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Narrow-escape time and sorting of active particles in circular domains
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It is now well established that microswimmers can be sorted or segregated fabricating suitable microfluidic
devices or using external fields. A natural question is how these techniques can be employed for dividing
swimmers of different motility. In this paper, using numerical simulations in the dilute limit, we investigate
how motility parameters (time of persistence and velocity) impact the narrow-escape time of active particles
from circular domains. We show that the escape time undergoes a crossover between two asymptotic regimes.
The control parameters of the crossover is the ratio between the persistence length of the active motion and the
typical length scale of the circular domain. We explore the possibility of taking advantage of this finding for
sorting active particles by motility parameters.
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I. INTRODUCTION

Active particles are widespread in nature [1,2]. Be-
cause of their autonomous motion, active particles break
fluctuation-dissipation theorem at single-particle level [3]
making possible a rich phenomenology that does not share
any similarity with equilibrium systems [4–7]. During the last
decades, it has been shown that active particles and swimming
organisms can be employed for actuating micromotors [8–11],
controlling and stabilizing density fluctuations [6,12], or for
driving macroscopic directed motion [13,14]. Many aspects
of this remarkably phenomenology can be rationalized start-
ing from the morphological properties of the single-particle
trajectory. The typical trajectory of an active particle is well
captured by a persistent random walk. In particular, the ex-
istence of a finite persistence length gives rise to a motion
that is ballistic on a short timescale and it becomes diffusive
for larger times. It is now well established that, because of
the finite persistency, active particles slow down in regions
where they are denser [15] and accumulate at the boundaries
of a confining container [16–20]. Remarkably, simple artifi-
cial environments can be designed for sorting active particles
in small regions of space [12]. However, sorting particles
dynamically from slower to faster remains a challenge [21].
While some attempts to obtain particles segregation have been
made by using external fields [22–24], designing machinery
suitable for segregating particles of different motility proper-
ties without using any external potential could have important
applications, as in the case of in vitro fertilization where the
identification and gathering of motile sperms without invasive
techniques is a hard task [25–28].

In this work, we will focus our attention on the narrow-
escape problem of active particles [29–32]. We are interested

*Present address: Departament de Física de la Matèria Condensada,
Universitat de Barcelona, C. Martí Franquès 1, 08028 Barcelona,
Spain.

†matteopaoluzzi@ub.edu

in studying this problem numerically in two dimensions con-
sidering a circular container with a small target exit site on the
boundary. The target site allows particles to escape from the
confining structure and we assume that the particles cannot
come back into the chamber. Looking at the properties of the
first-passage time for a particle to escape from the chamber,
we compare two paradigmatic active dynamics, i.e., run-and-
tumble and active Brownian. In agreement with recent studies
on optimal search strategies with active particles [33], both
the active dynamics show a crossover between two regimes
in the mean first-passage time. The first regime, typical of
active systems, takes place when the persistence length of
the random walk is larger than the size of the confining
structure. The second regime is reached in the diffusive limit,
i.e., when the persistence length is small when compared to
the size of the chamber.

Our findings show that, although both dynamics show
exactly the same diffusive limit, in the active limit the com-
parison of different active dynamics at equal persistence times
show up differences, with run-and-rumble particles being less
efficient than active Brownian in escaping from the chamber.
We identify an empirical function f (x) that matches smoothly
the two regimes, with x = �/R, being � the persistence length
of the active motion and R the radius of the confining struc-
ture. The function captures the crossover between the two
scaling regimes that takes place for x ≈ 1.

Since the two regimes can be reached in either way, by
varying the motility parameters or by tuning the size of the
confining structure, we show that one can take advantage of
the crossover between active and diffusive regime for sorting
particles of different persistence length by varying the size of
the structure.

II. MODEL AND METHODS

As a model system, we consider a gas of N noninteracting
active particles in two spatial dimensions confined to stay
inside a circular chamber of radius R. The chamber has a slit
of size δ on the boundary where particles can escape (they
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never come back). Indicating with O = (0, 0) the center of
the chamber, the slit is displaced symmetrically around (R, 0),
i.e., it is represented by the arc included between coordinates
(R cos ϕ, R sin ϕ) and (R cos ϕ,−R sin ϕ), with ϕ = δ/2R. In
the present work, we present results for a fixed value of δ. The
confining structure is modeled through a repulsive potential
φ(r) = Ar−12[8,34]. The coupling constant A is fixed in a way
that a walker pushing against the wall experiences a mechan-
ical force at the boundary such that fself = −φ′|R, where the
prime indicates the derivative with respect to r, and fself is
the self-propulsive force. This mechanical equilibrium condi-
tion guarantees that the confining walls are impenetrable. To
ensure that the walker, away from the slit, can not displace
distances larger that R, the force center of the potential φ is
located at a finite distance σ beyond the confining wall, i.e.,
the pointlike walker sees an image particle of radius σ behind
the wall [34]. In the following, we express length in unit of
2σ = δ = 1.

For the active dynamics, we consider two micro-
scopic models: run-and-tumble and active Brownian. Run-
and-tumble dynamics has been implemented following
Refs. [8,35–37]. Considering the case of overdamped dynam-
ics, that is a good approximation at low Reynolds number, the
equation of motion for the particle i is

ṙi(t ) = vselfêi + μfimage . (1)

The versor ei = (cos θi, sin θi ) specifies the swimming direc-
tion. μ = 1 is the mobility, fimage is the short-range force
exerted by the image, i.e., fimage = −∇φ(rimage) with φ(r) =
Ar−12 [8]. The evolution of êi depends on the model we
consider. In the case of run-and-tumble dynamics [15], êi

stochastically rotates with a rate λ, i.e., the tumbling rate,
meaning that a new orientational angle θ is extracted by a
uniform distribution in [0, 2π ] and then it remains constant
for a time that is poissonian distributed with rate λ. For active
Brownian particles [17], the angle θi undergoes the following
Langevin dynamics:

θ̇i(t ) = ηi, (2)

with 〈ηi(t )〉 = 0 and 〈ηi(t )η j (s)〉 = 2Drδi jδ(t − s), with Dr

the rotational diffusion constant. Since in experiments with
swimming organisms thermal diffusion is orders of magnitude
smaller than the diffusion induced by active motion [38,39],
in writing Eq. (1) we are neglecting any kind of translational
noise.

The tumbling rate λ and the diffusion coefficient Dr fix
τpers that is τpers = λ−1, and τpers = D−1

r , for the two active dy-
namics, respectively. Using the self-propulsion velocity vself,
we can define the persistence length � = vselfτpers. In both
cases, the motion is characterized by a ballistic regime on
times t � τpers and a diffusive regime for t � τpers. In two
spatial dimensions, the diffusion can be described through the
effective diffusion coefficient Deff = v2

selfτpers/2. We explore a
wide range of persistence length by varying motility param-
eters τpers ∈ [10−3, 10], vself ∈ [10−2, 103]. The chamber size
is changed within the interval R ∈ [5, 8 × 102].

We solve Eq. (1) numerically integrating the equation of
motion using Euler method with a time step �t ranging from
10−3 to 10−5. The numerical integration is performed until
each of the runners has reached the target. In the first part of

FIG. 1. Active particles escaping from circular domains. A rep-
resentative trajectory for a single run-and-tumble particle (a) and a
single active Brownian particle (b). The parameters are λ = Dr = 1,

vself = 1, R = 10. Colors change from red to blue as time increases.
In both cases the particle is injected at the center of the chamber
and escapes from the circular domain, reaching a slit of width δ = 1
symmetrically displaced around (R, 0).

our work, we consider a gas of noninteracting active particles
with same motility parameters vself and τpers. Particles are in-
jected in the center of the chamber at t = 0 and thus the initial
density profile n(r, 0) reads n(r, 0) = N

πR2 δ(r). We also con-
sider the situation where particles are uniformly distributed
at t = 0. With both kinds of initial conditions we evaluate
the mean first-passage time τFPT defined as the average time
required for escaping from the chamber. τFPT is computed
considering the escape of N = 105 particles.

In the second part we consider a mixture of particles in-
jected in the center, with motility parameters (vself or τpers)
extracted from a uniform distribution. In this case, we are in-
terested in the evolution of n(v, t ) and n(Dr, t ) with n(., t ) ≡
N (., t )/N (., 0) and N (., t ) the number of particles at time t
with a given value of motility parameters.

III. ESCAPE OF A POPULATION WITH IDENTICAL
PARAMETERS

The typical trajectories of run-and-tumble and active
Brownian dynamics are shown in Fig. 1. Both dynamics share
the same motility parameters, i.e., λ = Dr = 1 and vself = 1.
Particles are confined into a circular chamber of radius
R = 10. As one can see, in either cases, the typical trajectory
is a persistent random walk, as it is well known in the literature
[1]. Active Brownian dynamics generate smoother trajectories
compared with those obtained through run-and-tumble. The
latter are characterized by straight run interrupted by tumbling
events. Because of the confinement, one expects to observe
different dynamical behaviors depending on the characteristic
size of the circular chamber. In particular, we define the active
regime when the radius R is smaller than the persistence length
�. We thus identify the opposite situation as the diffusive
regime, i.e., when R � �.

It is worth noting that a given value of Deff can be obtained
through different combinations of vself and τpers. Moreover,
the genuine diffusive limit is recovered performing simul-
taneously the limit vself → ∞ and τpers → 0 at fixed Deff,
as it was realized by Kac in a seminal paper on the teleg-
rapher’s equation [40]. As we will see in the next section,
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FIG. 2. Mean first-passage time of active walkers escaping from circular domains. τFPT, in unit of persistence time τpers (which is 1/λ

or 1/Dr for run-and-tumble or active Brownian particles respectively), is reported against the nondimensional parameter �2/R2, for active
Brownian (a) and run-and-tumble (b) particles. Diamonds in panels (a) and (b) indicate τFPTG, in which the initial position is taken with
uniform distribution in the chamber. Circles (squares) indicate results with an initial position set at the center of the chamber. (c) Comparison
between run-and-tumble and active Brownian dynamics. The persistence length is varied by exploring different motility parameters, i.e.,
τpers ∈ [10−3, 10], vself ∈ [10−2, 103], and also by changing the chamber size, i.e., R ∈ [5, 8 × 102]. The red lines are fit to the empirical
function f (x), see text, Eq. (3). The green curve in panel (c) is Eq. (4).

both models show the same diffusive limit that is consistent
with the dynamics of a Brownian walker coupled to a ther-
mal bath with effective temperature kBTeff = μ−1Deff, with kB

the Boltzmann constant. To conclude this overview of model
parameters, we recall that 2Deffτpers/R2 = �2/R2, therefore
fixing (at given R) τpers and � also fixes Deff. Most importantly,
the condition R � � (R � �) is equivalent to Deffτpers � R2

(Deffτpers � R2).
The mean first-passage time τFPT is shown in Fig. 2,

rescaled by the persistence time τpers. Following the previ-
ous discussion, as nondimensional control parameter we use
(�/R)2 ≡ 2Deffτpers/R2. Here we are considering a situation
where the persistence length is changed by varying both the
motility parameters, i.e., the persistence time τpers, and the
self-propulsion velocity vself (therefore different values of Deff

are considered). Figure 2(a) refers to active Brownian, and
Fig. 2(b) refers to run-and-tumble. We have also varied the
radius R of the chamber; see Fig. 2(c).

In the active regime, i.e., � � R, τFPT follows the same
asymptotic scaling behavior in both models. However, the
fact that run-and-tumble and active Brownian trajectories are
morphologically different has a quantitative impact on τFPT

away from the diffusive limit. This result is consistent with
escape time of active particles from a maze [41].

Figure 2 provides evidence of a collapse of data onto
a master curve which is similar but not identical for the
two dynamics. In both dynamics τFPT/τpers undergoes a
crossover from large values at small persistence length (diffu-
sive regime) to small values at large persistence length (active
regime). The color code indicates the inverse of the values of
the persistence time τpers. We have also reported data obtained
with a different initial condition (diamonds in figure). In this
case, the starting position is uniformly distributed and the
results neatly superimpose on the master curve.

On a more quantitative level, we see that the diffusive
regime, � � R (Deffτpers � R2), is signaled by a scaling
τFPT/τpers ∼ (�/R)−2 = R2/(Deffτpers) which implies τFPT ∼
R2/Deff. In the opposite limit, i.e., � � R, where the active
regime dominates, we observe a scaling τFPT ∼ τpers.

In Fig. 2(c) we compare the master curves for the run-and-
tumble and active Brownian dynamics. In this case, we are
varying only the persistence time τpers, i.e., the tumbling rate

λ, in the case of run-and-tumble particles, and the rotational
diffusion Dr , for active Brownian particles. The diffusion limit
is thus approached for τpers → 0, the active limit as soon
as τpers → ∞. As one can see, they reach exactly the same
diffusive limit when DeffR−2 → 0. In the opposite limit, i.e.,
DeffR−2 → ∞, τFPT ∼ τpers, however, run-and-tumble parti-
cles are systematically slower in finding the exit than active
Brownian particles. We can guess that this difference is due to
the fact that active Brownian particles, at variance with run-
and-tumble, smoothly change their self-propulsion direction.

The behavior observed in the active regime is consis-
tent with optimal research strategies of run-and-tumble in
spherical confinement [33]. The divergence of τFPT with
the persistence time can be rationalized noticing that, when
τpers → ∞, only the walkers moving toward the right direc-
tion, i.e., with θ ∈ [−ϕ, ϕ], can escape from the chamber,
therefore the escape becomes more and more difficult. How-
ever, analytical predictions of τFPT for active dynamics
remains an open problem [29,30,33,42–44]. For the diffusive
regime (R � �) the boundary is so far that active particles
displace a distance 〈�x2〉 = Defft and thus the boundary is
reached on a timescale R2/Deff, as we observe.

Noticeably, these two asymptotic regimes match smoothly
at � R−1 = 1. Indicating with x = �2R−2 the control param-
eter, we thus propose the following empirical function f (x)
that results suitable for capturing the whole emerging phe-
nomenology of the nondimensional quantity τFPT/τpers

f (x) = α

x
+ β, (3)

with α and β which in principle may depend upon R. For
instance, in Ref. [33] (where the geometry has important
differences with our setup) α ∼ log(R/δ) and β ∼ R/δ. Here
we find α = 10.3 and β = 2.0 for active Brownian particles
and α = 8.5 and β = 11.9 for run-and-tumble particles. Our
values of α and β fit data in a wide range of R ∈ [5, 8 ×
102]; see Fig. 2. Just for comparison, in the one-dimensional
case one has the exact expression for the mean first-passage
time [45,46]

f1d (x) = 1/2x + 1/
√

x. (4)
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FIG. 3. Mean first-passage time of reaching the boundary; the
green curve is Eq. (3), and for comparison we include Eq. (4) as a
guide to the eye (red curve).

However, we note that this expression is obtained considering
a particle which reaches for the first time the boundary points,
corresponding in our two-dimensional case to a particle that
escapes once reaching the circular boundary, i.e., δ = 2πR.
As one can see in Fig. 3, where we computed the escape time
for reaching the boundary, f1d (x) reproduces the numerical
data. At large persistence lengths (x � 1) the time to hit
the boundary is dominated by the term ∼1/

√
x ∼ 1/vself, as

expected for a purely ballistic motion. This behavior is quite
different from that seen at large x in Fig. 2, i.e., for the
narrow-escape problem: Curve f1d (x) is plotted in Fig. 2(c)
for comparison.

These findings show that particles moving in an environ-
ment characterized by a length scale R > � are dramatically
disadvantaged in finding the exit with respect to particles such
that R < �. As we will show in the next section, this observa-
tion can be employed for the purpose of sorting particles with
different persistent lengths.

IV. DESIGNING SIMPLE SORTING DEVICES

In this section we explore the possibility of tuning the
geometrical properties of the confining structure for sorting
particles of different velocities and persistence times. The
advantage of this approach relies on the fact that (i) we do
not have to introduce any external field, (ii) the geometry
is extremely simple and easily realised in microfluidics, as
compared to Ref. [12], (iii) the only parameter we have to tune
is the radius R. In the following we will show that a device
characterized by a given radius R = 10 can be employed for
sorting active particles of different persistence length �.

According to the results of the previous sections, τFPT

shows a crossover around R�−1 = 1 between two regimes
characterized by different scaling laws. To make it explicit,
we rewrite here Eq. (3) in terms of the motility parameters for
the mean exit time:

τFPT = α
R2

v2
selfτpers

+ βτpers. (5)

It is immediately understood that changing vself at con-
stant τpers leads to a monotone behavior, with a smooth
crossover when the two contributions in the right-hand side of
Eq. (5) are of the same order, i.e., at vself ≈ v∗

self, with v∗
self =√

α/βR/τpers, from a diffusive regime with slow escape to the

FIG. 4. Mixture of particles with different velocities. Time evo-
lution of n(v, t ) at four representative times. In unit of persistence
length, the radius of the chamber is R/� = 1 and rotational diffusion
Dr = 1. The initial distribution is uniform in the interval vself/v0 ∈
[0.5, 1.5], with v0 = 10.

active regime with fast escape. On the contrary, changing τpers

at constant vself produces a nonmonotone behavior with an
optimal escape at τpers ≈ τ ∗

pers, with τ ∗
pers = √

α/βR/vself and
slower escape both for smaller and larger values of τpers. In
both cases we foresee applications in sorting problems, with
different ways of use.

A. Different propulsion velocities

We start by considering a gas composed by particles
with different self-propulsion velocity. The velocity is ex-
tracted from a uniform distribution. We consider a system
composed by N = 5 × 104 active Brownian particles in a
circular chamber of size R = 10 where a small slit of size
δ = 1 allows particles to escape. The system is character-
ized by the initial distribution of self-propulsion velocities
ρ(v) = 1

vmax−vmin
[ϑ (v − vmin) − ϑ (v − vmax)], with ϑ (x) the

Heaviside step function. Here vmax = 15 and vmin = 5. All
particles have the same rotational diffusion constant Dr =
τ−1

pers = 1. In this way, each particle i has its own persistence
length �i = vi

self. According to previous results we expect a
crossover at v∗

self ≈ 10: faster particles escape within a time of
order 1 on average, slower particles escape in a much slower
time, sensitive upon vself.

We are interested in the time evolution of the number of
particles with velocity v that falls into the interval v ∈ [v, v +
dv], with dv = (vmax − vmin)/N , with N = 100.

In Fig. 4 the time-evolution of n(v, t ) is shown as a func-
tion of v for four time steps. The distribution is uniform at
t = 0 and then it changes as soon as particles start to leave
the container. As one can see, at a given time t < t∗, with
t∗ = R/v∗

self, the only particles escaped are those whose self-
propelled velocity satisfies the condition vself � v∗

self. With
increasing time, also particles with vself < v∗

self start to escape
from the chamber, with times that depend upon vself.

An alternative—and informative—way of seeing these re-
sults is studying the relaxation dynamics toward zero of
n(v, t ) as a function of time. We recall that n(v, t ) at a given
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FIG. 5. Decay of the number density for different vself. (a) Time
evolution of n(v, t ) for the different velocity components vself, the
velocity decreases from 10 (dark red) to 5 (light red). The decay of
n(v, t ) is well captured by an exponential curve (dashed blue lines are
fit with nfit (v, t ) = Ae−t/τ (v)). Inset: same observable for R = 10 and
vself ∈ [0.5, 1.0]. (b) The exit time τ (v) computed by fitting n(v, t )
to an exponential decay (blue diamonds) and using Eq. (8) with R =
10 and vself ∈ [5, 10] (Inset: vself ∈ [0.5, 1.0]). Solid red curve is the
empirical function f (x) Eq. (3).

v = vself is the survival probability in this problem, which
is the complementary cumulative of the probability density
function p(v, s) of having first exit at time s:

n(v, t ) =
∫ ∞

t
dsp(v, s), (6)

or equivalently

p(v, s) = −dn(v, t )

dt
. (7)

The results are reported in Fig. 5. In Fig. 5(a), n(v, t ) is shown
for different values of self-propulsion velocities, increasing
from light to dark red. We notice that a simple exponen-
tial relaxation characterized by a single velocity-dependent
timescale τ (v) might capture the behavior of n(v, t ) as a
function of time. We show the results of exponential fits of
the decay nfit(v, t ) = A exp [−t/τfit(v)], with A ∼ 1. Dashed
blue curve in Fig. 5(a) are two representative fits for vmin =
5 and vmax = 15. In the inset of Fig. 5(a), we show the
decay of n(v, t ) for self-propulsion velocity uniformly dis-
tributed around vmin = 0.5 and vmax = 1.5, i.e., velocities
much smaller than the threshold velocity v∗

self ≈ 10.

FIG. 6. Mixture of particles with different persistence times.
Time evolution of n(Dr, t ) at six representative times. In unit of
persistence length, the radius of the chamber is R/� = 1. The initial
distribution n(Dr, 0) is uniform in the interval Dr ∈ [0, 2].

Moreover, in view of Eq. (7), the knowledge of n(v, t )
gives us immediate access to the average mean first exit time:

τFPT(v) =
∫ ∞

0
dssp(v, s) = −

∫ ∞

0
ds s

dn(v, s)

ds

=
∫ ∞

0
ds n(v, s). (8)

It is worth noting that, in the case of a purely exponential
relaxation, i.e., n(v, t ) = e−t/τfit (v), τFPT(v) coincides with τfit.
The behavior of τFPT as a function of vself is shown in Fig. 5(b).
As one can appreciate, τFPT and τfit are in a nice agreement
for R = 10 and v ∈ [5, 10]. The solid curve is Eq. (5) with
the values of the parameters α and β previously fitted. In
the main plot, the crossover can be appreciated from small to
large velocities where τfit decays and then starts to follow the
1/v2

self scaling for small velocities. When R = 10 and vself ∈
[0.5, 1.5], on the contrary, the behavior of τFPT is dominated
by the 1/v2

self; see Eq. (5).

B. Different persistence times

In this section we tune the persistence length � by
varying the persistence time τpers—which is 1/Dr for the
case considered here of active Brownian particles—and
maintaining fixed the self-propulsion velocity vself. We
investigate the behavior of a sample composed by the
same number of particles of the previous case with same
self-propulsion velocity, i.e., vself = 10, and characterized
by an initial distribution of rotational diffusion ρ(Dr ) =

1
Dr,max−Dr,min

[ϑ (Dr − Dr,min) − ϑ (Dr − Dr,max)], with Dr,max =
2 and Dr,min = 0. The results are shown in Fig. 6. Note that,
in this case, particles with Dr = 0 remain trapped unless they
starts with the right direction.

In Fig. 7 the typical behavior of n(Dr, t ) as a function of
time is shown. In this case we observe for the very low values
of Dr (high activity) that a single exponential decay does not
reproduce the decay of n(Dr, t ).
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FIG. 7. Decay of the number density for different Dr . Time evo-
lution of n(Dr, t ), the rotational diffusion Dr decreases from 2 (dark
red) to 0 (light red). Inset: the exit time as a function of Dr . Solid red
curve is f (x) with α and β previously fitted from τFPT.

Again we measure τFPT from Eq. (8) and plot it in the inset
of Fig. 7. According with the scaling of τFPT we discussed
in Sec. III, τFPT matches two asymptotic regimes, the first
one, for small Dr values and thus large persistence length, is
τFPT ∼ D−1

r . The second one is typical of the diffusive regime,
meaning that τFPT ∼ Dr . In the inset of the same figure we
report τFPT as a function of Dr , with superimposed Eq. (5).

C. Behavior of run-and-tumble particles

While the results in the previous sections have been ob-
tained for active Brownian particles, we have performed the
same numerical simulations in the case of run-and-tumble
dynamics, again for mixtures of particles with different
propulsion velocities vself ∈ [5, 15], R = 10, and persistence
times τpers = 1/λ with λ ∈ [0.01, 2]. The results, shown in
Figs. 8(a) and 8(b), respectively, are qualitatively the same
of the previous cases: The relaxation dynamics of n(v, t ) and
n(λ, t ) are well described by an exponential decay, unless the
persistence time is very large (λ � 1). We notice that the
nonexponential decay occurs for a larger range of persistence
time with respect to the active Brownian case. In our opin-
ion this observation corroborates a correlation between the
nonexponential decay and ballistic behavior, which suggests
that typical exit trajectories at large τpers are composed of
two separate processes: first, the particles reach the boundary
and second the particles finds the exit remaining close to the
boundary. The behavior of τFPT is also reported in the insets
of the two plots in Fig. 8.

V. DISCUSSION AND CONCLUSIONS

In this work we have proposed a numerical study of the
narrow-escape problem of active particles in circular domains.
We compared two paradigmatic models of active motions that
are active Brownian dynamics [47], suitable for reproducing
the trajectories of smooth swimmers, and run-and-tumble dy-
namics, that, for instance, well captures the morphological
properties of Escherichia coli trajectories [48]. We showed
that in both dynamics τFPT turns to be bounded by two limiting
asymptotic regimes. The two regimes result from the compe-

FIG. 8. Sorting of run-and-tumble particles. (a) Time evolution
of n(v, t ) as a function of t with v ∈ [5, 10] and R = 10. Inset: τ as
a function of vself. The dashed red curve is f (x). (b) Time evolution
of n(λ, t ) as a function of t with λ ∈ [0, 2] vself = 10, and R = 10.
Inset: τ as a function λ.

tition between the two characteristic length scales of the sys-
tem: the persistence length � and the radius R of the container.
When the persistence length is much smaller than the radius,
i.e., �/R � 1, the active particles behaves as a Brownian
random walker and τFPT diverges as the effective diffusivity
of the random walk goes to zero. In the opposite limit, the
persistence length is much larger than the size of the chamber,
i.e., �/R � 1. The escaping dynamics is thus dominated by
the ballistic regime and τFPT grows linearly with τpers. We
have introduced an empirical scaling function f (x), with x =
�2R−2, that smoothly connects these two asymptotic regimes.

We thus explored the possibility to take advantage of the
crossover in the escape time between the active and the dif-
fusive regime for sorting particles of different velocities. We
obtained that, considering a gas of active Brownian particles
of different velocities and same rotational diffusion constant,
by tuning the size of the chamber faster particles can be
separated by the others. The same technique can be employed
for demixing particles of different rotational diffusion. We
showed that the same is true also in the case of run-and-tumble
dynamics.

In this study, we have not considered mechanical interac-
tions between particles. Mechanical interactions can be seen
as an extra source of collisions and thus, at least for small
densities, they renormalize the tumbling-rate λ (the rotational
diffusion Dr in the case of active Brownian particles). As
shown in Ref. [36], λ becomes a density-dependent func-
tion. In particular, λ(ρ) increases as density increases, i.e.,
λ(ρ) = λ + Aρ + o(ρ2), with A > 0. If this were the only
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effect, one can expect that in the dilute regime mechanical
interactions make the system more diffusive, i.e., the persis-
tence length decreases. This effect can remove the divergency
in τFPT for λ → 0 (Dr → 0). Moreover, we can speculate that
thermal noise might contribute to remove such divergence as
well. However, if the persistence length is long enough, then
the system will undergo a motility-induced phase separation
(MIPS) [49], which happens at moderate densities, and it is
not clear how a spinodal decomposition impacts the escape
time. Moreover, since particles can leave the chamber, density
is a decreasing function of time. The competition between
these mechanisms makes it hard to provide predictions with-
out extensive numerical simulations which will be considered
in future investigations.

It is worth noting that the sorting mechanism explored
here is dynamical and it works only on a finite timescale.
In particular, waiting a sufficiently long time, all particles

escape from the confining structure. However, in a practical
situation, the typical experimental timescale can be tuned for
sorting microswimmers of different velocities tuning just the
typical size of the confining structures, i.e., without intro-
ducing any external potential or complicated microstructure.
This could be useful in assistant reproductive technologies,
where the challenge consists in maximizing motile sperm
concentration, sperm volume, and lifetime. Usually, sperms
are selected based on their motility. Our findings suggest
that it could be done without introducing density gradient
centrifugation [25,26].
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