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Thin film deposition with particle transport mixing collimated and diffusive components and with barriers
for adsorption are studied using numerical simulations and scaling approaches. Biased random walks on lattices
are used to model the particle flux and the analogy with advective-diffusive transport is used to define a Peclet
number P that represents the effect of the bias towards the substrate. An aggregation probability that relates
the rates of adsorption and of the dominant transport mechanism plays the role of a Damkohler number D,
where D � 1 is set to describe moderate to low adsorption rates. Very porous deposits with sparse branches are
obtained with P � 1, whereas low porosity deposits with large height fluctuations at short scales are obtained
with P � 1. For P � 1 in which the field bias is intense, an initial random deposition is followed by Kardar-
Parisi-Zhang (KPZ) roughening. As the transport is displaced from those limiting conditions, the interplay of
the transport and adsorption mechanisms establishes a condition to produce films with the smoothest surfaces
for a constant deposited mass: with low adsorption barriers, a balance of random and collimated flux is required,
whereas for high barriers the smoothest surfaces are obtained with P ∼ D1/2. For intense bias, the roughness
is shown to be a power law of P/D, whose exponent depends on the growth exponent β of the KPZ class,
and the porosity has a superuniversal scaling as (P/D)−1/3. We also study a generalized ballistic deposition
model with slippery particle aggregation that shows the universality of these relations in growth with dominant
collimated flux, particle adsorption at any point of the deposit, and negligible adsorbate diffusion, in contrast
with the models where aggregation is restricted to the outer surface.
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I. INTRODUCTION

Thin porous films attract interest in several scientific ar-
eas due to their variety of applications, such as production
of battery electrodes [1], solar cells [2], membranes for ion
or molecule separation [3], and superhydrophobic coatings
[4]. This motivates the study of several models for their
deposition by vapor or solution techniques. Those models
must account for the different transport mechanisms involved
in the flux of materials to the deposits and for the differ-
ent relaxations mechanisms taking place during or after the
growth.

Two widely studied lattice models that represent limiting
cases of particle flux are ballistic deposition (BD) [5,6] and
diffusion-limited deposition (DLD) [7]. BD considers a colli-
mated flux and aggregation of particles at the first contact with
the deposit; it was originally proposed for sedimentary rock
formation [5]. DLD considers a purely diffusive particle flux
and aggregation at the first contact with the deposit growing
on a planar substrate [7,8]; it is an extension of the diffusion-
limited aggregation model [9] in which the deposit grows
from a point seed. The interplay of collimated and diffusive
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transport to the deposits was subsequently described by biased
random walks in models with mechanisms similar to BD and
DLD [10–21]. Extensions of BD and DLD were also proposed
to account for post-deposition particle relaxation [13,22–28]
or for finite rates of aggregation in the neighborhood of the
deposit [7,29–34]. Possible applications include, but are not
limited to, film deposition by electrochemical, electrospray,
and nanocolloid drying techniques [13,26,27,34,35], in which
transport is affected by fluctuating forces of the medium and
by external fields.

Recently, Ref. [18] introduced a deposition model with
the biased random walk approach and with a constraint be-
tween particle adsorption and its motion near the deposit. It is
termed potential adherence rule model (PARM) and assumes
that a moving particle aggregates only if it attempts to hop
onto a previously aggregated particle. This condition may be
interpreted as an effect of an energy barrier which has to
be overcome for the adsorption to occur and implies a finite
adsorption rate, in contrast with the infinitely large rates of
BD and DLD. An alternative interpretation of PARM is that
the attachment of a reaction product occurs if the energy
barrier for a surface reaction is overcome. Surface and bulk
properties of two-dimensional deposits grown with PARM
were formerly studied for broad ranges of the Peclet number
(P) [18,20], which is defined in an analogy with advective-
diffusive transport to relate the rates of collimated and random
particle motion. This interpretation also shows that the model

2470-0045/2020/102(4)/042802(12) 042802-1 ©2020 American Physical Society

https://orcid.org/0000-0002-9054-1083
https://orcid.org/0000-0001-5519-0436
https://orcid.org/0000-0003-2036-6854
https://orcid.org/0000-0001-6606-0151
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.102.042802&domain=pdf&date_stamp=2020-10-28
https://doi.org/10.1103/PhysRevE.102.042802


REIS, MALLIO, GALINDO, AND HUERTAS PHYSICAL REVIEW E 102, 042802 (2020)

TABLE I. Summary of the main features of the deposition models.

Particle transport Possible adsorption
Model to the deposit positions Adsorption condition

BD [5] Collimated Top of column First contact
or nearest neighbor (NN) of top

DLD [7] Diffusive Any First contact
RD [6] Collimated Top of column First contact
PARM [18] Mixed Any Hop to occupied site
PARMA (this paper) Mixed Any Hop to occupied site

and additional barrier
GBD [33] Collimated Any Finite probability
BD-RD [29] Collimated Top of column or NN of top Finite probability

can be applied to deposition of particles suspended in flowing
solutions.

The aim of this paper is to study simple thin film deposition
models with barriers for the adsorption of incoming particles
and the mix of collimated and diffusive flux. Our first step
is to perform a numerical study of PARM in three dimen-
sions. Next we introduce an extension of that model, which is
termed PARMA (PARM with additional adsorption barrier),
that represents aggregation rates smaller that those of PARM.
In PARMA, the interplay of the adsorption and of the domi-
nant transport mechanism can be described by a Damkohler
number D, which is constrained to D � 1 to represent mod-
erate or slow adsorption. The relevance of the competition of
diffusion and reactions to determine the morphology of films
was actually stressed in recent works on electrochemical [36]
and electrostatic spray [1] deposition. Here we also study a
generalized BD model (GBD) introduced in Ref. [30] and
further developed in Ref. [33], which considers collimated
particle flux but finite probability of lateral aggregation at each
contact with the deposit.

Among the results, we show that films grown with a bal-
ance of random and biased transport attain a minimal surface
roughness for a given deposited mass. The numerical study
of the cases of dominant advection shows that the films have
Kardar-Parisi-Zhang (KPZ) [37] roughening and shows power
law relations for the roughness and for the (low) porosity as
a function of P and D. Theoretical justifications for those re-
sults are then provided by scaling approaches, which show the
conditions for production of the smoothest film surfaces and
determine the exponents of the relations for the roughness and
for the porosity with large P/D. This includes the observation
of a superuniversal scaling of the porosity in terms of P/D
in the general context of PARMA. Equivalent relations are
extended to GBD.

The rest of this paper is organized as follows. In Sec. II,
we present the models studied here, define the dimensionless
numbers P and D, the main quantitites to be measured, and
present simulation details. In Sec. III, we present the numer-
ical results. In Sec. IV, we present theoretical arguments to
explain the condition of minimal roughness in PARM and
PARMA and to explain the scaling of roughness and porosity
in cases of dominant collimated transport, including a discus-
sion of GBD. In Sec. V, we summarize our results and present
our conclusions.

II. MODELS AND METHODS

The deposition models in dimension d = 3 are defined in
the region z � 0 of a simple cubic lattice. The edge of a
site has length a, and each particle occupies a single lattice
site. The initially flat substrate is located at z = 0 and all
points with z > 0 are empty. The lateral size of the lattice
is L and periodic boundary conditions are considered in the
lateral directions x and y. The set of particles with the same
(x, y) position is termed a column of the deposit, and the
height variable h(x, y) is the position z of the topmost particle
in that column. Deposition in d = 2 is defined in the region
z � 0 of the xz plane; other definitions are analogous to those
in d = 3.

The models are of limited mobility, i.e., when a new parti-
cle is deposited, all previously deposited particles are already
at their final aggregation positions.

In Table I, we summarize the main features of the models
discussed in this paper.

A. PARM

PARM is defined as in Refs. [18,20,38]. Each new particle
is released at a randomly chosen column in a height z much
larger than all values of h(x, y) [h(x) in d = 2]. It executes a
sequence of hops to NN sites with probabilities depending on
the hop directions. In each hop attempt, the diffusive and the
collimated components are chosen with probabilities κ and
1 − κ , respectively. If diffusion is chosen, the hop direction
is then randomly chosen among the 2d NNs; this gives a
probability κ/(2d ) of attempting to hop to each NN. If the
collimated component is chosen, the particle attempts to hop
to the site immediately below (direction −z). In any case,
if the chosen site is empty, the particle moves to that site;
otherwise, the particle permanently aggregates at its current
position. Figure 1(a) illustrates these rules in d = 2 to facili-
tate visualization.

The collimated and diffusive components may be inter-
preted as effects of a constant field and a fluctuating field,
respectively. If growth occurs in a solution that flows in the
z direction, the interpretation of a competition of advective
and diffusive transport is also possible as suggested in the
original works on PARM [18,20]. The aggregation in PARM
is interpreted here as an effect of an adsorption barrier, which
is overcome when the particle motion at the current site leads
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(a) (b)

PARM GBD

FIG. 1. (a) Illustration of the deposition of two particles in
PARM. Each incident particle (red square) is released far above the
deposit, executes a biased random motion among NN sites (solid
line), and is adsorbed at the position (dashed square) from which it at-
tempts to hop onto a previously deposited particle (blue squares). The
last hop attempt is indicated by an arrow and dots (green) indicate
the positions of the trajectory in which the particle has an occupied
NN but does not attempt to hop onto that NN. (b) Illustration of
the deposition of two particles in GBD. Each incident particle is
released above the deposit, has a vertical trajectory, and aggregates
laterally with probability p; each aggregation attempt is represented
by a green line connecting with a NN deposited particle. The particle
at the left aggregates at the fourth attempt, and the particle at the right
aggregates when it reaches the top of the column.

to a direct collision with a previously aggregated particle.
Within this interpretation, we are considering that the energy
fluctuation of the incident particle is sufficient to overcome
that barrier.

If the flux is only diffusive (κ = 1), PARM is similar to
DLD, but not equivalent. In PARM, the incident particle may
aggregate at the first contact with the deposit with a finite
probability because the adsorption depends on choice of hop
direction, but in DLD there is an infinitely large adsorption
rate at the neighborhood of the deposit. In the case of purely
collimated flux (κ = 0), no lateral hop is possible during the
particle trajectory, so the incoming particle always aggregates
at the top of the column of incidence. This produces com-
pact deposits with uncorrelated local heights so that PARM
becomes equivalent to the random deposition (RD) model [6].

B. PARMA

PARMA represents larger energy barriers for adsorption,
which may not be overcome with the average kinetic energy of
the hopping particle. The rules for the particle flux remain the
same as in PARM, i.e., with a mixture of collimated and diffu-
sive components. However, when the mobile particle attempts
to hop to an occupied site, it aggregates at the current position
with probability q < 1, otherwise it continues to move from
the current position with the same transport rules.

For instance, consider the hopping particles in Fig. 1(a). In
PARMA, the last indicated hop attempts lead to aggregation
at the marked position (dashed square) with probability q, but
with probability 1 − q the particle continues to hop starting
from the marked position. The same probability q is applica-
ble for adsorption in further attempts to hop to an occupied
site. PARM corresponds to the case q = 1.

PARMA has differences from BD and DLD because ad-
sorption may not occur at the first contact with the deposit

in the limiting cases κ = 0 and κ = 1. However, in the to-
tally collimated case κ = 0, no lateral hop is allowed, so the
adsorption always takes place at the top of the column of
incidence (the probability q can only retard the adsorption
after the incident particle reaches the top of that column).
Thus, PARMA is also equivalent to RD in this condition.

Here we described the additional barrier for aggregation in
PARMA by a probability. However, for a specific application,
q may be related to an energy barrier and the temperature, e.g.,
by an Ahrrenius law.

C. Peclet and Damkohler numbers

In processes with advective and diffusive particle trans-
ports, the Peclet number P is defined as the ratio between
the respective rates of those processes. The concept may be
extended to processes with electrophoresis or thermophoresis
towards a hard wall as discussed in Ref. [39]. Following this
reasoning, Ref. [10] defined the Peclet number of the biased
random walk model considered here as the ratio of the char-
acteristic rates of collimated and diffusive transport within the
distance a. First, it was shown that the diffusion coefficient
is D = κ (2 − κ )a2/(2 dτ ) and that the velocity towards the
substrate is v = (1 − κ )a/τ , where τ is the time of a single
hop. These relations give

P = v/a

D/a2
= 2d (1 − κ )

κ (2 − κ )
. (1)

The purely advective case κ = 0 corresponds to P → ∞, and
the purely diffusive case κ = 1 corresponds to P = 0.

The Damkohler number D describes the competition of
transport and reaction (adsorption) in PARMA [40]. For a
particle in the neighborhood of the deposit, the probability of
adsorption to a given NN is q/(2d ) (2d is the number of NNs).
The residence time of the incident particle in a site is τ , which
gives a reaction rate q/(2 dτ ) (probability per unit time).

The relevant transport rate depends on the dominant mech-
anism, which is controlled by the Peclet number. For P > 1,
the flux is dominated by the bias, so the Damkohler number
is defined as the ratio between the reaction rate and the rate of
vertical motion in the length scale a,

D = q/(2dτ )

v/a
= q

2d (1 − κ )
. (2)

The condition P > 1 in d = 3 implies κ < 0.838, so Eq. (2)
always gives D ∼ q, i.e., other numerical factors relating D
and q are on the order of 1. For P < 1, in a regime dominated
by diffusion, D is defined as the ratio between the reaction
rate and the diffusion rate in the length scale a,

D = q/(2 dτ )

D/a2
= q

κ (2 − κ )
. (3)

For d = 3, 0.838 � κ � 1 in this regime, so Eq. (3) also
gives D ∼ q for any value of κ .

For these reasons, the order of magnitude of the Damkohler
number is always that of the adsorption probability q. In
PARM, we have D ∼ 1, which means that adsorption and
transport are balanced. In PARMA with q � 1, adsorption is
slow compared to transport. These models exclude cases of
very fast adsorption or of a very fast sequence of reaction and
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product adsorption; the excluded cases have transport-limited
conditions represented, e.g., by the standard adherence rule
model studied in Refs. [18,20,38], whose limiting behaviors
are exactly equal to the DLD and BD models.

D. GBD

GBD is defined as in Refs. [30,33,41]. Particles are sequen-
tially released at randomly chosen columns and heights larger
than all h(x, y)’s. They execute fully biased walks towards
the deposit, i.e., walks with hops only in the −z direction.
After each hop, if the particle has n NN occupied sites, it
can aggregate at the current position with probability np, i.e.,
with a probability p for each NN; with probability 1 − np, the
particle hops to the site immediately below it. If the particle
reaches the top of the column of incidence [position z =
h(x, y) + a], it permanently aggregates there because lateral
hops are not allowed. Thus, pore formation is possible only
for p > 0.

Figure 1(b) illustrates the GBD rules in d = 2 to facilitate
the visualization. For p = 1, the model is equivalent to BD
in which aggregation occurs at the first contact with a NN
occupied site. For p = 0, it is equivalent to RD because lat-
eral aggregation is not possible. A probability of aggregation
0 < p < 1 may also be interpreted as an effect of an adsorp-
tion barrier, but GBD differs from PARM and PARMA with
diffusive transport (κ > 0).

Note that GBD is also not equivalent to the competitive
model in which the rule for particle aggregation is chosen
between that of BD (probability p), i.e., aggregation at the first
contact and that of RD (probability 1 − p), i.e., aggregation at
the top of the column of incidence [29,42]. GBD is a type of
slippery aggregation model [41] in which the incident particle
can be adsorbed at several points whereas it slips in contact
with deposited NNs.

E. Quantities of interest

The growth in PARM and PARMA occurs in timescales
that depend on the type of flux. However, since we are mainly
interested in the structural properties of the deposits, we
analyze their evolution in terms of an effective number of
deposited monolayers, which is denoted as T . This number
is the ratio between the number of deposited particles N and
the number of columns (L/a)d−1,

T = N

(L/a)d−1 . (4)

T may also be interpreted as the thickness of a compact film
with the same mass.

The thickness of a porous deposit H is always larger
than that of a compact film with the same mass T . The
dimensionless thickness H is defined as the average of the
heights of the outer surface,

H ≡
〈

1

(L/a)2

∑
x,y

h(x, y)

〉
. (5)

The main quantity that characterizes the fluctuations of the
outer surface is the roughness, whose dimensionless value is

defined as

W ≡
〈{

1

(L/a)2

∑
x,y

[h(x, y) − H]2

}1/2〉
. (6)

These definitions apply to deposits in d = 3; in d = 2, sums
are over L/a columns in the x direction.

The main quantity that characterizes the inner part of a
porous deposit is the porosity, which is defined as the vol-
ume fraction of the pore space. The deposit is limited by the
substrate, the lateral sides, and the outer surface, so its volume
is H (L/a)2 and the total porosity �T is complementary to the
volume fraction of the solid,

�T ≡ 1 − T (L/a)2

H (L/a)2 = 1 − T

H
. (7)

As the deposits grow, we observe a slightly nonlinear evo-
lution of H with T , which is related to small variations in
the porosity of different layers of the film [43]. In a certain
interval of deposition time, corresponding to the number of
monolayers in the interval T1 � T � T2, the local porosity is
given by

�(T1, T2) = 1 − T2 − T1

H (T2) − H (T1)
. (8)

In the three-dimensional films studied here, the local porosity
has an approximately constant value if T1 and T2 are both close
to the maximal thickness.

In the study of transport of fluids or solutes in porous
deposits, it is important to distinguish the total porosity and
the effective porosity, the latter comprising only the pores that
participate in the transport between two specified frontiers.
This is not of direct interest for the present paper, so we only
analyze the total porosity. Moreover, we are particularly inter-
ested in deposits produced in regimes of dominant advective
transport, which have low porosity and mostly isolated pores.

F. Simulation details

Simulations of PARM in d = 3 were performed in L =
128a, L = 256a, and L = 512a, in most cases up to T = 103.
The simulation in three different sizes is necessary to avoid
finite size effects, which are particularly strong for small P .
Our numerical analysis will be based on data from L = 256a,
which we ensure that are not contaminated by such effects.
Deposition was simulated from P ∼ 1 (balanced diffusion
and advection) to P ∼ 103 (dominant advection). For each P ,
average quantities were calculated from 102 different deposits.

PARMA was simulated with adsorption probability q =
0.25 in d = 3 and sizes L = 128a, L = 256a, and L = 512a.
Average quantities were calculated from 102 different deposits
for each P in the range of P ∼ 1 to P ∼ 104.

Several results for PARM in d = 2 were formerly pre-
sented in Refs. [18,20]. Here we use part of those data
to investigate the dependence of the roughness and of the
porosity on P . The simulations were performed in L = 400a
and sufficiently large heights to allow the deposition of T =
2.5 × 103 monolayers. For each P , average quantities were
calculated from 25 different deposits.
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GBD was simulated in d = 3 with L = 1024a, which is
sufficiently large to avoid finite size effects. For 0.005 �
p � 0.1, average quantities were obtained from 103 different
deposits up to T = 104.

III. NUMERICAL RESULTS

A. General features of PARM in d = 3

Figure 2 shows top portions of deposits grown with six
different values of P . Figures 3(a)–3(f) show cross sections
of the same deposits.

FIG. 2. Top portions of deposits grown with PARM with the
indicated values of P and constant T = 200.

FIG. 3. Top portions of deposits with T = 200 layers grown with
PARM with the indicated values of P .

For P < 1, the deposits have many branches and high
porosity; this is the reason why several isolated particles or
clusters are observed in the panels of P = 0.06 and 0.301
in Figs. 2 and 3. The pore system is clearly connected along
the vertical direction. As P increases, the porosity decreases
and a large fraction of the pores are isolated. For large P , the
deposits are much more compact; their pores are elongated
in the vertical direction, which can be observed by close
inspection of the images of the films obtained with P = 298
in Figs. 2 and 3. The global height fluctuations in the films
grown in limiting cases, i.e., with P � 1 and P � 1, are
apparently larger than the fluctuations in the films grown with
intermediate values of P , i.e., P ∼ 1.

The decrease in the porosity with increasing P , for a con-
stant number of deposited layers, corresponds to an increase
in the film density; see Eq. (7). This was experimentally
observed, for instance, in recent electrospray deposition of
nanoparticulated TiO2 films [44].
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FIG. 4. Surface roughness of PARM in d = 3 as a function of
the number of deposited monolayers for: (a) low and intermediate
values of P and (b) intermediate and large P’s. The uncertainties are
smaller than the size of the symbols.

B. Roughness and porosity of PARM in d = 3

Figure 4(a) shows the roughness evolution in cases with
balanced collimated and diffusive flux (P ∼ 1) in lattice size
L = 256a. For the smallest P , the ranges of T in the plots
are small because finite size effects appear for larger thick-
nesses. For a constant and large number of monolayers T ,
i.e., constant number of deposited particles, it is clear that W
has a nonmonotonic variation with P with minimal values ob-
tained for P ∼ 6. Figure 4(b) shows the roughness evolution
in cases of highly biased transport (P � 1) in the same lattice
size.

For a quantitative analysis of the roughness evolution, we
recall that kinetic roughening theory predicts

W ∼ T β, (9)

with β < 0.5 for systems with stable and correlated growth
and β = 0.5 for RD [6,45]. Effective values of the exponent β

FIG. 5. (a) Surface roughness at T = 103 and (b) average poros-
ity between T1 = 800 and T2 = 1000 as a function of P for films
grown with PARM in d = 3. Dashed lines are linear fits of the data
for P > 102. The uncertainties in both quantities are smaller than the
size of the symbols.

may be extracted from the slopes of log10 W × log10 T plots
like those in Figs. 4(a) and 4(b).

The growth with P = 0 is similar to that of DLD, which
is unstable, i.e., W increases faster than in Eq. (9). However,
the partially collimated flux for any P � 1 is expected to
stabilize the growth [12]. This may lead to long crossovers and
explain the variations in the slopes of the plots for different P
in Fig. 4(a). The effective slope slowly increases with P in
this regime, which parallels the recent observation of larger
effective growth exponents β for larger flow rates observed in
radial imbibition of a porous medium [46].

Figure 4(b) shows the roughness evolution for intermediate
and large P . As P increases, we observe a longer regime
with effectively RD, so the initial slopes of the plots are close
to 0.5. For large T , the growth crosses over to a correlated
regime. The plots in Fig. 4(b) have slopes close to the value
β = 0.242 of KPZ scaling [47,48] for all P � 10’s.

KPZ scaling is theoretically predicted for the growth of
porous deposits with stable surface roughening [12,13,49].
However, in models where the height fluctuations are large,
deviations are frequently observed in numerical simulations;
this is the case, for instance, of BD in d = 3 [50]. For
this reason, it is somewhat surprising that the KPZ expo-
nents are obtained here for P � 1 with good accuracy at
relatively short deposition times. For P � 1, theoretical argu-
ments developed for related systems [12,13] may be extended
to PARM and suggest that KPZ is the asymptotic class of
roughening for all P’s. The deviations observed here, how-
ever, show that much longer simulations and more powerful
methods of analysis (e.g., as in Ref. [51]) would be necessary
for a numerical confirmation of this feature.

Our next step is to analyze the effect of P on the rough-
ness and on the porosity of films with a constant number of
deposited layers.

For T ∼ 103, Fig. 4(b) shows approximately parallel
curves for different values of P . It suggests a power law
roughness-flux relation for constant T as

W ∼ Pγ , (10)

with a positive exponent γ . Figure 5(a) shows the roughness
measured at T = 103 as a function of P , which confirms the
power law increase and gives the estimate γ = 0.160 ± 0.001
for the largest values of P . Note that the corresponding
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FIG. 6. (a) Surface roughness at T = 2.5 × 103 and (b) total
porosity as a function of P for films grown with PARM in d = 2.
Dashed lines are linear fits of the data for P > 102. The uncertainty
in the porosity is smaller than the size of the symbols.

deposits have the same number of particles, but their average
thicknesses H are different.

Figure 5(b) shows the local porosity measured between
T = 800 and T = 103 for several values of P . It monotoni-
cally decreases with P , which is explained by the decrease in
the frequency of lateral aggregations. For larger P , Fig. 5(b)
suggests a porosity-flux relation as

� ∼ P−λ, (11)

with a positive exponent λ. The linear fit in Fig. 5(b) gives
λ = 0.337 ± 0.008.

C. Roughness and porosity of PARM in d = 2

The evolution of the roughness and of the porosity
with the number of deposited particles N was discussed in
Refs. [18,20]. For fixed N , the nonmonotonic variation of W
with P was observed, similar to that in d = 3 [Fig. 4(a)]; the
minimum value of W was obtained for P ∼ 2.

Here we extend the analysis of the data shown in Ref. [18]
to determine the effect of P on the surface and bulk struc-
ture in conditions of dominant collimated flux. In Fig. 6(a),
we show the roughness of the thickest deposits with T =
2.5 × 103 monolayers as a function of P in the range of
101 < P < 103. The linear fit of those data shows consistency
with Eq. (10) with γ = 0.111 ± 0.004. In Fig. 6(b), we show
the total porosity �T in the same range of P . It it consistent
with Eq. (11) with λ = 0.343 ± 0.007.

D. Roughness and porosity of PARMA in d = 3

Figure 7(a) shows the roughness evolution with adsorption
probability q = 0.25 for 1 � P � 10. The plot is restricted
to T < 300 because finite size effects are observed at larger
thicknesses for the smallest P . For constant T , the minimal
roughness is obtained for P ∼ 3, which is smaller than the
value of P that provides the minimal roughness in PARM
(q = 1) [Fig. 4(a)].

Figure 7(b) shows the roughness evolution for q = 0.25
and P � 1, i.e., strongly collimated flux. Comparison with
Fig. 4(b) shows that the initial uncorrelated regime (RD)
lasts longer than that of PARM. For instance, for P = 598,
this regime ends at T < 102 in PARM, but it clearly ends
at T > 102 in PARMA. For large thicknesses, there is also
evidence of KPZ scaling; in the largest P , this observation is

FIG. 7. Surface roughness of PARMA in d = 3 for q = 0.25 and
L = 256a as a function of the number of deposited monolayers:
(a) low and intermediate values of P and (b) intermediate and large
P’s. The uncertainties are smaller than the size of the symbols.

possible because the simulations of PARMA were extended
to T = 5 × 103. For fixed T , the roughness monotonically
increases with P in this regime.

Figure 8(a) shows the roughness measured at T = 5 × 103

as a function of P . The linear fit of the data for P > 3 × 102

shows agreement with Eq. (10) and gives γ = 0.190 ± 0.001.
Figure 5(b) shows the local porosity of the same deposits
measured between T = 4 × 103 and T = 5 × 103. The linear
fit for large P agrees with Eq. (11) with λ = 0.325 ± 0.009.

E. GBD in three dimensions

Here we focus on the cases of small p, in which adsorption
with pore formation is not frequent. This regime parallels that
of large P in the models with noncollimated flux. Figure 9(a)
shows the evolution of the roughness in these conditions. The
initial RD regime is also followed by a crossover and an
asymptotic KPZ regime, which is confirmed by the effective
slopes of the plots near β ≈ 0.242 [47,48]. For fixed T , as
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FIG. 8. (a) Surface roughness at T = 5 × 103 and (b) local
porosity between T = 4 × 103 and 5 × 103 as a function of P for
films grown with PARMA in d = 3 with q = 0.25. Dashed lines are
linear fits of the data for P > 102. The uncertainties are smaller than
the size of the symbols.

p decreases, W increases because the correlations in the col-
umn heights are weaker. Simulations for larger values of p
[not shown in Fig. 9(a)] show that the roughness has small
variations for a constant thickness and p > 0.1.

Figure 9(b) shows the roughness at T = 104 as a function
of p. The linear fit suggests a power law relation between
those quantities for constant T as

W ∼ p−γ1 , (12)

with γ1 = 0.135 ± 0.005. Figure 9(c) shows the total porosity
�T obtained in the deposition of T = 104 layers as a function
of p. The linear fit also suggests a power law relation as

�T ∼ pλ1 , (13)

with λ1 = 0.302 ± 0.003.

FIG. 9. (a) Roughness as a function of the number of deposited
layers in GBD in d = 3 for L = 1024a and several values of p. The
dashed line has slope 0.242. (b) Roughness and (c) total porosity
measured at T = 104 as a function of p. The dashed lines are linear
fits of the data in these plots.

An interesting feature here is that similar values of the
exponent λ of the porosity-flux relation were obtained in all
models in d = 2 and d = 3. However, numerical estimates
of the exponent γ of the roughness-flux relation have larger
relative differences.

IV. SCALING APPROACHES

A. Smoothest surfaces in PARM

When films with a constant number of deposited layers T
are compared, there is a value of P in which the roughness is
minimal. For applications of this type of model, it is important
to understand the conditions for formation of films with the
smoothest possible surfaces.

We begin analyzing the case of dominant diffusion P � 1
in which transport and aggregation follow rules similar to
DLD. The growth in DLD is unstable because the highest
branches of the deposit capture most of the incoming particles,
shadowing the lowest points; the height fluctuations become
very large [see, e.g., the case P � 1 in Fig. 3(a)]. The ag-
gregation in PARM is slightly different because it does not
occur at the first contact with the deposit. For instance, in
the trajectory at the right side of Fig. 1(a), the particle stood
at three sites in which it had an aggregated NN, but it only
aggregated at the fourth of those sites because it attempted to
hop to an occupied NN. For each occupied NN that the mobile
particle meets, there is a probability of aggregation 1/(2d ).
Thus, PARM with κ = 1 (P = 0) is equivalent to DLD with
a probability 1/(2d ) of aggregation to a NN occupied site.

For nonzero P , a small bias can suppress the growth in-
stability, i.e., it can lead to a slower increase in the roughness
at long times as in Eq. (9). This parallels other systems in
which instabilities are suppressed by biased fluxes [12,13].
For this reason, in the diffusion dominated regime P � 1 and
for constant T, W decreases as P increases; Fig. 4(b).

Now consider the case of fully biased motion P → ∞
in which the particle flux is collimated. The aggregation al-
ways occurs at the top of the column of incidence, which
corresponds to RD [6]. For finite P � 1, the lateral ag-
gregation is the only mechanism in PARM that leads to
correlations between neighboring columns, and this lateral
aggregation is associated with the diffusional transport. The
correlations along the surface lead to roughness scaling as in
Eq. (9) with β < 1/2. For large T , it explains the decrease
in W with the decrease in P in this advection dominated
regime.

The arguments in the above paragraphs mean that, from
one side, W decreases because the intensity of the bias
increases, and from the other side, W decreases because diffu-
sion becomes more relevant. This implies that the roughness
reaches a minimal value when the diffusive and the collimated
components of the flux are balanced, i.e., for

P ∼ 1. (14)

Those mechanisms are independent of the spatial dimension,
which is consistent with the numerical results in d = 2 [18]
and d = 3 (Sec. III B).
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B. Smoothest surfaces in PARMA

Here we extend the previous arguments to PARMA in
which we also have to account for the (possibly low) adsorp-
tion probability q. Recall that D ∼ q in all cases.

For P � 1, the shadowing effect of the highest branches of
the deposit is reduced when q < 1, which helps to control the
instability. This is equivalent to an effectively larger P . When
the incident particle is near the deposit, its vertical spread is
proportional to the square root of the number of hops. This
number is proportional to the number ∼1/q of contacts with
the deposit before aggregation. Thus, the vertical spread is
∼1/q1/2 and the effective P is expected to increase by this
factor.

Now consider the case P � 1. The probability q < 1 leads
to longer RD regimes as observed in Sec. III D, which is also
equivalent to increasing P . In the trajectory of the incident
particle near the deposit, the number of contacts before aggre-
gation is ∼1/q, so the spread in the particle position is ∼1/q1/2

and we expect that this factor increases the effective value
of P .

For these reasons, the condition of minimal roughness in
PARMA is P/q1/2 ∼ 1. This is consistent with our numerical
results: the value of P of minimal roughness decreases by a
factor of ∼2 [from 5.63 in Fig. 4(a) to 2.86 in Fig. 7(a)] as q
decreases by a factor of 4 (from 1 to 0.25). The condition can
be written in terms of P and D as

P ∼ D1/2. (15)

Note that numerical factors on the order of 1 were omitted in
this relation and that such factors may be model dependent.

It is important to recall that the instability control of DLD
by a finite probability of aggregation (or by a finite reaction
rate) is consistent with theoretical predictions [52] and was
experimentally observed in a recent work on electrodeposition
of Ni and NiW films [53]. Eq. (15) actually suggests that a
very small D (very slow aggregation rate) may lead to small
roughness even if P is small (diffusion-dominated flux). The
experimental realization of the regime with highly collimated
flux of PARM and PARMA in which the roughness increases
with P is more difficult because these models are applicable
only to systems in which adsorbate diffusion (i.e., relaxation
after adsorption) is negligible.

C. Roughness and porosity in PARM with large Peclet numbers

Here we determine the exact values of the exponents γ

and λ that relate roughness and porosity with large Peclet
numbers in PARM. Subsequently, the approach is extended
to PARMA. The reasoning partly rephrases the arguments of
Refs. [32,42,54]. In the cases of κ � 1, Eq. (1) gives

P ≈ d

κ
� 1. (16)

Fully biased flux (κ = 0) leads to RD in which the the
height difference between neighboring columns randomly in-
creases. Large fluctuations of heights of neighboring columns
also appear in the deposits grown with 0 < κ � 1 as shown in
Fig. 3(f). This geometry is schematically illustrated in Fig. 10
in which columns A and B have a large height difference δh.

δh

A B

FIG. 10. Scheme of two neighboring columns of the deposit
(light blue) with a large height difference. An incident particle (red)
moves along column B and may aggregate at any of the points
marked with a cross. The top particles of both columns are high-
lighted (dark blue).

It corresponds to a fluctuation,

δN = δh

a
, (17)

in the number of particles accumulated in those columns. Let
δT be the number of deposited monolayers in the time that
the uncorrelated height difference δh developed. It is related
to the fluctuation in the number of particles as

δN ≈ (δT )1/2 (18)

(recall that T and N are dimensionless quantities).
When an incident particle is close to the deposit, its trajec-

tory is almost vertical. If it is moving in column B of Fig. 10,
it may aggregate near one of the NNs of column A before
reaching the top of column B. The δN possible aggregation
points are indicated by crosses in Fig. 10. In each point, the
probability of aggregation is κ/(2d ), which is the probability
of a hop attempt onto a NN of column A. Thus, the probability
that the incident particle aggregates to any of those NNs is

P1 = δN
κ

2d
. (19)

This reasoning is applicable to a single incident particle, but
the height difference δh was developed whereas δT monolay-
ers were deposited. In this time interval, the average number
of particles deposited in any column is δT and the total
probability of lateral aggregation of the particles that reach
column B is

Pag ≈ δT P1 ≈ κ

2d

(
δh

a

)3

, (20)

where we used Eqs. (17)–(19).
When Pag ∼ 1, we expect that, at least, one lateral ag-

gregation occurs in column B. This is sufficient to create a
correlation in the heights of columns A and B. Using Eq. (20),
it occurs when the height fluctuation reaches a crossover value
δhc given by

δhc ∼ a

(
κ

2d

)−1/3

. (21)
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The number of deposited monolayers to reach the crossover is

δTc ∼
(

κ

2d

)−2/3

, (22)

where we used Eqs. (17) and (18).
Lateral aggregation is the mechanism that generates the

excess velocity characteristic of KPZ roughening [49]. Con-
sequently, a crossover from RD to KPZ is expected after the
deposition of δTc monolayers. Since δTc decreases with κ , it
increases with P [Eq. (16)], which explains the longer regions
with RD for larger P observed in Figs. 4(b) and 7(b).

The elongated pores in Fig. 3(f) are the consequence of the
large height differences that develop before an event of lateral
aggregation occurs. The number of pore sites produced in this
event is on the order of δNc ∼ δhc/a [Eq. (17)] because the
aggregation can occur at any point in the particle trajectory. In
a given column, these pores were formed when δTc particles
were deposited; thus, Eqs. (21) and (22) lead to a porosity,

� ∼ δhc/a

δTc + δhc/a
≈ δhc/a

δTc
≈

(
κ

2d

)1/3

∼ P−1/3, (23)

where the last step used Eq. (16). Equation (23) shows
that λ = 1/3 in Eq. (11). This is a superuniversal exponent
because it has the same value in any spatial dimension.
Our numerical estimates are in good agreement with this
prediction.

The roughness of a KPZ interface varies as in Eq. (9). For
large P , the numerical factors omitted in Eq. (9) have to be
consistent with the initial RD in which height fluctuations
on the order of δhc are attained after the deposition of δTc

monolayers. This is possible with

WPARM ∼ δhc

(
T

δTc

)β

. (24)

Using Eqs. (16), (21), and (22), we obtain

WPARM ∼ P1/3−2β/3. (25)

This result implies γ = 1/3 − 2β/3 in Eq. (10). In d =
2, β = 1/3 [37], which gives γ = 1/9 ≈ 0.111; this is in
good agreement with the numerical estimated obtained in
Sec. III C. In d = 3, β ≈ 0.242 [47,48], which gives γ ≈
0.172; the estimate in PARM (Sec. III B) is slightly smaller
than this value.

D. Roughness and porosity in PARMA with large Peclet
numbers

Consider the case of PARMA with large P , i.e., small
κ . The probability of lateral aggregation, which is small in
PARM, is reduced by the factor q in PARMA. Thus, we can
replace κ by qκ in the scaling relations (19)–(23). Since the
interplay between diffusion and aggregation can be described
by D ∼ q, we have qκ ∼ D/P . The general scaling relation
expected for the porosity is

� ∼
(P
D

)−1/3

(26)

for large ratios P/D. Figure 11 shows the local porosity of
PARM and PARMA as a function of P/D, using the same

FIG. 11. Local porosity of PARM and PARMA as a function of
P/D. The dashed line has a slope −1/3.

data of Figs. 5(b) and 8(b) and setting D = q. This confirms
the scaling in Eq. (26).

The effect of a small aggregation rate q on the roughness
is described by the same reasoning. Consequently, Eq. (25) is
generalized by replacing P by the ratio P/D as

WPARMA ∼
(P
D

)1/3−2β/3

. (27)

E. GBD with small aggregation probability

The above scaling arguments can be extended to GBD.
The probability of aggregation κ/(2d ) of PARM, which

follows from the lateral hops, is replaced by p in GBD. Thus,
the porosity of the deposit is obtained with this substitution in
Eq. (23),

� ∼ p1/3. (28)

This means λ1 = 1/3 in Eq. (13), which is close to the numer-
ical estimate obtained in Sec. III E.

The roughness at constant T is obtained by replacing P in
Eq. (25) by p−1 [see Eq. (16)],

WGBD ∼ p2β/3−1/3. (29)

This leads to γ1 ≈ 0.172 in Eq. (12) for d = 3. The numerical
estimate obtained in Sec. III E is more than 20% smaller.
However, such deviations are usually expected in numerical
estimates of small scaling exponents.

Equations (28) and (29) are different from the relations
obtained for the porosity and roughness in the competitive
models involving BD and RD [29,42] and in related models,
such as bidisperse ballistic aggregation [55] or ballistic de-
position with bond breaking [56]. For instance, those models
show porosity scaling as ∼p1/2 [29,42,55] or as ∼p [56],
where p is the probability of a ballistic component, which
may lead to lateral aggregation. In those models, the lateral
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aggregation can occur only at the side of a top particle (of
a NN column), i.e., it depends only on the configuration of
the outer surface of the deposit. Instead, in GBD, PARM, and
PARMA, the aggregation may occur at any point of a wall
separating a high and a low column as in Fig. 10. Thus, GBD
is the simplest realization of a deposition model with highly
collimated transport and with particle adsorption allowed at
any contact with the deposit.

V. SUMMARY AND CONCLUSION

We studied thin film deposition models with particle
flux mixing diffusive and collimated components and with
aggregation depending on the particle motion near the deposit.
In the first model with these features, PARM [18], aggregation
of the incident particle occurs only when it attempts to hop
to a site occupied by a previously deposited particle. The
extended model PARMA considers an additional barrier for
the adsorption. The properties of the porous deposits depend
on P , which characterizes the transport at a length scale a
equal to the particle size, and on D, which characterizes ad-
sorption and transport rates at that scale. PARM has D ∼ 1,
and PARMA has D � 1, so all models consider adsorption
limited conditions or a balance of adsorption and transport
rates; this contrasts with models of instantaneous sticking of
incident particles, such as BD and DLD.

For P � 1, the films are highly porous due to the prefer-
ential capture of incoming particles by the highest branches of
the deposits. As P increases, this instability is suppressed; for
a constant number of deposited monolayers, the film rough-
ness decreases. For P � 1, there is an initial uncorrelated
growth, i.e., random deposition, but KPZ scaling is observed
with small corrections at long times. For a constant number of
deposited layers, the film roughness has a minimal value when
growth occurs with P ∼ D1/2. In PARM, the condition P ∼ 1
reflects a balance of the diffusive and collimated components
in the particle flux. In PARMA, the effect of D accounts for
the fact that an increase in the adsorption barrier (decrease of
D) works against the lateral aggregations that correlates the
local heights and smoothens the surface.

Using a scaling approach, we also explained the power
law relations between the roughness and P and between the
porosity and P in PARM with dominant collimated flux. The
exponents for the roughness are related to the growth exponent

β of the KPZ class and are in reasonable agreement with
simulation results in d = 2 and d = 3. The porosity shows
a superuniversal scaling as P−1/3, i.e., independent of the
spatial dimension. In PARMA, the same scaling relations are
obtained by replacing P by P/D.

We also studied a generalized ballistic deposition model in
which the incident particle trajectory is straight, but the proba-
bility of aggregation to lateral neighbors along that trajectory
is p < 1. For small p, the roughness and the porosity have
similar relations as those of PARM with P replaced by p−1,
which is confirmed numerically. The difference between these
models and previous competitive models involving ballistic
and random deposition is related to the possibility of adsorp-
tion at any contact point of the particle trajectory. Thus, that
generalized ballistic deposition model provides the simplest
example of a class of models with the so-called slippery
particle motion [30].

The results obtained here may be relevant for applications
in which the transport properties in a gas or in a solution
can be tuned to control the film properties. To predict the
conditions for producing films with smoother surfaces, the
relation involving the Peclet and the Damkohler numbers may
be particularly useful. Moreover, the superuniversal scaling of
the porosity may be used to interpret properties of low poros-
ity films. The scaling approaches developed here may also
be useful in the study of other models with mixed transport
properties and with simple subsurface aggregation conditions,
such as those of GBD. Extensions of this type of model should
also include relaxation of deposited particles, which may lead
to significant changes in the deposit patterns as illustrated in
recent works [26–28].
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