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Nonuniform localized distortions in generalized elasticity for liquid crystals
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We analyze a recent generalized free-energy for liquid crystals posited by Virga and falling in the class of
quartic functionals in the spatial gradients of the nematic director. We review some known interesting solutions,
i.e., uniform heliconical structures, and we find new liquid crystal configurations, which closely resemble some
novel, experimentally detected, structures called Skyrmion tubes. These new configurations are characterized by
a localized pattern given by the variation of the conical angle. We study the equilibrium differential equations
and find numerical solutions and analytical approximations.
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I. INTRODUCTION

Until recently, uniform nematics, smectics, cholester-
ics, and blue phases have been known to cover the vast
phenomenology observed for liquid crystals [1–4]. All of
them show interesting new properties and phase transitions
when frustrated by geometric confinement and/or exter-
nal fields [1–3,5–7]. In particular, in recent years it has
been demonstrated that chiral nematics can be host to a
plethora of new topological and nontopological solitonic
structures, i.e., skyrmions, helicoids, merons, and hopfions
[8–13]. Furthermore, skyrmion clusters with mutually orthog-
onal orientations of the constituent isolated skyrmions have
been observed and studied in frustrated chiral liquid crystals
[14,15].

On the other hand, a new class of nematics was recently
found in bent-core and dimeric systems with clearly recog-
nizable “banana”-like bent-shaped molecules [16,17]. Besides
the conventional uniform nematic N phase, these materials
can spontaneously form a new one, now recognized as the
twist-bend nematic phase NT B [18]. Especially surprising is
the fact that the observed new phases exhibit helical (chiral)
orientational ordering despite being formed from achiral
molecules. For comparison, conventional uniaxial nematic
liquid crystals (N), which have been known for more than a
century, are formed from rodlike or dislike molecules. The
chiral cholesteric phases are locally equivalent to nematics but
possess simple (orthogonal) helical structures with pitches in
the few-micron range: The nematic director n twists in space,
drawing a right-angle helicoid and remaining perpendicular
to the helix axis. The cholesteric structure appears as a result
of relatively weak molecular chirality (that is why there is a
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relatively large pitch), and the swirl direction of the spiral (left
or right) is determined by the sign of the molecular chirality.
On the other hand, the action of external fields may induce a
deformation of the cholesteric helix into an oblique helicoid
with an acute tilt angle [19–23], which is usually theoretically
analyzed on the basis of the classical Frank-Oseen theory. Un-
like this situation, in the NT B nematics the achiral molecules
tend to spontaneously, i.e., with no external fields, arrange in
heliconical structures with twist and bend deformations: The
molecular axes are tilted from the helical axis by an angle θT B

and the director follows an oblique helicoid. The NT B phase
is stabilized below the uniaxial nematic phase N through
both first-order or second-order temperature-driven transitions
[24], as a result of the spontaneous chiral symmetry breaking.
Indeed, a mechanism of this kind is not new to liquid crystal
systems (see for instance [25] or [26]). These structures are
similar to the smectic SmC∗ phases but, at variance with them,
the heliconical textures do not possess any layer periodicity.
Moreover the helical pitch, experimentally found to be on the
order of 10 nm, is much smaller than the standard cholesteric
one. Direct observation of the periodic heliconical structure
was first achieved by the authors of [16,17] with an estimation
of the periodicity around 8 nm. The new twist-bend nematic
represents a structural link between the uniaxial nematic phase
N , with no tilt, and an unperturbed chiral nematic, i.e., he-
licoids with right-angle tilt. Although the essential features
of the heliconical phase and the N-NT B transitions have been
outlined by several experimental studies [27–35], the elastic
properties of the NT B phase still remain unknown. Neverthe-
less, several attempts have been made so far to posit a coherent
elastic continuum theory [36–41].

In fact, by scanning the literature, one can find a num-
ber of theoretical works devoted to the twist-bend nematics
[37,42–45]. Meyer was the first to hypothesize such heli-
conical structures in the 1970s, proposing that they were
originated from a spontaneous appearance of the bend flex-
oelectric polarization [46]. Later on, the majority of the
theoretical works, starting from the influential [42], discuss
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the question of how modulated orientational structures can be
formed in achiral systems. One can easily understand that the
description of the twist-bend nematics in terms of an orien-
tational elastic energy requires a pathological (not positively
defined) Frank elastic energy. An analysis in the framework
of such Frank energy can explain some experimental observa-
tions made for the NT B liquid crystals, e.g., anomalously large
flexoelectric coefficients [45] or nonmonotonic temperature
dependence of the orientational elastic moduli [43]. Moreover,
in [26] the negative twist elasticity yielding the spontaneous
chiral symmetry breaking, has been suggested based on the
van der Waals contribution into the Frank elastic moduli.

In [42] Dozov proposed a first elastic theory by using
second-order spatial derivatives of the nematic director field,
higher than the first order usually employed in the classical
Frank’s theory. Dozov’s theory departs from Frank’s also for
the sign of the bend elastic constant K33, which turns negative
and, therefore, higher order invariants are needed in the elastic
free-energy density in order to stabilize the heliconical state.
Moreover in [42], Dozov also provides a qualitative descrip-
tion of two one-dimensional periodic structures by suitably
selecting high order invariants. For most liquid crystals prob-
lems and applications, it is sufficient to consider just the first
derivatives of the director. However, in cases such as the
twist-bend phase in bent-core liquid crystals or chromonic
liquid crystals, where one of the elastic constants may turn
negative, higher order terms may have to be added to the
Frank-Oseen free energy density. A particular higher order
term has been widely discussed in the literature, also concern-
ing its possible role in the stabilization of the twist-bend phase
[47]. The Frank-Oseen energy density functional is some-
times written with an additional surface energy contribution
besides the saddle-splay term K24. It is a second-order surface
term called splay bend, i.e., K13 div(n divn), which was first
introduced phenomenologically by Oseen [48], neglected by
Frank [49], and reintroduced by Nehring and Saupe [50].
On the other hand, this higher-order term may favor con-
figurations with arbitrary large second derivatives, possibly
leading to instabilities. Later on, several studies addressed the
theoretical analysis of the NT B phase [36,37,45,51]. In par-
ticular, in [51] a N-NT B phase transition was described using
a generalized Maier-Saupe molecular field theory. In [36], a
generalized Landau–de Gennes theory was used to investigate
one-dimensional modulated nematic structures generated by
nonchiral and intrinsically chiral V-shaped molecules. In [37],
the NT B phase was treated as a mixture of two different ordi-
nary N phases, both presenting heliconical structures with the
same pitch but opposite helicities. A quadratic elastic theory,
still featuring four Frank’s elastic constants, was used for each
of the two helical phases. Similar models were proposed in
[38–40], where also the effects of an external magnetic or
electric bulk field were investigated. Again, authors in [52,53]
proposed coarse-grained elastic models, which, similarly to
the model for SmA∗ [1], make use of an extra scalar order
parameter. In [38] NT B phase elasticity with two director
fields was discussed within the positively defined conventional
Frank energy. In the recent paper [54] the authors consider
how flexoelectricity combined with spontaneous polar order
(ferroelectricity) could stabilize conical spiral orientational
order. However, under natural Landau theory assumptions

the model in [54] yields strongly biaxial and polar features
of the NT B phase, apparently not supported by experimen-
tal observations. In [55] a Landau phenomenological theory
was proposed for the phase transition from the conventional
nematic phase to the heliconical phase. The authors of [55]
introduce a double-scale elasticity energy by splitting the di-
rector fields into two components: A long-scale Frank energy
for a component of the director and a short-scale elastic energy
for the remaining component.

As mentioned above, in his seminal paper [42] Dozov
proposed higher spatial derivatives of the director nematic
field to stabilize his elastic model and to bind the energy from
below when K33 turns negative. However, there is another
way to develop higher order field theories, that is, looking
for invariants expressed through higher powers of first deriva-
tives. This approach has certainly been applied with success
in several field theories, for example the Skyrme model and
the three-dimensional Skyrme-Faddeev model [56–59]. It is
in this perspective that, very recently, Virga proposed a new
fourth-order generalized elastic theory for nematics [41] with
six elastic constants: Three coming from the standard Frank
energy second-order terms and the other additional three as-
sociated with fourth-order terms. There it was shown how,
for a certain choice of two model parameters, two families of
uniform distortions with opposite chirality, exhausting the he-
liconical structures of the NT B phase, minimize the proposed
higher order elastic free energy.

In the present paper, after reviewing in a slightly differ-
ent approach the main results obtained by Virga, we find
new localized solutions for the generalized elastic free-energy
posited in [41]. On the experimental side, evidence of similar
new localized configurations, namely skyrmions, has been
found in [14,15], where the authors showed that the exis-
tence of either a conical or uniform state surrounding isolated
skyrmions leads to an attracting or repulsive interskyrmion
potential, respectively. These solitonlike structures in a coni-
cal or helical background also appear in ferromagnets. Indeed,
not only skyrmions but also the so-called heliknotons were
recently investigated both in liquid crystals and ferromagnets
[60,61].

The rest of the paper is organized as follows. In Secs. II
and III we obtain the main results of Virga’s work [41], by
expressing the generalized elastic free-energy in terms of the
quantities (n,∇n, divn, curln) and by analyzing Meyer’s he-
liconical configurations of the NT B phase. We show how a
uniform heliconical state corresponds to a minimum of the
fourth-order energy density functional for suitable choices
of the six elastic constants characterizing Virga’s model. In
Sec. IV, we approach the problem of searching for nonuni-
form distortions departing from the uniform heliconical state,
finding localized solutions similar to those studied in [62] for
the Skyrme-Faddeev model. Finally, we draw our conclusions
in Sec. V and we suggest possible extensions of the results
here presented.

II. MATHEMATICAL FRAMEWORK

Traditionally, nematic liquid crystals are modeled by a gen-
eral quadratic form in the spatial gradients ∇n of a unit vector,
the nematic director n. This quadratic form is usually known
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as Frank’s elastic energy density and is written as follows [63]:

FF = 1
2 K11(divn)2 + 1

2 K22(n · curln)2 + 1
2 K33|n × curln|2

+ K24[tr(∇n)2 − (divn)2], (1)

where K11, K22, K33, and K24 are Frank’s elastic constants. The
term K24 is a null Lagrangian; it can be integrated over the
domain B occupied by the nematic medium, without produc-
ing any contribution to the total free energy provided that n is
assigned over the boundary ∂B. As is customary, the general
formula is often reduced to the one-constant approximation,
which can be obtained by setting K11 = K22 = K33 = K and
K24 = 1

2 K , thus leading to

FF = 1
2 K||∇n||2, (2)

where ||∇n||2 = ∂ink∂ink . In [47], a new interpretation of (1)
was proposed and analyzed in depth. The starting point of
this revisited version of Frank’s free-energy density formula
is the decomposition of ∇n in a set of specific distortion
modes. More precisely, the gradient of n can be decomposed
as follows:

∇n = −b ⊗ n + 1
2 T W(n) + 1

2 SP(n) + D, (3)

where the scalar S = divn is the splay, the pseudoscalar T =
n · curln is the twist, and the vector b = n × curln is the bend.
W(n) denotes the skew-symmetric tensor associated with n,
i.e., Wi j = εi jknk , and P(n) = I − n ⊗ n is the projector onto
the plane orthogonal to n. D is a symmetric traceless tensor
such that Dn = 0. Accordingly, it can be given the form

D = q(n1 ⊗ n1 − n2 ⊗ n2), (4)

where q is the positive eigenvalue of D and n1 and n2 are the
eigenvectors, orthogonal to n. From (3) it follows that

trD2 = 2q2 = tr(∇n)2 + 1
2 T 2 − 1

2 S2. (5)

In coordinates, we can rewrite the director gradient ∇n as
follows [47]:

∂ jni = −bin j + 1
2 T εi jknk + 1

2 S(δi j − nin j ) + Di j, (6)

and D can be given the alternative forms

Di j = 1
2 [∂in j + ∂ jni − nink∂kn j − n jnk∂kni − δi jdivn

+ nin jdivn], (7)

or

Di j = 1
2 [∂in j + ∂ jni + nib j + n jbi − S(δi j − nin j )]. (8)

The quantity q was named by Selinger [47] as biaxial splay.
The quantities (S, T, b, D) are independent of one another and
are called measures of distortion. Frank’s elastic free-energy
density can be written as a quadratic form in the four above
quantities as follows:

FF = 1
2 (K11 − K24)S2 + 1

2 (K22 − K24)T 2 + 1
2 K33B2

+ K24tr(D2), (9)

where B2 = b · b. As recalled in [41], the positive definiteness
of the quadratic form (9) implies that

K11 − K24 > 0, K22 − K24 > 0, K33 > 0, K24 > 0,

(10)

known as Ericksen’s inequalities [64]. Accordingly, (9) admits
as global minimizer the state

S = T = B = q = 0, (11)

which corresponds to any constant field n ≡ n0.
As pointed out by the authors in [47], there may be a further

surface term in (1), which, in contrast with the saddle-splay
term, i.e., the K24 term, contains second derivatives of the
director. This term reads as div(n divn) = S2 + (n · ∇ )S. In
analogy with what is done for the K24 contribution, one can in
principle expand ∂i∂ jnk in its normal modes and build a gen-
eralized energy density functional with also the second-order
part expressed in terms of this modes. However, as recalled by
[41] one may obtain a generalized elastic free energy density
by introducing higher powers in the expansion of the gradient
of n. As we will show, these higher order terms, together with
the negative sign of K33, are sufficient to accommodate the
twist-bend phase as ground state, and no second-derivative
term, such as K13, is actually needed.

The eigenvectors n1, n2, n of D are called the distortion
frame. This can be defined for any sufficiently regular director
field n and it changes from point to point, thus defining a
movable frame. The bend vector b can be decomposed in the
distortion frame as follows:

b = b1n1 + b2n2. (12)

The scalars (S, T, b1, b2, q) depend on position in space and
they are called collectively distortion characteristics of the
nematic director. In [41] there was introduced the concept of
uniform distortion, i.e., a uniform distortion is a configuration
of the director field n in which the distortion characteristics
are the same everywhere, while the distortion frame may
change from place to place. Any constant field n ≡ n0 is
uniform but with no distortion, thus it is clear that a uniform
distortion should also have a nontrivial director pattern. In
[41], it was shown that there exist only two families of uni-
formly distorted director fields, and they are given by

S = 0, T = 2q, b1 = b2 = b, (13)

S = 0, T = −2q, b1 = −b2 = b, (14)

where, of course, q and b are constant assigned parameters.
In order to reconstruct the structure of the director fields
n corresponding to (13) and (14), one has to integrate the
decomposed spatial gradient (3) with the specific distortion
characteristics given by (13) and (14). In [41], it was shown
that the most general uniform distortion is an heliconical
director field, more precisely a director field of the form

nh = sin θ0 cos βzex + sin θ0 sin βzey + cos θ0ez, (15)

where ex, ey, ez are the Cartesian unit basis vectors in R3, and
the conical angle θ0 and the pitch 2π/|β| are related to the
parameters (q, b) as follows:

2π

|β| = 2πq

b2 + 2q2
, cos θ0 = |b|√

b2 + 2q2
. (16)

The nematic director n rotates around ez, making a fixed cone
angle θ0 with the rotation axis ez, which is called the helix
axis. The distortion frame {n1, n2, n} precesses along ez turn-
ing completely round over the length of a pitch 2π/|β|, and
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it remains unchanged in all directions orthogonal to ez. The
structure (15) describes therefore the heliconical distortion
predicted by Meyer [46] and it corresponds to the twist-bend
liquid crystal phase, experimentally detected in 2011 [65]. It
is worth noticing that formula (15) also describes the nematic
phase N when θ0 = 0 and the chiral nematics when θ0 = π

2 ,
implying that the twist-bend phase represents a structural link
between these two extreme phases.

Of course, as also observed in [41] the heliconical config-
urations cannot be minimizers of the standard Frank elastic
energy, and there is need for a new elastic theory able to
accommodate the heliconical phase as a ground state. In [41],
there was put forward a new energy functional with quartic
powers of the spatial gradient of n. The starting point for
positing the quartic energy functional is the set of measures of
distortion (S, T, b, D). In order to form a quartic polynomial
in the spatial gradients of n we need to collect the basic
invariants under nematic symmetry n ↔ −n, rotations and
inversions, i.e.,

{S2, T 2, B2, trD2, Sb · Db, T b · D(n × b)}. (17)

From the list above it would be possible to construct a general
higher order polynomial. However, we shall follow the ap-
proach in [41] and we will consider the minimalistic quartic
free-energy density as follows:

FT B(S, T, b1, b2, q) = 1
2 k1S2 + 1

2 k2T 2 + k2trD2 + 1
2 k3B2

+ 1
4 k4T 4 + k4(trD2)2 + 1

4 k5B4

+ k6T b · D(n × b). (18)

This represents the lowest order free-energy density that, for
a suitable choice of the elastic constants, admits as global
minimizer the heliconical uniform distortion state (15), char-
acterized by (13) and (14), as opposed to the uniform state
(11). Notice that other quartic contributions are not included
as this is the simplest way to guarantee that the global mini-
mum is attained at (13) and (14).

By taking into account that trD2 = 2q2 and

b · D(n × b) = −2qb1b2, (19)

formula (18) can also be written as a function of the charac-
teristics of distortion,

FT B(S, T, b1, b2, q) = 1
2 k1S2 + 1

2 k2[T 2 + (2q)2] + 1
2 k3B2

+ 1
4 k4[T 4 + (2q)4] + 1

4 k5B4

− k6(2q)T b1b2. (20)

By directly comparing (18) with (9) we get the following
formal identification:

k1 = K11 − K24, k2 = K22 − K24 = K24, k3 = K33, (21)

but as shown below k3 can also assume negative values. The
above energy density turns out to be coercive provided that

k4 > 0, k5 > 0, k6 > 0, k2
6 < 2k4k5, (22)

which is the condition of positive definiteness of the quartic
part of (18). Moreover, since the heliconical states (13) and
(14) are characterized by S = 0 we assume k1 > 0 so that FT B

attains its minimum for S = 0. Having fixed conditions on the
elastic constants k1, k4, k5, k6, it makes sense to classify the
minimizers in terms of the remaining k2 and k3 constants. It
was shown in [41] that (18) is minimized by the trivial uniform
state n = n0 if and only if k3 � 0. In terms of the measures of
distortions this minimizer is given by (11).

When

−2
k5

k6
k2 < k3 < 0, (23)

the minimizer is a pure bend state with

S = T = q = 0, B2 = b2
1 + b2

2 = −k3

k5
. (24)

Finally, when

k3 < −2
k5

k6
k2 < 0, (25)

FT B is minimized by the pure heliconical state

T 2 = (2q)2 = −k3k6 + 2k5k2

2k4k5 − k2
6

� 0 and

b2
1 = b2

2 = −k2k6 + k3k4

2k4k5 − k2
6

� 0. (26)

Summing up, in order to have the heliconical states (26), the
following constraints on the elastic constants must hold:

2k4k5 − k2
6 > 0, k3k6 + 2k5k2 < 0, k2k6 + k3k4 < 0.

(27)

In the next section we will work out this minimizer by study-
ing the Euler-Lagrange equations associated with FT B. To
this end, it is convenient to write FT B in terms of the spatial
gradient components ∇n and of the quantities divn, curln. For
this we need some identities. It can be proved that

2T qb1b2 = (n · curln)curln · ∇n(n × curln)

+ 1
2 (n · curln)2|n × curln|2. (28)

Upon this latter identity along with the definitions of S, T , and
D and the identity (5), one arrives at

FT B = 1
2 (k1 − k2)(divn)2 + k2(n · curln)2 + k2tr(∇n)2 + 1

2 k3|n × curln|2 + 1
4 k4(n · curln)4

+ k4
[
tr(∇n)2 + 1

2 (n · curln)2 − 1
2 (divn)2

]2 + 1
4 k5|n × curln|4

− k6
[
(n · curln)curln · (∇n)(n × curln) + 1

2 (n · curln)2|n × curln|2]. (29)
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Otherwise, FT B can be rewritten as follows:

FT B = 1
2 (k1 − k2)S2 + k2T 2 + k2tr(∇n)2 + 1

2 k3B2

+ 1
4 k4T 4 + k4

[
tr(∇n)2 + 1

2 T 2 − 1
2 S2]2

+ 1
4 k5B4 − k6I4a − 1

2 k6T 2B2, (30)

where

I4a = [(n · curln)curln · (∇n)(n × curln)]. (31)

Correspondingly, the stored free energy in a region B is given
by the volume integral

F =
∫
B

FT BdB. (32)

III. UNIFORM HELICONICAL DISTORTIONS

In this section we analyze the special class of solutions
(13)–(14) which, as shown above, provides a global minimum
to the free-energy density functional (29). To this end, we use
the standard parametrization of n,

n = sin θ cos φex + sin θ sin φey + cos θez, (33)

where θ and φ are the standard polar angle functions.
The general Euler-Lagrange equations, also supplemented

with boundary conditions on ∂B, are rather involved. How-
ever, it can be shown that they admit the heliconical config-
urations (15) as solutions (see [66]). The three-dimensional
representation of such configurations is displayed in Fig. 1,
where we depict a set of (x, y)-plane cross sections, showing
how the configuration changes along z, and a specific helix
line. The corresponding free-energy density reads

FT B(nh) = fT B(θ0, β ) = 1
8

(−4k6 cos2 θ0 sin6 θ0

+ 4k4 sin8 θ0 + 1
8 k5 sin4 2θ0

)
β4

+ 1
8 (8k2 sin4 θ0 + k3 sin2 2θ0)β2, (34)

FIG. 1. Three-dimensional representation of the uniform heli-
conical distortion. Left: Different (x, y)-plane cross sections showing
the change of orientation along the z direction. Right: Helix line
along the z axis for a fixed distance from it.

which depends on the pitch-related parameter β and the coni-
cal angle θ0, and is minimized by the values

β = ± (2k2k5 + k3k6) + 2(k3k4 + k2k6)√
−(2k2k5 + k3k6)

(
2k4k5 − k2

6

) (35)

and

θ0 = arcsin

(√
2k2k5 + k3k6

(2k2k5 + k3k6) + 2(k3k4 + k2k6)

)
, (36)

with the following condition on the elastic constants:

0 <
2k2k5 + k3k6

(2k2k5 + k3k6) + 2(k3k4 + k2k6)
< 1, (37)

fully satisfied by the constraints (27). It is worth noticing
that both θ0 and β do not depend on the elastic constant k1.
Correspondingly, the free-energy density on the heliconical
solutions becomes

fT B(θ0, β ) = −1

2

k2
3k4 + 2k2

2k5 + 2k2k3k6

2k4k5 − k2
6

, (38)

which, taking into account (27), turns out to be negative pro-
vided that

k2
3k4 + 2k2

2k5 + 2k2k3k6 > 0. (39)

Actually, the quadratic form (39) with respect to k3,

k2
3k4 + 2k2

2k5 + 2k2k3k6, (40)

is positive, as the discriminant

4k2
2k2

6 − 8k4k2
2k5 = 4k2

2

(
k2

6 − 2k4k5
)

< 0, (41)

as a consequence of (27). Thus, the value of the free-energy
density at the heliconical state turns out to be lower than the
value at the uniform nematic phase.

Finally, it is possible to verify that the heliconical con-
figurations found here correspond to those predicted in [41]
in the form (26). Actually, by direct computation, using the
expressions for θ0 and β above, one can show that

S = 0, T 2 = sin4 θ0 β2 = −2k2k5 + k3k6(
2k4k5 − k2

6

) , and

B2 = b2
1 + b2

2 = −2(k3k4 + k2k6)

2k4k5 − k2
6

, (42)

which reproduce formulas (26).

IV. NONUNIFORM LOCALIZED STATES

A. Ansatz on the solution

At variance with the previous section, here we consider
the case of nonuniform distortions, possibly leading to lo-
calized states. Bearing in mind that the uniform distortions
are heliconical states, we slightly depart from this case by
considering still heliconical structures, but with a nonuniform
conical angle and an additional precession around the axis
of the uniform heliconical state. More precisely, we consider
configurations of the general form

n(r, z, ϕ; α, β ) = sin[ f (r)] cos(αϕ + βz)ex + sin[ f (r)]

× sin(αϕ + βz)ey + cos[ f (r)]ez, (43)
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where α is an integer describing the number of windings
performed by the director around the heliconical axis ez for
fixed z, f (r) is the profile function describing the conical
angle, and β has the same meaning as in the previous section.
In order to have localized configurations, we may impose
the boundary conditions f (0) = 0 and f (r → ∞) = f0, f0

being a suitable conical angle to be determined. Then, to
study these configurations, we need to reduce the general free
energy in order to translate the ansatz into the equilibrium
equations. The reduced free energy integrated over the unit
cell [0, 2π

β
] × [0, 2π ] and over r ∈ [0,∞] will take the form

F[ f ; α, β] =
∫ 2π

β

0
dz

∫ 2π

0
dϕ

∫ ∞

0
FT B[n(r, z, ϕ; α, β )]r dr.

(44)
We are interested in the reduced free-energy per unit cell
[0, 2π

β
] × [0, 2π ] which can be obtained by dividing by the

factors 2π and 2π
β

:

F̃[ f ; α, β] = β

4π2
F[ f ; α, β]. (45)

In the following, we will study two relevant cases: α = 0 and
α = 1.

B. Case α = 0

In this first case, we are interested in studying whether
localized solutions without winding around the heliconical
axis ez are possible. In fact, this is equivalent to taking α = 0
in the general ansatz (43) with a radial dependent profile, f (r),
for the conical angle. With these assumptions, the reduced free
energy reads

F0[ f ; β] =
∫ ∞

0
[�0( f ) + �2( f ) f ′2 + �4( f ) f ′4]r dr, (46)

where the quantities �i are functions of the profile f (r), β, and
the elastic constants (see the Appendix for details). Hence, the

Euler-Lagrange equation is given by

2 f ′′(�2 + 6 f ′2�4) + 2

r
f ′�2 + f ′2∂ f �2 + 4

r
f ′3�4

+ 3 f ′4∂ f �4 − ∂ f �0 = 0, (47)

with ∂ f �i the partial derivative of the quantity �i with respect
to the conical function f . It is worth noticing that the above
equilibrium differential equation is invariant under the follow-
ing transformation:

f → − f and r → −r. (48)

First of all, we find the asymptotic state as r → ∞. To this
aim, we take the limit of (47) as r → ∞ and we get the
asymptotic stationary condition

∂ f �0 = 0. (49)

This last equation corresponds to a stationary condition for the
energy functional (46) in the same limit, r → ∞, where f ′
also vanishes. Correspondingly, the free-energy per unit cell
can be written as

F̃0[ f ; β] = β

4π2

∫
�0( f )r dr + h.o.t., (50)

where h.o.t. denotes higher order terms. It is clear that in order
to find the corresponding asymptotic state we will need to
minimize the leading term of (50) with respect to f and β.
Thus, in addition to the condition (49) we need to include the
stationary condition with respect to β, i.e., letting

F0∞( f , β, r) := β

4π2
�0( f )r, (51)

we then have to require that

∇( f ,β )F0∞( f , β, r) = (0, 0). (52)

Letting τ := cos 2 f , (51) can be written as

F0∞(τ, β, r) = r 1
64β2(τ − 1)(β2(τ − 1)[2k4(τ − 1)2 + (τ + 1)(k5t + k5 + 2k6τ − 2k6)] + 16k2(τ − 1) − 8k3(τ + 1)). (53)

The corresponding stationary conditions with respect to β and τ are

1
16β2(β2(τ − 1)[2k4(τ − 1)2 + k5τ (τ + 1) + k6(2τ + 1)(τ − 1)] + 8k2(τ − 1) − 4k3τ ) = 0, (54)

1
32β(τ − 1)(2β2(τ − 1)[2k4(τ − 1)2 + (τ + 1)(k5τ + k5 + 2k6τ − 2k6)] + 16k2(τ − 1) − 8k3(τ + 1)) = 0. (55)

Upon solving them simultaneously we get solutions τ0, β as follows:

τ0 = −2k2k5 + 2k2k6 + 2k3k4 − k3k6

2k2(k5 + k6) + k3(2k4 + k6)
, (56)

β = ± (2k2k5 + k3k6) + 2(k3k4 + k2k6)√
−(2k2k5 + k3k6)

(
2k4k5 − k2

6

) . (57)

The asymptotic conical angle is then given by

f0 = 1

2
arccos τ0 = 1

2
arccos

(−2k2k5 + 2k2k6 + 2k3k4 − k3k6

2k2(k5 + k6) + k3(2k4 + k6)

)
, (58)

and is equal to that found in the uniform heliconical state θ0 (36).
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To find localized solutions, we need to solve the Euler-
Lagrange equation (47) with some specific boundary condi-
tions. In particular, we require the profile function to reach
the asymptotic value of the conical angle θ0 at infinity, i.e.,
f (r) → θ0 when r → ∞, while at the origin it takes a differ-
ent value which we will choose as zero for simplicity.

Unfortunately, after checking numerically, we did not find
any localized local minima. Thus, the α = 0 case just re-
produces the uniform heliconical state (15) with a constant
conical angle θ0 as global minimizer. Nevertheless, it seems
reasonable to think that the absence of a winding around a
given axis makes it difficult to stabilize solutions interpolating
different values of the conical angle. Indeed, additional energy
is not needed in varying the value of f (r) at the origin and
taking the conical angle θ0 everywhere, arriving at the state
corresponding to the global minimum. However, if the sys-
tem needs to go through an unwinding before reaching the
uniform heliconical distortion, then stable local minima may
be allowed. This is in fact what happens when α = 1, so we
will devote the rest of the paper to its study and description.

C. Case α = 1

When α = 1 the reduced free energy takes the following
form

F1[ f ; β] = π2

64β

∫ ∞

0
[G0(r, f ) + G1(r, f ) f ′ + G2(r, f ) f ′2

+ G3(r, f ) f ′3 + G4(r, f ) f ′4]dr, (59)

and the associated Euler-Lagrange equation turns into an or-
dinary differential equation of second order of the form

2 f ′′(G2 + 3 f ′G3 + 6 f ′2G4) + 2 f ′∂rG2 + f ′2∂ f G2

+ 2 f ′3(∂ f G3 + 2∂rG4) + 3 f ′4∂ f G4 − ∂ f G0 + ∂rG1 = 0.

(60)

The quantities Gi, i = 0, 1, 2, 3, 4 depend on r, f , β, k1, k2,

k3, k4, k5, k6 and are listed below in the Appendix.
Also in this case, it is worth noticing that the above

equilibrium differential equation is invariant under
the transformation

f → − f and r → −r. (61)

We will use this symmetry property in the following sub-
sections, starting with the investigation of the asymptotic
behavior of the profile function f (r) around r = 0 and around
r = ∞.

1. Asymptotics

In order to study the behavior around r = 0 we first fix the
leading order power at the origin by assuming that, close to
r = 0, the profile function f takes the form

f (r) = arl + O(rl+1), (62)

with l > 0, as a negative value would imply loss of regularity
in f at the origin. In addition, l has to take an odd value due
to the symmetry given by Eq. (61). Thus, by expanding the
left-hand side term of (60) around f = 0 which is the value
taken by f at r = 0, it can be shown (see [66]) that l = 1.

Having fixed this leading power, we can now study some
relationships among the derivatives of f at r = 0 by inspect-
ing the corresponding expansion at r = 0. From the above
mentioned symmetry property (61) of (60) and from the re-
sults about the leading order at r = 0, we conclude that the
power expansion of f around r = 0 takes the form

f (r) = ξr + ζ r3 + ηr5 + · · ·, (63)

where

ξ = f ′(0), ζ = 1

3!
f ′′′(0), η = 1

5!
f (V)(0), . . .. (64)

By replacing f (r) with (63) in the Euler-Lagrange equation
(60), we get an expansion in the even powers of r only. In
particular, after a lengthy calculation, we arrive at

ζ = 3β2k3ξ + 2(k1 − 3k2 − 3β2k6)ξ 3

12(k1 + 3k2 + 9k4ξ 2)
, (65)

η = 1

360(k1 + 3k2 + 9k4ξ 2)
(30β4k5ξ

3 + 120β2k2ξ
3 − 80β2k3ξ

3 + 30β2k3ζ + 90β2k5ξ
5 + 270β2k6ξ

5 − 360β2k6ξ
2ζ − 13k1ξ

5

+ 240k1ξ
2ζ + 51k2ξ

5−15k3ξ
5−180k3ξ

2ζ + 48k4ξ
7 + 1080k4ξ

4ζ − 4320k4ξζ 2 − 30k5ξ
7 + 45k6ξ

7 + 360k6ξ
4ζ ). (66)

This result has been successfully used as a check of the nu-
merical calculations presented below by taking the value of ξ

coming from the simulations.
Next we collect the results about the asymptotic analysis

as r → ∞ of Eq. (60). From the functions Gi reported in
the Appendix, it is not difficult to recognize that the only
surviving term is

∂ f G∞
0 = 0, (67)

where the function G∞
0 is obtained from the function G0 by

dropping all the terms 1/r and 1/r3 and keeping only linear

terms in r, i.e.,

G∞
0 = g∞

01 + g∞
02 cos 2 f + g∞

03 cos 4 f

+ g∞
04 cos 6 f + g∞

05 cos 8 f , (68)

where

g∞
01 = β2

2
r(192k2 + 32k3 + 70β2k4 + 3β2k5 − 10β2k6),

(69)

g∞
02 = −4β2r(32k2 + 14β2k4 − k6β

2), (70)

g∞
03 = +2β2r(16k2 − 8k3 + 14β2k4 − β2k5 + 2β2k6), (71)
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g∞
04 = −4β4r(2k4 + k6), (72)

g∞
05 = β4

2
(2k4 + k5 + 2k6)r, (73)

entailing that

g∞
01 + g∞

02 + g∞
03 + g∞

04 + g∞
05 = 0. (74)

Correspondingly, from (59), the free-energy per unit cell in
the same limit reduces to

F̃1[ f ; β] = 1

256

∫
[G∞

0 (r, f )]dr + h.o.t. (75)

Taking into account the expressions for �0 in the Appendix
and G∞

0 , it should be noticed that the expression for F̃1[ f ; β]
is the same as the one obtained for F̃0[ f ; β] in (50). Hence we
obtain identical stationary conditions and the same asymptotic
state, as far as the conical angle f0 and β are concerned
[see Eqs. (57) for β and (58) for f0]. As also happened for
α = 0, the expression for f0 reproduces the result for θ0 in
(36). Moreover, in order to avoid divergences at infinity of
the free-energy density, we also need to subtract (see sections
above) the free-energy density value for the uniform helicon-
ical configuration (general global minimum) from the general
free-energy expression. This actually corresponds to the case
α = 0.

Finally, it is worth noting that the profile f (r) approaches
the asymptotical conical angle by means of a modified Bessel
function of the second kind and order zero, namely,

f (r) = f0 + εh(r),

h(r) = c2K0(ωr) ≈ c2

√
π

2

e−ωr

√
ωr

+ · · · , (76)

where c2 is an arbitrary constant and ω is a parameter com-
ing from the Euler-Lagrange equation and depending on the
elastic constants only (see [66]).

2. Global approximation: Padé approach

In the previous subsection we analyzed the asymptotic
behavior of the solution of Eq. (60) near the boundaries 0
and +∞. Now, one may try to look for an analytic expression
that approximates the true solution in some specific sense. To
this aim, we take inspiration from similar second-order ODEs
involving trigonometric nonlinearities, like the simple pendu-
lum equation or the challenging PIII Painlevé equation (see for
instance [67]). First, one may apply a suitable transformation
in terms of inverse trigonometric functions of the dependent
variable, leading to a rational expression of the equation in
the new dependent variable and its derivatives. Then, one may
more easily study and possibly obtain a suitable approximated
solution, with the method adopted, for instance, in [68]. Thus,
we look for a solution of the form

f (r) = π − arccos [s(r)], (77)

where s(r) is an unknown function subject to the conditions

lim
r→0+

s(r) = −1, lim
r→+∞ s(r) = − cos ( f0), (78)

f0 being defined by the asymptotic value (58). Indeed, the
adopted transformation (77) maps (60) into an ODE involv-

ing only algebraic rational expressions, i.e., combinations of
powers of s(r) and its derivatives, up to the second order,
with nonconstant coefficients. However, these coefficients can
be Laurent expanded in the neighborhood of the boundaries.
Accordingly, one may guess that also the function s(r) could
be expressed as a ratio of polynomials in r, possibly of infinite
degree. Moreover, having already noted above that f (r) must
contain only odd powers of r, it follows from the properties
of the arccos function that s(r) must be an even function of r.
As a consequence, s(r) and its Taylor expansion must depend
on r2 only. Now, it is well known that Padé approximants
are a powerful tool to study the convergence of given Taylor
series and they are exact on rational functions [69]. To this
end, let SN = ∑N

j=0 c j r j be a truncated series at the order
N of our function s(r); its Padé approximant s[L/M] of order
(L, M ), L + M = N, is given by

s[L/M] =
∑L

j=0 a j r j∑M
j=0 b j r j

, b0 = 1, (79)

such that

SN − s[L/M] = O(rN+1). (80)

In our case we have a boundary value problem with two differ-
ent series expansions at r = 0 and r = ∞, respectively, which
have to be joined simultaneously by the sought s[L/M]. This
is a well known problem in the multipoint Padé approxima-
tion, which could be solved in terms of continuous fractions
(see [69], Vol. 2). However, in the present context, one may
proceed in a more straightforward way as follows.

First, by power expanding around r = 0 the function
f [s(r)] and comparing it with formulas (63) and (64), one
obtains the corresponding expansion for s(r),

s(r) = −1 + r2ξ 2

2
+ 1

24
r4(24ξζ − ξ 4)

+ 1

720
r6(720ηξ + ξ 6 − 120ξ 3ζ + 360ζ 2) + O(r7).

(81)

On the other hand, we need a similar expansion at infinity, for
which we use the simplest asymptotic expansion,

s(r) = − cos ( f0) + O

(
1

r2

)
. (82)

Assuming f0 = π
2 , a possible Padé approximant (79) must

have equal highest powers in both numerator and denomina-
tor. Thus, one may choose L = M = 4, and then set

s[4/4] = a2r4 + a1r2 + a0

b2r4 + b1r2 + 1
, (83)

where the five constants ai and bi have to be determined by us-
ing the information contained in both asymptotic expansions
above. This can be done by formally expanding s[4/4] around
r = 0 and r = ∞ and by matching the corresponding coeffi-
cients with those in (81) and (82). We stop at the fourth order
in (81) and, accordingly, the coefficient η, being involved at
the sixth order, will not be considered in further calculations.
This procedure leads to finding three relations providing the
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coefficients ai, namely

a0 = −1, a1 = ξ 2

2
− b1,

a2 = 1

24
(12b1ξ

2 − 24b2 − ξ 4 + 24ξζ ). (84)

The constant b1 can be determined by resorting to (82) and using (84) to obtain

b1 = −24b2 cos f0 + 24b2 + ξ 4 − 24ξζ

12ξ 2
. (85)

Finally, using the above expressions into s[4/4], one is led to the approximation

f (r) = π − arccos

(−12b2r4ξ 2 cos f0 + r2(24b2 cos f0 − 24b2 + 5ξ 4 + 24ξζ ) − 12ξ 2

r2(−24b2 cos f0 + 24b2 + ξ 4 − 24ξζ ) + 12b2r4ξ 2 + 12ξ 2

)
. (86)

Thus, we are restrained to choosing the four parameters
ξ, ζ , b2, f0. The most obvious choice for f0 is to use its
expression given by (58) in terms of the elastic constants.
Second, the quantity ζ can be expressed in terms of ξ

and of the elastic constants by (65). Thus, one can con-
sider the family of functions depending only on the couple
(ξ, b2), which can be determined by a best fit (in the sense
of the minimum squares method) with the numerical solu-
tion of the differential equation (60). A detailed discussion
of these methods and their results is contained in the next
section.

3. Numerical analysis

Due to the nonlinearity and complexity of the system un-
der consideration, also the use of numerical methods seems
mandatory. In the following, we want to numerically study
localized solutions of the form (43), with α = 1. Here, for
notational convenience, we will employ a different symbol for
the stored free energy F1 in (59), i.e.,

Eα=1 = π2

64β

∫
[G0(r, f ) + G1(r, f ) f ′ + G2(r, f ) f ′2

+ G3(r, f ) f ′3 + G4(r, f ) f ′4]dr, (87)
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FIG. 2. Profile function f (r) for the elastic constants k1 = k2 =
k4 = k5 = k6 = 1.0 and k3 = −3.0.

where the integration over r is being performed on a finite do-
main [a similar notation, i.e., Eα=0, is used for the stored free
energy F0 in (46)]. Hence, to find configurations minimizing
this energy we use a gradient flow method in one dimen-
sion applied to a lattice of 1000 points with an interspace of
�r = 0.02. In addition, spatial derivatives are approximated
by a finite fourth-order accurate difference. The values of the
profile function f (r) at the boundaries of the grid are f (0) = 0
and f (r → ∞) = θ0; see Eq. (36).

The behavior at the origin comes from the fact that, if
we want the field n to be well defined, f (0) has to be zero
or an integer multiple of π . Indeed, the condition f (0) = π

has been also considered but it poses a higher energy with
respect to the vanishing profile. This might be expected since
it implies a bigger deviation from the global minimum given
by the uniform distortion f = θ0. Figure 2 shows the localized
solution with f (0) = 0 corresponding to the elastic constants
k1 = k2 = k4 = k5 = k6 = 1.0 and k3 = −3.0, which fulfill
all the required constraints (27) and give θ0 = 0.4636, with
the parameter β = 5.0 as prescribed by analytical expressions
(35) and (36). This value has been chosen since it is the

 0
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 0.3

 0.4
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 0  0.5  1  1.5  2

f

r

θ0
Sol

O(r)

O(r3)

O(r5)

FIG. 3. Profile function f (r) for k1 = k2 = k4 = k5 = k6 = 1.0
and k3 = −3.0 together with the asymptotic value θ0 and a represen-
tation of the polynomial expansion around r = 0 as in (63) to several
orders up to r5 for ξ = 0.94.
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FIG. 4. Three-dimensional reconstruction of the localized solu-
tion (α = 1) for the elastic constants k1 = k2 = k4 = k5 = k6 = 1.0
and k3 = −3.0. The color bar represents the value of the conical
angle f (r) from the origin to the asymptotic state.

optimal one in the case of the uniform distortion giving the
lower energy per pitch P = 2π

|β| . In fact, by varying β we have
found that, still in the case of localized solutions, β = 5.0 is
the preferred choice, confirming that the analytical expression
found for the optimal β is still valid, at least for this choice of
the elastic constants. In addition, it seems natural to stick with
the analytical expression (35) for β for a better comparison
with the case α = 0, as this latter reproduces the uniform
heliconical state as global minimizer. The energy per pitch
of the solution corresponds to Eα=1/P = −3125.97, while,
for the conical distortion (which we can identify with the
case α = 0 from the general ansatz), Eα=0/P = −3138.45,
which is the relative energy of the excited state �E/P =
(Eα=1 − Eα=0)/P = 12.48. As a check, the behavior of the
numerical solution around the origin has been compared with
the expansion given by Eq. (63), as shown in Fig. 3. The value
of the free parameter of the expansion ξ has been taken from
the numerical solution. This result states that the localized
nonuniform conical distortions are stable states with respect
to the uniform nematic configuration (n = n0), but, at the
same time, they can be seen as excitations over the ground

FIG. 5. Transversal cut (left) and cylinder of constant conical
angle (right) for the α = 1 case. Elastic constant values: k1 = k2 =
k4 = k5 = k6 = 1.0 and k3 = −3.0. The color bar represents the
value of the conical angle f (r) from the origin to the asymptotic
state.

TABLE I. Energy per pitch and the corresponding excess as a
function of k1 for k2 = k4 = k5 = k6 = 1.0 and k3 = −3.0.

k1 Eα=1/P �E/P

1.0 −3125.97 12.48
2.0 −3124.45 14.00
3.0 −3122.99 15.46
4.0 −3121.52 16.93
5.0 −3120.06 18.39
6.0 −3118.61 19.84
7.0 −3117.17 21.28
8.0 −3115.73 22.72
9.0 −3114.31 24.14
10.0 −3112.89 25.56

state realized by the uniform heliconical distortion n = nh; see
Eq. (15).

In Fig. 4, we can see the three-dimensional reconstruction
of the localized configuration, where the coloring of the bars,
representing the vector directors, corresponds to different val-
ues of the conical angle given by f (r) as indicated. For a better
understanding, this is complemented with the transversal cut
on the plane (y, z) appearing in Fig. 5, together with the
cylindrical arrangement of those points with the same value
of the conical angle.

As previously commented, one can also consider the pro-
file function taking a multiple of π at the origin. However,
since this implies a greater deviation from the conical dis-
tortion angle, the resulting configuration will have greater
energy. For instance, for f (0) = π , we found that Eα=1/P =
−2356.40, with a relative energy �E/P = 782.05.

Another possibility is to study the parameter space, i.e.,
the elastic constants, of the model. Note that in this case we
need to bear in mind the existing constraints (27) involving
them. For instance, for a fixed k3 = −3.0, it is not possible to
have k2 � 1.5. Nevertheless, we can see that both β and θ0 in
(35) and (36) do not depend on the elastic constant k1. Hence,
it seems worth studying how the localized configurations
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 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4
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FIG. 6. Profile function f (r) near the origin for an increasing k1

while k2 = k4 = k5 = k6 = 1.0 and k3 = −3.0. The bigger k1 is, the
slower the asymptotic angle is approached.
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TABLE II. Energy per pitch (both of the uniform distortion and
localized configuration) and the corresponding excess �E/P as a
function of k4 for k1 = k2 = k5 = k6 = 1.0 and k3 = −3.0.

k4 β θ0 Eα=0/P Eα=1/P �E/P

1.0 5.0 0.4636 −3138.45 −3125.97 12.48
2.0 6.3509 0.3063 −2929.22 −2924.48 4.74
3.0 7.6026 0.2450 −2887.37 −2884.37 3.00
4.0 8.6932 0.2101 −2869.44 −2867.20 2.24
5.0 9.6667 0.1868 −2859.48 −2857.67 1.81
6.0 10.5529 0.1698 −2853.14 −2851.61 1.53
7.0 11.3714 0.1568 −2848.75 −2847.42 1.33
8.0 12.1353 0.1464 −2845.53 −2844.35 1.18
9.0 12.8544 0.1378 −2843.07 −2842.00 1.07
10.0 13.5355 0.1306 −2841.12 -2840.15 0.97

change with an increasing value of it. However, what we find
is that as the energy slightly increases (see Table I), so does
the size of the configuration (see Fig. 6), although in both
cases it does not seem relevant. In particular, regarding the
size, it is worth noticing that the bigger k1 is, the slower the
asymptotic angle is approached. On the other hand, there are
actually other situations where β and θ0 change, as can be seen
from (35) and (36). For instance, this is the case when one
increases the elastic constant k4. As it can be seen in Table II,
this results in a decreasing of the total energy per pitch of
both the uniform distortion and the localized configurations.
In addition, as can also be seen in Fig. 7, both the excitation
energy �E/P and size of the solution are lowered, implying
that the latter tends to shrink for an increasing contribution of
the elastic constant k4. Finally, we can also easily study the
behavior of the localized solution when decreasing k3 from
−3 to −10 (see Fig. 8 and Table III). In this case, the size
also decreases, accompanied by an increasing in the excitation
energy. The above numerical results for all the analyzed
cases have also been confirmed by using a shooting method
for Eq. (60), together with the use of an adaptive mesh in order
to cope with the stiffness of the equation around the origin. For
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FIG. 7. Profile function f (r) near the origin for an increasing k4
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this alternative numerical method the normal form of Eq. (60)
has been used as reported in [66].

Now that we have studied the solutions to Eq. (60) by
numerical methods, we can check the goodness of approxi-
mation (86) by a best fitting procedure. As mentioned above,
the number of free parameters for least-squares minimization
can be reduced to 2, i.e., (ξ, b2), by means of (58) and (65).
However, here first we use all four parameters (ξ, ζ , b2, f0)
for a few examples. Then we provide the results of the fit-
ting procedure leaving free only (ξ, b2) or just b2 (with ξ

fixed by numerics), for the case k1 = k2 = k4 = k5 = k6 =
1.0, k3 = −3.0 shown in Fig. 2. By doing so, we show the
remarkable capability of (86) to adapt itself to the numerical
solutions.

The results of the procedure using all the four possi-
ble parameters are provided in Table IV for four different
sets {ki}. Here, the values of the best fitting parameters to-
gether with the reference values ξnum, ζnum extrapolated from
numerical solutions are provided. As an estimator of the
goodness of the best fit, we report in the last column the
distance || f − fa||2 between the numerical solution f and the
approximation fa, the latter value being obtained by replac-
ing in (86) the parameters (ξ, ζ , b2, f0) with the best fitted
ones.

TABLE III. Energy per pitch (both of the uniform distortion and
localized configuration) and the corresponding excess as a function
of k3 for k1 = k2 = k4 = k5 = k6 = 1.0.

k3 β θ0 Eα=0/P Eα=1/P �E/P

−3.0 5.0 0.4636 −3138.45 −3125.97 12.48
−4.0 5.6569 0.5236 −6276.90 −6250.90 26.00
−5.0 6.3509 0.5495 −10670.7 −10629.9 40.8
−6.0 7.0 0.5639 −16319.9 −16263.6 56.3
−7.0 7.6026 0.5732 −23224.5 −23152.0 72.5
−8.0 8.1650 0.5796 −31384.5 −31295.4 89.1
−9.0 8.6932 0.5844 −40799.9 −40693.8 106.1
−10.0 9.1924 0.5880 −51470.6 −51347.2 123.4
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TABLE IV. Results of the best fitting procedure for four different sets of {ki}: k1 = k2 = k4 = k5 = k6 = 1, k3 = −3 (Case 1); k1 =
k2 = k5 = k6 = 1, k3 = −3, k4 = 5 (Case 2); k1 = 10, k2 = k4 = k5 = k6 = 1, k3 = −3 (Case 3); k1 = k4 = k5 = k6 = 1, k2 = 3, k3 =
−7 (Case 4). The quantities ξnum and ζnum represent the values obtained from numerical solutions, while fa is the approximation obtained
by replacing in (86) the parameters (ξ, ζ , b2, f0 ) with the best fitted ones. f0 is obtained from the best fit and it reproduces up to the fourth
decimal digit the value from (58).

Case ξ ξnum ζ ζnum f0 b2 || f − fa||2
1 0.9620 0.9465 −2.8997 −2.3733 0.4637 3.9775 0.0063
2 0.6604 0.6650 −2.1686 −2.5290 0.1868 95.2940 0.0015
3 0.6854 0.6793 −1.0512 −0.9496 0.4637 1.9905 0.0077
4 1.4608 1.4400 −13.8035 −11.4797 0.3368 41.6260 0.0024

Moreover, the latter results are depicted in Fig. 9, in order
to provide a visual representation of them. Finally, the detailed
analysis, with two and one free parameters respectively, for
the case k1 = k2 = k4 = k5 = k6 = 1, k3 = −3 is displayed in
Fig. 10.

According to these results, we can conclude that (86) is a
quite good approximation for the solutions of (60).

V. CONCLUSIONS AND PERSPECTIVES

In this paper we studied a generalized elasticity theory for
liquid crystals put forward recently in [41], parametrized by
six elastic constants: k1, k2, k3 coming from the standard Frank
energy second-order contributions and k4, k5, k6 related to the
fourth-order terms, as shown in Eq. (18) and constrained by
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FIG. 9. Best fits between the numerical solution and approximation (86) corresponding to the cases listed in Table IV: (a) k1 = k2 =
k4 = k5 = k6 = 1, k3 = −3; (b) k1 = k2 = k5 = k6 = 1, k3 = −3, k4 = 5; (c) k1 = 10, k2 = k4 = k5 = k6 = 1, k3 = −3; (d) k1 = k4 =
k5 = k6 = 1, k2 = 3, k3 = −7.
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FIG. 10. Best fits between the numerical solution and approximation (86) leaving free (a) b2 and (b) both ξ, b2, for the case k1 = k2 =
k4 = k5 = k6 = 1, k3 = −3. Here (a) b2 = 1.4884 and (b) (b2, ξ ) = (2.5594, 0.9217).

Eq. (27). The quartic part, positive definite, is needed to stabi-
lize the negative contribution from k3 < 0 for the heliconical
phase to take place. Thus, the proposed theory generalizes
Frank’s elastic energy density to include quartic terms in the
spatial gradients of the nematic director. For a suitable choice
of the elastic constants, the novel free-energy functional ad-
mits heliconical configurations as ground state. These ground
states have been determined by minimizing the free-energy
density with respect to the two parameters, β and θ0, of the
heliconical solution. In the present paper we have adopted a
different approach, using the Euler-Lagrange equations. We
determined the pitch and the conical angle of the heliconical
configurations. After that, we generalized the heliconical con-
figurations to nonuniform structures with a variable conical
angle (43). The generalized solution contains two parameters
α, β and a profile function for the conical angle depending on
the radial distance from the symmetry axis of the configura-
tion. We have studied the Euler-Lagrange equation associated
with the reduced functional on this family of solutions in two
distinct cases: α = 0 and α = 1. This α parameter describes
only how the vector director winds around the z axis (see
Fig. 11). When it vanishes there is no winding, while it goes
around the z axis once when α = 1. These structures may re-
semble vortexlike configurations, with α taking the role of the
vortex charge. We have performed both numerical and analyti-
cal studies and we found a nonuniform profile function only in
the case α = 1. Case α = 0 corresponds to the uniform heli-

FIG. 11. Circle of constant radius for the solutions of α = 0 (left)
and α = 1 (right) far from the origin at fixed z. Elastic constant
values: k1 = k2 = k4 = k5 = k6 = 1.0 and k3 = −3.0.

conical solutions found in [41]; its structure is a pile of differ-
ent strata, each of them with the same constant conical angle
θ0, as shown in Fig. 1, continuously precessing when moving
parallel to the z axis. In contrast, when α = 1, there is a
simultaneous bending of the conical angle, from 0 to θ0 in the
radial direction, which is precessing both in the z direction and
by azimuthal rotations. Thus, a helix appears as a line for each
fixed constant director, together with the already mentioned
winding around the z axis. The corresponding energy still
remains under the uniform nematic configuration. However,
the system needs to go through an unwinding before reaching
the uniform heliconical distortion, and in this sense these
solutions can be seen as stable excitations of that ground state.

It is worth comparing our results with the work presented
in [14,15]. There, similar configurations called Skyrmion
tubes are numerically described in ferromagnets, while exper-
imentally they are found in liquid crystals. However, although
similarities between ferromagnets and liquid crystals are well
known, there was no theoretical description for this kind of
configuration in achiral nematics in the absence of external
fields. Then, to the best of our knowledge, the quartic-degree
free-energy proposed by Virga and studied here is the first
theory of liquid crystals supporting these localized structures.

Indeed, our solutions described above are quite simi-
lar to those in [14,15], with the main difference being the
asymptotic behavior far from the origin. In contrast to their
case, where the vector director achieves the uniform distortion
state (the case α = 0 in our language), ours is given by a
vector director with a constant conical angle, but presenting
a winding around the symmetry axis as well. Hence, the
configurations studied here might provide a good description
of the cores of the Skyrmion tubes. The similarities between
our configurations and those found in cholesterics should not
surprise. In chiral ferromagnets and liquid crystals the lack of
inversion symmetry, due to the presence of the antisymmetric
contributions like the Dzyaloshinskii-Moriya interaction or
q0 n · curln, together with the frustration from geometric con-
finement and external fields, creates competing effects which
may lead to the formation of a vast class of defects in the
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director distribution, either topological or not. Although in our
case the inversion symmetry still holds, a similar mechanism
of competition between the quadratic part of the functional
with negative k3 and the positive-definite quartic part leads to
nontrivial localized configurations like those we found, even
in the absence of external frustration. On the other hand, it
should be noted that we have shown how, far from the origin,
the dominant contribution to the free energy is exactly the
same both for α = 0 and for α = 1 cases, so, at least at that
level, they are equivalent. Thus, despite the cylindrical sym-
metry of our ansatz preventing us from joining the winding
localized solution with α = 1 to the uniform distortion, this
seems to indicate that the skyrmionic structures in [14,15]
may also be supported by this quartic theory. Although it is
outside the scope of this paper, a more general ansatz will be
pursued in the future.

In this paper, we have shown how the first nonzero higher
(quartic) order terms in a theory with negative k3 can host lo-
calized distortions in achiral nematics, while the Frank-Oseen
quadratic free-energy functional allows them only in the chiral
case under external fields. This suggests that structures resem-
bling our solutions might be experimentally found without
applying external fields.

On the other hand, the expression given in (86) opens
new possibilities in the study of field equations of interest,
like (60), in the domain of Skyrmions and similar configu-
rations in liquid crystals and magnetic materials. Generally,
they are only addressed by numerical methods, because of the
complicated structure of different effects at different scales.
In our particular case, these effects are related to the singu-
larities in the coefficients at the origin and the appearance
of the trigonometric multiple field contributions in the free
energy. The procedure leading to (86) is based on a systematic
and algorithmic manipulation of analytic expressions which
closely reproduce the numerical solutions, even if they do not
provide the exact results. In order to obtain this, the method
of the Padé approximants has played an important role. Ac-
tually, by our mixed method we proved that the fourth-order
approximant already provides an accuracy of 10−3 in repro-
ducing the numerical solution, by a suitable choice of the
parameters.

In the future, we would like to develop and apply a co-
herent procedure leading to an accurate a priori evaluation of
the Padé coefficients at a given order of approximation. The
study of the singularities of the approximated solution in the
complex r plane may indicate how to tackle such a problem
in an efficient way, e.g., moving or adding poles on suitable
conjugated points.

In addition, we also plan to study the interactions of the
obtained localized structures among themselves and the effect
of the interaction with external electric and/or magnetic fields
in order to control the main structure parameters. We also
aim at studying the proposed quartic free-energy functional
in confined geometries for liquid crystals.
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APPENDIX: MATHEMATICAL DETAILS

In this Appendix we collect the basic main functions and
coefficients appearing in the equilibrium equations for both
cases α = 0 and α = 1.

1. Case: α = 0

The quantities �i( f ), with i = 0, 2, 4, involved in the re-
duced free-energy for α = 0 [see Eqs. (46) and (47) in the
main text] are given by

�0( f ) = γ01 + γ02 cos(2 f ) + γ03 cos(4 f ) + γ04 cos(6 f )

+ γ05 cos(8 f ), (A1)

with coefficients

γ01 = π2

128
β[32(6k2 + k3) + (70k4 + 3k5 − 10k6)β2], (A2)

γ02 = −π2

16
β[32k2 + (14k4 − k6)β2], (A3)

γ03 = π2

32
β[16k2 − 8k3 + (14k4 − k5 + 2k6)β2], (A4)

γ04 = −π2

16
(2k4 + k6)β3, (A5)

γ05 = π2

128
(2k4 + k5 + 2k6)β3. (A6)

Then

�2( f ) = γ21 + γ22 cos 2 f + γ23 cos 4 f + γ24 cos 6 f , (A7)

with

γ21 = π2

32β
(16k1 + 80k2 + 16k3 + 74β2k4

+ 2β2k5 + 18β2k6), (A8)

γ22 = π2

32β
(16k1 + 16k2 − 16k3 − 97β2k4

−β2k5 − 17β2k6), (A9)

γ23 = π2

32
β(22k4 − 2k5 − 2k6), (A10)

γ24 = π2

32
β(k4 + k5 + k6). (A11)

And finally,

�4( f ) = γ41 + γ42 cos(2 f ) + γ43 cos(4 f ), (A12)
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with

γ41 = π2

64β
(65k4 + 9k5 − 8k6), (A13)

γ42 = π2

64β
(20k4 − 12k5 + 8k6), (A14)

γ43 = π2

64β
(3k4 + 3k5). (A15)

2. Case: α = 1

The quantities Gi, i = 0, 1, 2, 3, 4 appearing in Eq. (60)
depend on r, f , β, k1, k2, k3, k4, k5, k6 and are listed below:

G0 = G0(r, f ) = g01 + g02 cos(2 f ) + g03 cos(4 f )

+ g04 cos(6 f ) + g05 cos(8 f ), (A16)

where

g01 = 1

16r3
(178k4 + 105k5 − 30k6) + 1

2r
(64k1 + 96k2 + 48k3 + 70β2k4 + 15β2k5 − 18β2k6)

+ β2

2
r(192k2 + 32k3 + 70β2k4 + 3β2k5 − 10β2k6), (A17)

g02 = − 1

2r3
(25k4 + 21k5 − 3k6) − 32

r
(k1 + k2 + k3) − 2β2

r
(21k4 + 3k5 − 10k6) − 4β2r(32k2 + 14β2k4 − k6β

2), (A18)

g03 = 1

4r3
(2k4 + 21k5 + 6k6) − 2

r
(8k2 − 4k3 + 3β2k5 + 10β2k6) + 2β2r(16k2 − 8k3 + 14β2k4 − β2k5 + 2β2k6), (A19)

g04 = − 1

2r3
(−k4 + 3k5 + 3k6) + 2β2

r
(5k4 + 3k5 + 6k6) − 4β4r(2k4 + k6), (A20)

g05 = (2k4 + k5 + 2k6)

(
3

16r3
− 3β2

2r
+ β4

2
r

)
, (A21)

with

g01 + g02 + g03 + g04 + g05 = 0. (A22)

G1 is

G1 = G1(r, f ) = g11 sin (2 f ) + g12 sin(4 f ) + g13 sin(6 f ), (A23)

where

g11 = 1

r2
(−35k4 + 5k6) + 64(k1 − k2) − 20(k4 + k6)β2, (A24)

g12 = 4

r2
(4k4 − k6) + 16(k4 + k6)β2, (A25)

g13 = 1

r2
(k4 + k6) − 4(k4 + k6)β2. (A26)

G2 is

G2 = G2(r, f ) = g21 + g22 cos(2 f ) + g23 cos(4 f ) + g24 cos(6 f ), (A27)

where

g21 = 1

r
(71k4 + 5k5 + 29k6) + 4r[8(k1 + 5k2 + k3) + β2(37k4 + k5 + 9k6)], (A28)

g22 = − 1

2r
(15k4 + 15k5 + 79k6) + 2r[16(k1 + k2 − k3) − β2(97k4 + k5 + 17k6)], (A29)

g23 = 1

r
(−63k4 + 3k5 + 11k6) + 4β2r(11k4 − k5 − k6), (A30)

g24 = (k4 + k5 + k6)

(
2β2r − 1

2r

)
. (A31)

The function G3 is given by

G3 = G3( f ) = g31 sin(2 f ) + g32 sin(4 f ), (A32)
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where

g31 = −8(6k4 + k6), (A33)

g32 = −4(4k4 − k6). (A34)

Finally,

G4 = G4(r, f ) = g41 + g42 cos(2 f ) + g43 cos(4 f ), (A35)

where

g41 = r(65k4 + 9k5 − 8k6), (A36)

g42 = 4r(5k4 − 3k5 + 2k6), (A37)

g43 = 3r(k4 + k5). (A38)
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