ, and (b) log-log plot of μ−1
m vs (φeff

J −
φ), with φeff

J = 0.48. The solid line in (b) corresponds to the best
power-law fit to our numerical data: μ−1

m ∼ (φeff
J − φ)−1.75.
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FIG. 5. Data for the root-mean-square displacement drms of the intruder (with hard-core diameter Rint = 3R1) in the (y, z) plane. We plot
drms vs t for different volume fractions: (a) φ = 0.10, (b) φ = 0.30, and (c) φ = 0.45.

in Fig. 4(b). We obtain γ � 1.75 from the best fit to our
simulation data.

To characterize the transverse motion of the intruder, we
obtain the root-mean-squared displacement drms = 〈 �R2(t )〉1/2

in the (y, z) plane. The angular brackets denote an averaging
over independent runs. We plot drms vs t for Rint = 3R1 and
different φ in Fig. 5. For φ = 0.10 [Fig. 5(a)], the intruder
shows diffusive motion with drms ∼ t1/2 after an initial tran-
sient regime for all values of F . We observed similar behavior
for φ = 0.30, as shown in Fig. 5(b). As expected, the ini-
tial transient regime becomes shorter as φ is increased. For
φ = 0.45 [Fig. 5(c)], we see a strong dependence of the lateral
distance traversed over a given time on the driving force.
For small values of F , e.g., F = 50, drms does not increase
systematically. This small-force behavior is quite interesting
and may have a number of explanations. We need better
statistics to clarify this point. The data for F = 100 shows
some lateral motion, but it is intermediate between trapping
and diffusion. For F = 400, 1500, 2500, we find drms ∼ t1/2

after a transient regime (similar to the low-density cases), as
shown in Fig. 5(c). Our data for drms vs t shows large fluctua-
tions, especially at higher packing fractions. The improvement
of this data would require substantial computational effort.
Nevertheless, it is clear that the intruder exhibits Brownian
motion in the lateral plane, as long as it is mobile. This result
is independent of φ and Rint .

In the present paper, we have focused on the motion of the
intruder. It is equally interesting to study the behavior of the
granular medium in the vicinity of the intruder [54–56], cf.
Fig. 1. There is a kinetic interplay between the motion of the
intruder and the grains. In the context of Fig. 1, we make the
following observation about the cloud of grains surrounding
the intruder. For relatively low applied forces, the velocities
of the vibrated grains around the intruder appear random. As
F is increased, the grain velocities become more aligned with
the direction of the force. The applicable picture is that a cloud
of grains accompanies the intruder as it moves along the +x
direction. The properties of this cloud depend on φ and F . We
do not pursue this point further in the present paper. However,
it is intriguing enough to motivate a proper quantitative study
of the dynamics of the cloud around the intruder. Further, it

will be relevant to extend the present study to a group of
intruders of different shapes, sizes, pulling speeds, etc. This
would provide a better understanding of mutual interactions
among intruders when they move through a granular medium
[57–61].

IV. SUMMARY AND DISCUSSION

Let us conclude this paper with a summary and discussion
of our results. We have studied the motion of an intruder
through a granular medium by using large-scale MD simula-
tions in d = 3. Our MD study incorporates both translational
and rotational degrees of freedom. To the best of our knowl-
edge, this is the first numerical study of this challenging
problem. The energy-dissipation mechanism is solid friction
between any pair of interacting particles (either intruder-grain
or grain-grain). A constant external force F is applied to the
intruder. We also perturb the linear and angular velocities of
the grains by using a white-noise thermostat, which keeps the
density field of the granular medium homogeneous. In the
absence of the thermostat, the granular material shows spon-
taneous dissipation-induced clustering [11–16].

Our major results can be summarized as follows:
(a) The intruder velocity Vs shows a power-law depen-

dence on F as Vs ∼ Fβ . For small F , β = 1, corresponding
to the Stokes regime. For larger F , β = 1/2, corresponding
to non-Stokes behavior. We have provided simple scaling
arguments to understand both limits and the nature of the
crossover. Our numerical results enable a systematic interpre-
tation of a large variety of experimental results, which have
reported diverse values of β.

(b) The inverse mobility μ−1
m , which is proportional to the

viscosity, diverges as the volume fraction φ → φeff
J , where

φeff
J is the effective jamming fraction for our system. This

divergence is consistent with a power-law behavior: μ−1
m ∼

(φeff
J − φ)−γ , where γ � 1.75. This power-law behavior is

independent of the intruder size.
(c) After an initial transient regime, the intruder performs

Brownian motion in the plane transverse to the direction of
the external force.
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In this paper, we have focused on the intruder dynamics,
which has many interesting features. Clearly, the motion of
the cloud of grains surrounding the intruder is also of great
interest. We will tackle this problem in future work. We hope
that the present study will motivate further experiments and
simulations of the intruder problem. There is a pressing re-
quirement for clean and unambiguous results for this problem,
which could provide the basis for a better analytical under-
standing.
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