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Elastic constants and the formation of topological defects in hybrid nematic cells:
A Monte Carlo study
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We present a Monte Carlo study of the effects of elastic anisotropy on the topological defects which can be
formed in nematic films with hybrid boundary conditions. We simulate the polarized microscopy images and
analyze their evolution in uniaxial systems for different values of the Frank elastic constants.
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I. INTRODUCTION

Liquid crystals (LCs) are materials that present one or more
state of aggregation, with some degree of order and fluidity,
intermediate between isotropic liquids and solid crystals [1,2].
The main realm of liquid-crystal phases is in condensed matter
physics and technology, but systems with surprising analogies
have now emerged in fields of physics as diverse as nuclear
research [3,4] and cosmology [5,6]. One of the most interest-
ing aspects of LC materials is the formation of various types
of topological defects [7] due to the deformations induced
by some external fields or boundary conditions that contrast
the tendency of the constituent particles (e.g., molecules or
spins) to align along a preferred direction called a director.
Then points, lines, and walls where the director cannot be
defined can be formed at the boundary of domains or regions
with different alignments. It is also well known that for some
real materials, for example, 5CB [8], disclination lines can
be formed in a perfect hybrid aligned nematic (HAN) where
the alignment at one of the two flat surfaces confining the
nematic is homeotropic, i.e., perpendicular to the surface (say,
at z = h) and at the other (at z = 0) is parallel to the surface,
either randomly distributed [9] or aligned along the x or y axes
[10]. HAN cells are interesting for technological applications
[11] since their molecular organization and their birefringence
can be changed by an external field applied across the cell
in a continuous way, without the threshold involved, e.g., in
planar aligned cells for a nematic with positive diamagnetic
anisotropy and a perpendicular magnetic field applied (Fréed-
ericksz transition [1,12]). It should also be mentioned that the
confining surfaces are not necessarily solid, e.g. thin films of
5CB drops deposited on a glycerol surface, which induces
tangential alignment, while having a homeotropic alignment
at the free air interface, have been studied [13]. HAN features
are similar to those that can be obtained for a nematic confined

between two horizontally aligning surfaces and subject to the
action of a vertical external field as, for example, studied many
years ago by Leger [14]. We have confirmed these results
by computer simulations of a hybrid cell with homeotropic
and fully degenerate [15], partially ordered [9], or uniform
with a small pretilt [16] planar boundary conditions using
a pseudopair potential, introduced by Gruhn and Hess [17]
and by Romano and Luckhurst [18–21] (GHRL), which takes
into account the main Frank elastic constants, the splay (K1),
twist (K2), and bend (K3) ones. The disclination lines were
obtained not only using the GHRL model with the elastic con-
stants of 5CB but also in the one-constant approximation, i.e.,
K1 = K2 = K3. In this limit the GHRL potential reduces to the
Lebwohl-Lasher (LL) Hamiltonian [22,23], which in turn was
the first successful lattice model introduced to simulate the
orientational properties of nematics. Even if the one elastic
constant approximation is most often used in theoretical work
because of its simplicity [12], it is important to study nematic
films allowing for elastic constant anisotropy. Indeed, even if
for low molar mass liquid crystals the differences between the
Ki constants are normally relatively small, the need to account
in a simple way for differences in elastic constants is essential
for a variety of systems such as LC polymers [24,25], LCs
originating from a long virus such as the tobacco mosaic virus
(TMV) [26], nanotubes [27] or other nanocrystal suspensions
[28], and for low molar mass nematics approaching a smectic
phase, where the bend elastic constant is expected to diverge
[1]. Relating elastic constants to polarized optical microscopy
(POM) textures is important also in view of the possibility
of determining the elastic constant anisotropy in situ from
polarized optical microscopy textures and not from separate
experiments in the bulk, e.g., from the already mentioned
Fréedericksz director configuration transition, upon applying
a sufficiently strong external field [1,12]. Various numerical
treatments based on continuum theory have been put forward,
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particularly by Windle and co-workers [29], Sonnet, Kilian,
and Hess [30], and Kilian and Hess [31]. Measuring geomet-
rical features such as disclination radii of the s = 1/2 defects
has also been suggested as a means to determine at least some
elastic constants in polymer liquid-crystal disclinations di-
rectly from transmission electron microscopy (TEM) images
[32,33]. The general problem of molecular organization in
a HAN cell is, however, complicated as different factors in
addition to elastic constants can come into play, such as the
roughness and the geometric details of the confining surface
[34] and the effect of surface anchoring strength that we have
examined in a previous work [16].

Here, we aim to employ Monte Carlo (MC) simulations to
provide a convenient link between the elastic constants of the
nematic in a HAN cell with homeotropic and uniform planar
boundaries and their polarized optical images as obtained in
real experiments. As in a previous study on spherical droplets
[35], we try to build a small catalog that can hopefully be of
help to experimentalists.

II. THE MODEL SYSTEMS

The GHRL potential [17,20] consists of a system of inter-
acting centers (“spins”) placed at the sites of a certain regular
lattice. The Hamiltonian is written as follows,

UN = 1

2

∑

i, j ∈ F i �= j

�i j + J
∑

i ∈ F j ∈ S

�i j, (1)

where F, S are the set of particles in the bulk and at the
surfaces, respectively, and the parameter J models the strength
of the coupling with the surfaces (assumed to be the same).
The particles interact through the second rank attractive pair
potential,

�i j = ε{λ[P2(ui · s) + P2(u j · s)]

+μ[(ui · s)(u j · s)(ui · u j ) − 1/9]

+ νP2(ui · u j ) + ρ[P2(ui · s)

+ P2(u j · s)]P2(ui · u j )}, (2)

where i, j are nearest neighbors (�i j = 0 otherwise) and

λ = 1

3
�(2K1 − 3K2 + K3), (3a)

μ = 3�(K2 − K1), (3b)

ν = 1

3
�(K1 − 3K2 − K3), (3c)

ρ = 1

3
�(K1 − K3), (3d)

with K1, K2, K3 being the splay, twist, and bend Frank elastic
constants [1,12], � a factor with the dimensions of length
related to the dimension of the unit cell [21], and s = r/|r|,
r = xi − xj, with xi, xj the dimensionless coordinates of the
ith and jth lattice points. ui, uj are unit vectors along the
axis of the two particles (“spins”) and P2 is a second rank
Legendre polynomial. The relation between the three elastic
constants and the four potential coefficients is completed by
setting the condition μ = −3(ρ + λ), which is needed to en-
sure that two parallel neighbor spins always have the same

TABLE I. As an example of the correspondence of the elastic
constants, K∗

i = Ki × 1012 N, with the values of the parameters, λ,
μ, ρ, and ν, appearing in the potential, we report the limiting cases
studied in the present simulations. The values of λ, μ, and ρ are
normalized to have ν = −1.

K∗
1 K∗

2 K∗
3 λ μ ν ρ

1 1 1 0.0000 0.0000 −1.0000 0.0000
1 1 9 0.7273 0.0000 −1.0000 −0.7273
1 9 1 −0.8889 2.6667 −1.0000 0.0000
1 9 9 −0.4571 2.0571 −1.0000 −0.2286
9 1 1 −3.2000 14.4000 −1.0000 −1.6000
9 1 9 8.0000 −24.0000 −1.0000 0.0000
9 9 1 −0.4211 0.0000 −1.0000 0.4211

interaction energy, independent of their orientation [20,21].
In general in these lattice models each spin represents a
cluster of neighboring molecules whose short-range order
is assumed to be maintained through the temperature range
examined [36]. The one constant approximation case, i.e.,
λ = μ = ρ = 0, reduces Eq. (2) to the well-known LL po-
tential which correctly reproduces the orientational order
across the nematic isotropic phase transitions [36]. The bulk
nematic-isotropic (NI) transition for the LL model occurs at a
reduced temperature [23] T ∗ ≡ kT/ε = 1.1232. In the GHRL
model, as is apparent in the equal elastic constants limit,
we have a rescaling of the interaction strength, depending
on the values of the elastic constants. This is taken care of
by choosing the parameter � so that in all cases ν = −1
(see Table I).

From a practical point of view, here we perform Metropo-
lis Monte Carlo simulations [37] of the nematic films with
homeotropic (along z) anchoring at the top and uniform align-
ment along x at the bottom, as illustrated in Fig. 1. When

FIG. 1. A schematic representation of the homeotropic and ho-
mogeneous aligned boundary conditions at the top and bottom
surfaces. We employ periodic boundary conditions at the other four
faces of the lattice.
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FIG. 2. Simulated optical patterns for a hybrid nematic film as obtained from a Monte Carlo simulation of a GHRL potential for different
values of the three main elastic constants K∗

i = Ki/10−12 N, i = 1, 2, 3. Here, the images are from (K∗
1 = 1, K∗

3 = 1) (top left) to (K∗
1 = 1,

K∗
3 = 9) (top right) and from (K∗

1 = 9, K∗
3 = 1) (bottom left) to (K∗

1 = 9, K∗
3 = 9) (bottom right) while K∗

2 = 1 is kept fixed.

dealing with confined systems, the boundary conditions are
conveniently implemented, as we have done here, by addi-
tional layers of particles, with orientations kept fixed during
the simulation, chosen to mimic the desired surface align-
ment [36], while at the other four faces of the sample we
have used the periodic boundary conditions (PBCs) normally
employed in simulating bulk systems [36]. We have already
simulated these hybrid films in previous work, but either in
the one-constant approximation [38,39] or with the aim of
studying the effect of anchoring strength [16], while here
we focus on the relation between elastic constant anisotropy
and polarized optical images. In all the present simulations
the starting configurations of the lattice were chosen to be
completely aligned along the z direction and the evolution of
the system was followed according to the classic Metropolis
Monte Carlo procedure [40]. Each film was then considered
to be placed between crossed linear polarizers and polariz-
ing microscope (POM) textures were simulated by means of
a Müller matrix approach [41,42], assuming the molecular
domains, represented by the spins, to act as retarders on the
light propagating through the sample [43]. The following pa-
rameters were employed for computing the optical textures:
film thickness d = 5.3 μm, ordinary and extraordinary re-
fractive indices no = 1.5 and ne = 1.66, and light wavelength
λ0 = 545 nm.

III. SIMULATIONS AND RESULTS

As mentioned before, here we have investigated the effect
that changing the parameters depending on the elastic con-
stants in the GHRL potential has on the POM textures. An
example of the relation among the elastic constants, K∗

i =
Ki × 1012 N, and the parameters λ, μ, ρ, and ν, appearing in
the potential, is reported in Table I. We used a lattice with
200×200×(10 + 2) spins and set the anchoring parameter to
J = 0.5, then the spins interacted with the surface with half
of the strength that they interacted with each other. Moreover,
the reduced temperature was set to T ∗ = 0.4. The simulated
optical images as obtained by considering crossed polarizers,
placed at 45◦ and 135◦, are presented in Figs. 2–4.

The simulations were first performed for the reference case
of the single elastic constant approximation (K1 = K2 = K3)
using the LL model, and the results can be seen in the top
left-hand panels of Figs. 2–4. Starting from these values we
have then modified the relative strengths of K1, K2, and K3 to
examine the effects on the textures.

In Fig. 2, we show the results obtained keeping the twist
constant fixed to K2 = 1 and varying the splay and bend con-
stants. We notice that for small K1, disclination lines and loops
appear for all the values of K3 examined. No defect is created
when increasing the splay constant and making it greater than
the bend one. When the splay and bend constants are of about

042702-3



CESARE CHICCOLI et al. PHYSICAL REVIEW E 102, 042702 (2020)

FIG. 3. Simulated optical patterns for a hybrid nematic film as obtained from a Monte Carlo simulation of a GHRL potential for different
values of the three main elastic constants K∗

i = Ki/10−12 N, i = 1, 2, 3. Here, the images are from (K∗
2 = 1, K∗

3 = 1) (top left) to (K∗
2 = 1,

K∗
3 = 9) (top right) and from (K∗

2 = 9, K∗
3 = 1) (bottom left) to (K∗

2 = 9, K∗
3 = 9) (bottom right) while K∗

1 = 1 is kept fixed.

the same values and much greater than the twist one, the
appearance of four brush defects is clear. These defects evolve
in two brushes increasing the value of K3.

Keeping the splay constant fixed to 1 and varying K2 and
K3, we can see that, apart from high values of the twist con-
stant and high values of K3, in all the studied cases we have
the formation of disclination lines if K3 � K2, as can be seen
in Fig. 3. When the twist constant overcomes the bend one,
again no defects appear, some light is transmitted, and then
the corresponding images are gray.

Keeping K3 = 1 fixed and varying K2 and K1 (see Fig. 4)
we notice that for low values of the twist constant and high
values of the splay one, we have an absence of defects because
of the tendency of the molecules to orient themselves from the
x direction of the bottom surface to the z direction of the top
one in a uniform way. The light does not cross the film and
consequently the textures are black.

Similarly to the case presented in Fig. 3, if the twist con-
stant overcomes the bend one, again no defects appear, and
the textures are gray and not black because some light is
transmitted across the polarizers.

For similar values of K2 and K1 we have the appearance
of inversion walls, i.e., two-dimensional regions where the
director is not defined. Inversion walls are typically created
following the relaxation of a homogeneous sample in a suit-
able geometry where the transient appearance of the defect

can be stabilized. There are various types of defect walls, e.g.
splay-bend, bend-splay, and twist walls [1,2,7]. In particular,
the liquid crystal can be subject to twist deformations, corre-
sponding to rotations around a defined and unique axis, which
can be identified in the sample. In a region where the twist
is uniform, the director remains orthogonal to the rotation
axis describing a helix around it. However, since the nematics
are formed by nonpolar and nonchiral molecules there is no
preferred sense for the helix twist, as both directions for ro-
tating around the axis have the same probability. An inversion
wall is thus generated at each boundary between domains with
opposite twist.

After the Monte Carlo equilibration runs, the cells appear
divided in two regions where the orientations of the molecules
are uniform. The two blocks are separated by a stripe region
where the intensity of the transmitted light varies between
maxima and minima, as is evident by looking at the snapshots
of the middle layer. In a previous work on inversion walls
[44], we have shown that the width and the persistence of the
domain walls depend on the film thickness, i.e., by increasing
the thickness the stripe width increases, and that a larger thick-
ness gives a behavior similar to that of a thinner film where
the coupling or anchoring of the molecules at the surfaces is
weaker. This feature can be observed in the snapshots and
order parameter isosurfaces plotted together in Figs. 5–8. In
these plots it is possible to note that the region between the
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FIG. 4. Simulated optical patterns for a hybrid nematic film as obtained from a Monte Carlo simulation of a GHRL potential for different
values of the three main elastic constants K∗

i = Ki/10−12 N, i = 1, 2, 3. Here, the images are from (K∗
2 = 1, K∗

1 = 1) (top left) to (K∗
2 = 1,

K∗
1 = 9) (top right) and from (K∗

2 = 9, K∗
1 = 1) (bottom left) to (K∗

2 = 9, K∗
1 = 9) (bottom right) while K∗

3 = 1 is kept fixed.

defects is tilted in opposite directions. Moreover, we can see
that the defects are placed closer to the bottom surface. In
order to avoid such defects we are focusing on here, in a
previous work [16] we implemented a tiny pretilt in the planar
surface, which caused a break in these degenerate states, and
thus a perfectly uniform sample could be analyzed.

In the majority of the cases in which defects are observed,
the appearance of closed defect lines is remarkable. In some
of them, they closely resemble elliptic curves. Indeed, this
kind of behavior was predicted many years ago in uniform
nematic samples subjected to external fields, where the direc-
tion offered by the surfaces (easy direction) and the direction
imposed by the external field are competing [14,46,47]. This
competitive orienting aspect was observed experimentally, es-
pecially in nematic lyotropic liquid crystals in the presence of
magnetic fields [47]. Using the elastic theory, under appropri-
ate conditions, it was demonstrated that the ratio of the axes
of the elliptical loop defect formed in the nematic film can be
proportional to

√
K1/K2,

√
K3/K2, or

√
K3/K1, depending on

the anchoring imposed by the surfaces and on the direction of
the external applied field [14].

In our simulations, a robust behavior such as the one ob-
served in Figs. 2–4, i.e., well-defined elliptical curves, is not
observed in all the samples. In addition, when they are present,
we cannot observe a significant change in the aspect ratio just
by changing the elastic constants in the calculations. However,

in the cases shown in Figs. 5–8, we do observe a tendency of
increasing the aspect ratio of the closed curves with the in-
creasing of K3. In these figures, periodically repeated images
were positioned in order to improve the view. Moreover, the
images were taken by considering the nematic film between
crossed polarizers placed at 45◦ and 135◦.

Thus, despite the fact we were not able to strictly verify
the relation proposed in Ref. [14] between the ellipses’ aspect
ratio and the elastic constants, the elastic mechanism that fa-
vors the displaying of the elliptical lines in systems subjected
to an external field is quite similar to the one observed here. In
fact, once the Fréedericksz threshold field intensity is reached,
the average molecular orientation can shift in one of at least
two degenerated directions, due to �n ≡ −�n symmetry [46,48].
Hence, the defect lines are placed in the region of separation of
domains of different orientations. As argued before, the same
behavior is observed in hybrid films such as the ones we are
dealing with here, as can be confirmed by looking closely at
the snapshots presented in Figs. 5–8. Indeed, in these figures
it is possible to observe that the defect line is placed between
two regions in which the spins turn in different directions.

The defects observed in Figs. 9 and 10 seem to be slightly
different. Differently from the case illustrated in Fig. 9, in
Fig. 10 it is possible to note some point defects. In the first
case, the spins seem to present more noise when distorting
from planar to homeotropic alignment. In the second case,
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FIG. 5. Simulated optical pattern for a 200×200×(10 + 2) ne-
matic film for the elastic constants K1 = 1, K2 = 1, K3 = 1. To better
visualize the elliptic ring defect we have replicated the image ob-
tained with the periodic boundary conditions. Bottom: Director field
and order parameter isosurface obtained following the methodology
presented in Ref. [45]. The white color encodes the director align-
ment along the z axis, while red and blue correspond to alignment
along the positive and negative x axis, respectively. (Recall that the
initial director orientation was along the positive z axis.) The order
parameter isosurfaces were built by setting the cl Westin metric [45]
to 0.82.

however, the molecules seem to be more ordered, reaching
a higher z component in a region close to the upper surface.
Moreover, in Fig. 9, even in the defect core, close to the lower
surface, the particles are not parallel to z, differently from
what is shown in Fig. 10. By looking at the correspondent
texture for the case presented in Fig. 9, in Fig. 2 (sixth line,
fifth row), it is possible to notice that the textures are similar

FIG. 6. As in Fig. 5 for K1 = 1, K2 = 1, K3 = 3.

FIG. 7. As in Fig. 5 for K1 = 1, K2 = 1, K3 = 4.

in the region of the map for which K1 	 K2 and K3 	 K2.
In fact, since close to the lower surface it is more likely that
the deformation is of splay type, while in the upper surface
it is more likely to observe a deformation of a bend type, in
this case, both kinds of distortions cost more energy. Then,
the deformation from planar to homeotropic is smooth. Those
textures are quite similar to the ones found in experiments
with an applied external field and associated with Néel walls
[49–51].

IV. CONCLUSIONS

We have performed a systematic Monte Carlo study to
investigate the combined effects of elastic constant anisotropy

FIG. 8. As in Fig. 5 for K1 = 1, K2 = 1, K3 = 5.
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FIG. 9. Snapshots of a portion of the first bottom nematic layer (left) and a vertical cut of the system crossing the ring defect (right) for
K1 = 1, K2 = 1, K3 = 3.

and surface alignment on the textures of a hybrid nematic film.
We have presented the simulated polarized optical images as
obtained by varying the splay, twist, and bend elastic constants
in order to produce an atlas of images corresponding to the
numerous cases studied.

We have then produced a set of textures which can be
useful to understand experimental data by comparing the sim-
ulated images with the real obtained ones when available or
to predict the results of new experiments. In fact, knowing
the elastic constant values of the nematic used, the simu-
lated configurations could be of help in determining the kind
of boundary conditions in real droplet systems in situations

where this is unknown. On the other hand, looking at the real
POM images and knowing the surface orientation, it should
be possible to give a rough estimate of the elastic constant
anisotropies in a number of cases.
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FIG. 10. Snapshots of a portion of the first bottom nematic layer (left) and a vertical cut of the system close to a point defect (right) for
K1 = 6, K2 = 1, K3 = 5.
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