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Directional locking effects for active matter particles coupled to a periodic substrate
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Directional locking occurs when a particle moving over a periodic substrate becomes constrained to travel
along certain substrate symmetry directions. Such locking effects arise for colloids and superconducting vortices
moving over ordered substrates when the direction of the external drive is varied. Here we study the directional
locking of run-and-tumble active matter particles interacting with a periodic array of obstacles. In the absence
of an external biasing force, we find that the active particle motion locks to various symmetry directions of the
substrate when the run time between tumbles is large. The number of possible locking directions depends on
the array density and on the relative sizes of the particles and the obstacles. For a square array of large obstacles,
the active particle only locks to the x, y, and 45◦ directions, while for smaller obstacles, the number of locking
angles increases. Each locking angle satisfies θ = arctan(p/q), where p and q are integers, and the angle of
motion can be measured using the ratio of the velocities or the velocity distributions in the x and y directions.
When a biasing driving force is applied, the directional locking behavior is affected by the ratio of the self-
propulsion force to the biasing force. For large biasing, the behavior resembles that found for directional locking
in passive systems. For large obstacles under biased driving, a trapping behavior occurs that is nonmonotonic as
a function of increasing run length or increasing self-propulsion force, and the trapping diminishes when the run
length is sufficiently large.

DOI: 10.1103/PhysRevE.102.042616

I. INTRODUCTION

In active matter systems, particles move under a self-
propulsion force. Examples of active systems include swim-
ming bacteria or self-driven colloids, and the activity often
takes the form of driven diffusion or run-and-tumble dynamics
[1,2]. In the absence of a substrate, these systems exhibit a rich
variety of collective effects such as motility induced phase
separation [3–7]. When barriers or a substrate is added, a num-
ber of behaviors arise that are distinct from what is observed
for purely Brownian particles [8–14]. For example, in active
matter ratchet effects, active particles interacting with some
form of asymmetric barrier or obstacles undergo directed flow
in the absence of dc driving, while for equilibrium or Brown-
ian particles such ratchet effects are absent [15–19].

A growing number of studies have examined active matter
systems coupled to a complex environment such as randomly
disordered sites [20–29] or a periodic array of obstacles
[24,30–38]. Extensive studies of passive particles on a peri-
odic array of obstacles under diffusion [39–43] or an external
drive [44–47] show that depinning phenomena, sliding phases,
and different types of dynamical pattern formation appear
when collective effects become important. Passive particles
driven over a periodic substrate can undergo directional lock-
ing in which the motion becomes locked to certain symmetries
of the lattice. Here, the direction of particle motion does
not change smoothly as the angle of the external drive is
rotated with respect to the substrate, but remains fixed for
finite intervals of drive angle, producing steps in a plot of
the direction of particle motion versus drive direction [48–60].

For a particle moving on a square lattice, the directional lock-
ing occurs when the particle moves p lattice constants in one
direction and q lattice constants in the perpendicular direction,
giving locking steps centered at angles of θ = arctan(p/q).
For example, p/q = 0 and p/q = 1/1 correspond to locking
at 0◦ or +45◦, while many other locking phases can appear at
|p/q| = 1/4, 1/3, 1/2, 2/3, 3/4, 2/1, 3/1, and so forth. The
number of locking steps depends on the relative radius of the
obstacles and the particle. Small obstacles with a fixed lattice
constant produce a devil’s staircase hierarchy of locking steps,
with the smallest values of |p/q| giving the largest step widths.
If the substrate is a triangular lattice, then directional locking
occurs at a different set of angles, including 30◦ and 60◦
[60,61].

Directional locking effects have been studied for vortices in
type-II superconductors moving over periodic pinning arrays
[48,51,55], classical electrons moving over antidot lattices
[49], atomic motion on surfaces [59], and magnetic skyrmions
driven over periodic landscapes [62–64]. The most studied
directional locking system is colloids moving over either op-
tical trap arrays or periodic arrays of posts. Here, the colloidal
motion becomes locked to different symmetry directions of
the substrate as either the effective biasing drive changes
direction or the substrate itself is rotated under a fixed driving
direction [50,52,53,55,57,60,61]. Similar locking effects can
even arise for particles moving over quaisperiodic substrates
[65,66]. The strength of the locking or width of the locking
steps depends strongly on the properties of the particles such
as their size, shape, and particle-substrate interactions, and as
a result, directional locking acts as a powerful method for
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sorting mixtures of different particle species. When one
species locks to a symmetry direction and another species
either does not lock or locks to a different symmetry direction,
the species separate laterally over time. Such fractionation
effects have been demonstrated for a number of colloidal
[67–71] and other soft matter systems [72–78].

An open question is whether directional locking also oc-
curs for active matter systems coupled to a periodic substrate.
Such systems could potentially exhibit directional locking
even in the absence of an externally applied biasing field.
Volpe et al. experimentally examined active matter particles
moving over a triangular lattice of posts under a biasing drive
for varied activity, and found that the particles can lock to the
symmetry directions of the substrate even when the external
driving is not aligned with these symmetry directions [30].
More recently, Brun-Cosme-Bruny et al. examined swimming
microalgae driven phototactically through a square array of
obstacles, and found that the motion locks to certain symmetry
angles [38]. These results suggest that a variety of directional
locking effects should also occur for active matter systems
with and without biasing drives.

In this work we examine run-and-tumble active matter
disks moving through a square array of obstacles. In the
absence of a biasing field, we find that for small run lengths
the behavior is close to the diffusive limit and the particles
explore the background in a uniform fashion; however, for
long run lengths the particle motion becomes locked to spe-
cific symmetry directions of the obstacle lattice. The number
of possible locking directions depends strongly on the size
of the obstacles. For large obstacles, the particles lock along
θ = 0◦, 45◦, and 90◦, while for smaller obstacles, additional
locking directions appear with θ = arctan(p/q) for integer p
and q. The locking can be measured using the particle velocity
distributions, which show peaks on the locking steps. As the
obstacle radius increases, we find an increasing probability for
the particles to become trapped by the obstacles. When there
is an additional applied driving force, the net drift velocity
in the driving direction has a nonmonotonic behavior as a
function of the run length and the ratio of the motor force to
the driving force. When the drive direction is rotated from 0◦
to 90◦, we observe a series of locking steps which are more
pronounced for lower run lengths and smaller motor forces.
If the motor force is made very large, then the locking steps
disappear, but they can be restored by increasing the magni-
tude of the driving force. For large obstacles which produce
a clogged state in the passive particle limit, we find that the
activity can induce motion along certain substrate symmetry
directions, producing a nonmonotonic mobility that depends
on the direction of drive relative to the symmetry directions of
the substrate.

II. SIMULATION

We consider Nd active run-and-tumble disks interacting
with a square array of obstacles in a two-dimensional system
of size L × L. The radius of each obstacle, modeled as a
short-range repulsive disk, is robs, and a is the obstacle lattice
constant. The active particles are also modeled as short-range
repulsive disks with radius ra. The dynamics of active disk i
is obtained by integrating the following overdamped equation

of motion:

αd vi = Fdd
i + Fm

i + Fobs
i + FD. (1)

The velocity of the active particle is vi = dri/dt , where ri is
the disk position. We set the damping constant αd to 1.0. The
disks can interact with each other via the disk-disk interaction
force Fdd

i and with the obstacles via the disk-obstacle force
Fobs. In general, we consider the limit Nd = 1 of a single
active particle, so the active disk-disk interactions are not
important. The self-propulsion of the disk is produced by the
motor force Fm

i , a constant force of magnitude FM that is ap-
plied in the randomly chosen direction m̂i for a run time of τl .
After the run time has elapsed, a new motor force direction m̂′

i
is chosen randomly, corresponding to instantaneous reorienta-
tion, and the particle travels under the same motor force FM in
the new direction for a time τl before the motor force reorients
again. We can add an external biasing force FD, which is first
taken to have a fixed orientation along the x-direction with a
magnitude FD. We also consider the case where the magnitude
FD of the drive is fixed but the direction gradually rotates from
θD = 0 along the x direction to θD = 90◦ along the y direc-
tion. Here, FD = FD cos(θD)x̂ + FD sin(θD)ŷ. We measure the
average velocity in the x-direction, 〈Vx〉 = ∑Nd

i=1 vi · x̂, and in
the y-direction, 〈Vy〉 = ∑Nd

i=1 vi · ŷ. We also measure the net
velocity 〈V 〉 = √〈Vx〉2 + 〈Vy〉2. We characterize the activity
based on the distance lr a free active particle would move in
the absence of obstacles during a single run time, which we
term the run length lr = FMτr , as well as by the ratio of the
motor to the drive force, FM/FD. In this work we focus on
the low disk density regime where the collective effects are
weak, placing the dynamics in the single particle limit. We fix
the obstacle lattice constant a = 4.0 and the active disk radius
ra = 0.5, but vary the obstacle size, the motor force, the run
length, and the external biasing force.

III. DIRECTIONAL LOCKING DUE TO ACTIVITY

In Fig. 1 we illustrate the obstacles, active particle, and
trajectory for a system with FM = 0.4 and no external biasing
force. When the obstacle radius robs = 1.35 and the run length
lr = 0.3, as in Fig. 1(a), the behavior is close to the Brownian
limit and the particle gradually explores the space between the
obstacles while exhibiting no directional locking. In Fig. 1(b),
where we have increased the run length to lr = 80, the particle
moves in one-dimensional (1D) trajectories that are locked
along the ±x, ±y, and ±45◦ directions. At an intermediate
run length of lr = 5.6 in Fig. 1(c), the particle motion is
ballistic at short times but diffusive at longer times, which
allows the particle to explore the entire system at a much faster
rate compared to the lr = 0.1 case. Here, since the persistent
motion spans a distance of only about one substrate lattice
constant a, there is no directional locking. Figure 1(d) illus-
trates a sample with a smaller robs = 0.75 at lr = 0.8, where
the motion is diffusive. When the run length is increased to
lr = 80, as in Fig. 1(e), directional locking occurs and the
particle follows 1D paths aligned not only with ±x, ±y, and
±45◦, but also with θ = ±26.56◦ and θ = ±71◦, correspond-
ing to a translation by 2a in the x direction for every a in the
y direction or a translation by a in the x direction for every
2a in the y direction, respectively. When the run length is
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FIG. 1. Illustration of the obstacle locations (red circles), the
active particle (blue circle), and the active particle trajectory (lines)
in a system with motor force FM = 0.4 and no external drive. (a) At
obstacle radius robs = 1.35 and run length lr = 0.3, there is no direc-
tional locking. (b) For robs = 1.35 and rl = 80, the particle motion
locks to 0◦, 45◦, and 90◦. (c) For lr = 5.6 and rl = 80, the motion is
ballistic at short times and diffusive at long times. (d) At robs = 0.75
and lr = 0.8, the motion is diffusive. (e) At robs = 0.75 and lr = 80,
directional locking occurs with a larger number of possible locking
directions compared to panel (b). (f) At robs = 0.5 and lr = 80, an
even larger number of locking directions appear.

large, such as for lr = 80, we find that as robs decreases, the
number of possible locking angles increases. In Fig. 1(f) we
show a sample with lr = 80 and robs = 0.5 where the locking
directions include angles for which |p/q| = 0, 1/1, 1/2, 1/3,
1/4, 2, 3, and 4. In general, appreciable directional locking
occurs whenever the run length is larger than 2a.

To better characterize the motion, we measure the instanta-
neous velocities Vx and Vy in the x and y directions along with
the ratio p/q = Vy/Vx which indicates the angle of the instan-
taneous motion. In Fig. 2(a) we plot Vx and Vy versus time for
the system in Fig. 1(b) with robs = 1.35 and lr = 80, where
the particle moves in either the ±x, ±y, or ±45◦ directions.
The velocity signatures are composed of steps, with Vx = 0
or Vy = 0 when the velocity is locked along the ±y or ±x
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FIG. 2. (a) The instantaneous velocities in the x-direction Vx (or-
ange) and in the y-direction Vy (light blue) versus time in simulation
time steps for the system in Fig. 1(b) with FM = 0.4, robs = 1.35,

and lr = 80. (b) The corresponding total velocity V =
√

V 2
x + V 2

y vs.

time. (c) The corresponding p/q = Vy/Vx vs. time. p/q = ±1.0 for
motion along ±45◦, p/q = 0 for motion along ±x, and p/q is ±
infinite for motion along ±y.

direction, respectively. Since the dynamics is overdamped, we
always have |Vx| � FM and |Vy| � FM . In Fig. 2(b) we show

the corresponding net velocity V =
√

V 2
x + V 2

y versus time.

The fixed motor force might lead one to expect that V = FM

at all times; however, due to collisions with the obstacles we
often find V < FM . When the motor force direction is aligned
with a symmetry direction of the lattice, V ≈ FM since few
particle-obstacle collisions occur; however, if the motor force
fails to align with any of the symmetry directions of the lattice,
then periodic collisions occur and reduce the value of V .
For example, if the motor force is aligned along 15◦, then
in the absence of a substrate the particle would move at 15◦
with V = FM . When the substrate is present, for the obstacle
radius shown in Fig. 2 the particle motion is locked to 0◦
and the particle travels in the positive x direction, colliding
regularly with the obstacles and moving at a reduced value
of V . However, when the motor force is aligned along 0◦,
which exactly matches a symmetry direction of the substrate,
no particle-obstacle collisions occur and V = FM . As a result,
locked motion along a symmetry direction such as 0◦ can
be associated with a range of possible net particle velocities.
Figure 2(b) indicates that V generally exhibits a transient dip
each time the particle changes direction due to the increased
collisions that occur until the orbit stabilizes in the new lock-
ing direction. In Fig. 2(c) we plot the ratio p/q = Vy/Vx versus
time, which takes five distinct values: p/q = +1.0 for motion
along +45◦, p/q = −1.0 for motion along −45◦, p/q = 0 for
motion along ±x, positive infinite p/q for motion along +y,
and negative infinite p/q for motion along −y.

In Fig. 3(a) we plot Vx and Vy versus time for the system in
Fig. 1(e) with robs = 0.75 and lr = 80, while Fig. 3(b) shows
the corresponding p/q = Vy/Vx versus time. The velocities
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FIG. 3. (a) Instantaneous velocities Vx (orange) and Vy (light
blue) vs. time in simulation time steps for the system in Fig. 1(e) with
FM = 0.4, robs = 0.75, and lr = 80. (b) The corresponding p/q =
Vx/Vy with steps at p/q = 0, ±1/2, ±1, and ±2.

again undergo a series of jumps. The smaller value of robs

permits the active particle to access a larger number of sym-
metry directions corresponding to p/q = 0, ±1/2, ±1, and
±2. In general, when lr is large, decreasing robs increases the
number of possible p/q states, as shown in Fig. 4 where we
plot |p/q| versus time for a system with lr = 80 and a smaller
robs = 0.25. Dashed lines highlight the locking steps that ap-
pear at |p/q| = 0, 1/3, 1/2, 2/3, 1, 3/2, 2, 3, and 4. For longer
times beyond what is shown in Fig. 4, additional locking steps
occur at |p/q| = 1/5, 1/4, 5/2, and 5. In general, the system
spends a larger fraction of time locked along directions that
correspond to lower values of p and q.

For a fixed motor force and obstacle density, we can also
use the distribution P(Vx ) of the instantaneous x velocity to
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FIG. 4. The ratio |p/q| = |Vy/Vx| for a system with FM = 0.4,
robs = 0.25, and lr = 80. Steps appear at |p/q| = 0, 1/3, 1/2, 2/3,
1, 3/2, 2, 3, and 4. For longer time intervals (not shown), additional
steps occur at |p/q| = 1/5, 1/4, 5/2, and 5.
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FIG. 5. The distribution P(Vx ) of the instantaneous x veloc-
ity for samples with FM = 0.4 and robs = 1.35. (a) The system in
Fig. 1(a) with lr = 80, where the motion is locked along ±x, ±y,
and ±45◦. (b) A system with lr = 0.2, where the behavior is close to
Brownian motion.

characterize the system. In Fig. 5(a) we plot P(Vx ) for the
sample from Fig. 1(a) with a long run length of lr = 80, where
the motion is locked to the ±x, ±y, or ±45◦ direction, while in
Fig. 5(b) we show a sample with lr = 0.2 which is close to the
Brownian limit. When lr is small, P(Vx ) is nearly Gaussian,
consistent with the expectations for a random walk. At large
lr , we find peaks in P(Vx ) near Vx = ±0.4 which corresponds
to particles that are traveling along the ±x direction at a speed
that is close to the magnitude of the motor force. A larger peak
appears at Vx = 0.0 corresponding to motion that is locked
in the ±y-direction with a finite value of Vy. The Vx = 0
peak is not simply twice as large as either of the Vx = ±0.4
peaks, but is nearly six times higher. This is due to a trapping
effect in which the particle collides with an obstacle and has
an instantaneous velocity that is nearly zero. For short run
lengths, a particle that has become temporarily trapped due
to a collision with an obstacle quickly reorients its direction
of motion and moves away, but if the run length is long,
then the particles can effectively be trapped for an extended
time. Such active trapping by obstacles was studied previously
for run-and-tumble particles moving through random arrays
under a drift force, where the active drift velocity is high at
smaller lr but drops with increasing lr [79,80]. This trapping
effect is also similar to the active particle accumulation that
occurs along walls and corners when the particles persistently
push up against a barrier [8,13,14,17]. Figure 5(a) also shows
peaks in P(Vx ) near Vx = ±0.22, which corresponds to motion
along ±45◦. The velocity is slightly lower than the expected
value of |Vx| = FM cos(45◦) = 0.28 since the motor force is
generally not aligned precisely along ±45◦ and therefore
particle-obstacle collisions occur that slow down the particle.
Some additional subpeaks appear in P(Vx ), with the prominent
peaks corresponding to additional modes of motion in which
the particle collides with a quantized number of obstacles
during a given time interval. The distributions shown in Fig. 5
are for a single active particle. If an increasing density of
active particles is introduced, then the features in P(Vx ) begin
to smear out due to collisions between active particles which
lower the effective running length.

In Fig. 6(a) we plot P(Vx ) for a sample with lr = 80 and
a smaller obstacle size of robs = 0.5, which increases the
number of possible locking directions. Multiple peaks appear
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FIG. 6. P(Vx ) for samples with FM = 0.4 and lr = 80. (a) A
sample with robs = 0.5 shows multiple peaks at |Vx| = 0, 0.175, 0.28,
and 0.35, corresponding to lockings of |p/q| = 0, 1/2, 1, and 2. (b) A
sample with robs = 0.05 has velocity peaks corresponding to lockings
with p/q = 0, 1/4, 1/3, 1/2, 2/3, 3/4, 1/1, 2/1, 3/1, 4/1, and 5/1.

in P(Vx ) centered at |Vx| = 0, 0.175, 0.28, and 0.35. From the
relation |Vx| = FM cos(θ ), these peaks correspond to angles of
motion of θ = 0◦, 18.43◦, 45◦, and 63.43◦, or |p/q| = 0, 1/2,
1, and 2. In Fig. 6(b), a sample with lr = 80 and even smaller
obstacles with robs = 0.05 exhibits significantly more peaks
corresponding to |p/q| = 0, 1/4, 1/3, 1/2, 2/3, 3/4, 1/1, 2/1,
3/1, 4/1, and 5/1.

IV. EFFECTS OF AN APPLIED BIASING FORCE

We next introduce an applied external drift force of magni-
tude FD, which we initially take to have a fixed magnitude of
FD = 0.5 and a fixed orientation along the positive x direction,
θD = 0. In Fig. 7(a) we plot 〈Vx〉/FD versus FM/FD in a system
with robs = 1.35 at running lengths of lr = 0.01, 0.1, 0.3,
1.0, 10, and 100. When FM/FD = 0, all of the curves coin-
cide at 〈Vx〉/FD = 1.0, indicating that the particle can travel
freely in the x direction without hitting any obstacles. As lr
increases, 〈Vx〉/FD begins to decrease, with a rapid drop in
〈Vx〉/FD occurring once FM/FD > 1.0. This rapid drop results
when the particle undergoes additional collisions with the
obstacles and becomes trapped behind them for periods of
time. For lr � 100, 〈Vx〉/FD saturates to a value close to 0.725
when FM/FD > 1.0. If the obstacles are randomly placed in-
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FIG. 7. 〈Vx〉/FD curves for a system with robs = 1.35 under a
fixed external biasing force FD = 0.5 aligned with the positive x axis.
(a) 〈Vx〉/FD vs. FM/FD for running lengths lr = 0.01, 0.1, 0.3, 1.0, 10,
and 100, from top to bottom. (b) 〈Vx〉/FD vs. lr for FM/FD = 0.04,
0.2, 0.7, 1.0, and 2.4, from top to bottom.
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FIG. 8. (a) 〈Vx〉 vs. FD in a system with robs = 1.35 and x di-
rection driving at FM = 0.0 (blue curve), showing a linear increase
in 〈Vx〉 with FD, and at FM = 0.5 and lr = 100 (dark orange curve).
(b) The corresponding d〈Vx〉/dFD curves showing no peak for the
FM = 0.0 system (dark blue curve) and two peaks for the FM = 0.4
and lr = 100 system (orange curve).

stead of being arranged in a lattice, then a similar decrease
in velocity with increasing run length occurs, as previously
studied in a system with a biasing force [79,80]. Figure 7(b)
shows 〈Vx〉/FD versus run length for the system in Fig. 7(a) at
FM/FD = 0.04, 0.2, 0.7, 1.0, and 2.4. Here, 〈Vx〉/FD = 1.0 at
short run lengths and drops as lr increases. The location of the
drop shifts to lower run lengths as FM/FD increases.

In Fig. 8(a) we plot 〈Vx〉 versus FD for a system with
robs = 1.35. At FM = 0, the velocity increases linearly with
increasing FD since no collisions occur between the particles
and the obstacles. When FM = 0.5 and lr = 100, there is a
reduction in 〈Vx〉 for all values of FD since the inclusion of
a motor force causes particle-obstacle collisions as well as
self-trapping of the particles behind obstacles. Figure 8(b)
shows the corresponding d〈Vx〉/dFD versus FD curves. When
FM = 0.0, d〈Vx〉/dFD is flat, indicating a linear velocity-force
curve, while for the finite motor force, two peaks appear in
d〈Vx〉/dFD near FD = 0.5 and FD = 1.0. At the first peak,
FD ≈ FM and the motion shifts from being dominated by the
motor force to being dominated by the driving force, resulting
in a small upward shift of the particle velocity. The large
second peak is the result of a confinement effect produced by
a combination of the driving force and the periodic obstacle
lattice. Particles can move freely in the interstitial channels
separating the rows of obstacles, and a given particle trans-
lates by one lattice constant in the x direction in a time of
approximately τo = a/FD. During this time, the particle also
moves a distance δy in the y direction due to the motor force. If
δy � a/2, then the particle can jump from one interstitial row
to the next, but if δy < a/2, upon reaching the next obstacle
the particle will be deflected back into its original interstitial
row. When FD is small, τo is large and interstitial jumping oc-
curs frequently, producing two-dimensional motion, but as FD

increases, τo decreases until it is so short that the probability
that δy � a/2 drops to zero. As a result, the particle motion
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FIG. 9. 〈Vx〉/FD vs. robs for a system with FM = 0.5 and x di-
rection driving of FD = 0.2 at lr = 0.01 (blue circles) and lr = 10
(orange squares). The larger run length activity lowers the overall
mobility, but also increases the value of robs at which 〈Vx〉/FD drops
to zero.

becomes localized into nearly one-dimensional flow along the
interstitial rows, with no jumping of particles between the
rows. Thus, the second peak indicates the occurrence of a two-
dimensional (2D) to 1D transition in the motion. The multiple
peaks in the d〈Vx〉/dFD curve are similar to the behavior
typically found in a system with a depinning transition or with
a transition from effectively 2D to effectively 1D dynamics
[44]. For large FD values above the second peak in d〈Vx〉/dFD,
the system behaves in a nonactive manner.

In Fig. 9 we plot 〈Vx〉/FD versus robs for a system with
FM = 0.5 and an x direction driving force of FD = 0.2 at both
a small run length of lr = 0.01 and a larger run length of
lr = 10. For the small run length, the particle velocity matches
the driving velocity over most of the range of robs. Only near
robs = 1.53 does the velocity begin to decrease precipitously
until the particle becomes trapped with 〈Vx〉 = 0 for robs >

1.57. In contrast, for the long run length 〈Vx〉/FD decreases
with increasing robs due to the self trapping effects; however,
the velocity does not drop completely to zero until robs > 1.6.
In general, increased activity in the form of an increased run
length reduces the mobility through the system; however, if
strong disorder is introduced, then there can also be regimes
where the higher activity increases the mobility. If the particle
radius ra is increased, then the curves for both run lengths
shift to lower velocities, while the value of robs at which the
velocity drops to zero decreases as robs − ra.

V. DIRECTIONAL LOCKING FOR VARIED
DRIVE DIRECTIONS

We next apply a finite driving force of fixed magnitude and
rotate its direction from θD = 0◦ to θD = 90◦. In Fig. 10 we
plot 〈Vx〉 versus θD for a system with FD = 0.5, FM = 0.5,
and lr = 0.01 at robs = 0.1, 0.25, 0.5, 0.75, 1.0, 1.25, 1.35,
1.5, 1.55, 1.5625, 1.57, 1.575, 1.58, 1.5875, and 1.5925. The
velocity does not vary monotonically with θD but shows a
series of rounded peaks which correspond to directional lock-
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FIG. 10. 〈Vx〉 vs. θD for a system with FM = 0.5 and lr = 0.01
under a drive of FD = 0.5 applied along the θD direction at robs = 0.1,
0.25, 0.5, 0.75, 1.0, 1.25, 1.35, 1.5, 1.55, 1.5625, 1.57, 1.575, 1.58,
1.5875, and 1.5925, from top (red) to bottom (purple).

ing that would be accompanied by a series of steps in the
p/q = 〈Vy〉/〈Vx〉 curves. Note that directional locking in the
nonactive limit lr = 0.0 was studied in detail elsewhere [81].
For small robs = 0.1, we find steps with p/q = 0, 1/5, 1/4,
1/3, 1/2, 2/3, 3/4, 1/1, 4/3, 3/2, 2, 3, 4, and 5. As robs

increases at small lr , the widths of the higher order steps
diminish while the steps with p/q = 0, 1/2, 1/1, 2/1, and
y-direction locking increase in size as shown in Fig. 10. At
robs = 1.5625, 〈Vx〉 drops to zero for 30◦ < θD < 37◦ as well
as for θD > 54◦ when the system enters a jammed or clogged
state for flow that is not along x, y, or at 45◦. Above robs =
1.57, flow occurs only along the x or y directions, and when
robs > 1.57875, the particle is always localized with 〈Vx〉 = 0.

In Fig. 11(a) we plot 〈Vx〉 and 〈Vy〉 versus θD for the system
in Fig. 10 at lr = 0.001 and robs = 0.1. A series of lock-
ing steps appear, and at the p/q = 1/1 step, 〈Vx〉 = 〈Vy〉. In
Fig. 11(b), the same system at lr = 0.1 exhibits smooth curves
with no locking effects. This result indicates that increasing
the activity reduces the locking effects. There is an increased
likelihood that the particle can wander out of the directional
locking channel before reaching the next obstacle when the
correlation time of the active motor force is increased, and
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FIG. 11. 〈Vx〉 (red) and 〈Vy〉 (blue) vs. θD for the system in Fig. 10
with FM = 0.5, FD = 0.5, and robs = 0.1. (a) At lr = 0.001, there are
a series of locking steps. (b) At lr = 0.1, the locking is lost.
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FIG. 12. p/q = 〈Vy〉/〈Vx〉 for the system in Fig. 11 with FM =
0.5, FD = 0.5, and robs = 0.1 showing steps at p/q = 0, 1/3, 1/2,
2/3, 1/1, 3/2, 2/1, 3/1, and 4/1 for lr = 0.001 (purple), 0.01 (red),
0.02 (green), 0.05 (light blue), and 0.1 (dark blue). The locking steps
gradually wash out with increasing lr . (a) The range 0◦ < θD < 45◦.
(b) The range 40◦ < θD < 85◦.

as a result the locking effects diminish with increasing lr . In
Fig. 12 we show p/q = 〈Vy〉/〈Vx〉 versus θD for the system
in Fig. 11 at lr = 0.001, 0.01, 0.02, 0.05, and 0.1, where we
highlight the steps at p/q = 0, 1/3, 1/2, 2/3, 1/1, 3/2, 2/1,
3/1, and 4/1. As lr increases, the locking steps gradually
disappear.

For obstacles of small size, increasing the run length
rapidly reduces the locking effects. Since the locking steps
become wider for larger robs, we next focus on samples with
robs = 1.0, FD = 0.5 and FM = 0.5, which show steps for
small lr at p/q = 0, 1/2, 1/1, 2/1, and for y direction locking.
In Figs. 13(a) and 13(b) we plot 〈Vx〉 and 〈Vy〉 versus θD in
this system at lr = 0, 0.001, 0.003, 0.005, 0.007, 0.02, 0.03,
0.05, 0.06, 0.07, 0.08, 0.1, 0.15, 0.3, and 1.0. The locking
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FIG. 13. (a) 〈Vx〉 and (b) 〈Vy〉 vs. θD for a system with FM = 0.5,
FD = 0.5, and robs = 1.0 at lr = 0, 0.001, 0.003, 0.005, 0. 007, 0.02,
0.03, 0.05, 0.06, 0.07, 0.08, 0.1, 0.15, 0.3, and 1.0, from bottom left
(red) to top left (light purple).
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FIG. 14. 〈Vx〉 measured at specific values of θD vs. lr for the
system in Fig. 13 with FM = 0.5, FD = 0.5, and robs = 1.0. θD = 45◦

(purple circles), θD = 0◦ (light blue triangles), the p/q = 1/2 lock-
ing at θD = 26.56◦ (orange squares), and the nonlocking region at
θD = 30◦ (green diamonds).

steps gradually disappear as lr increases. The 1/2 and 2/1
steps vanish first, while the 1/1 step persists up to lr = 0.3.
At a specific value of θD, the values of 〈Vx〉 and 〈Vy〉 can
decrease, increase, or show nonmonotonic behavior as a func-
tion of lr . In Fig. 14 we plot 〈Vx〉 versus lr at θD = 45◦ on
the p/q = 1/1 locking step, θD = 0◦ on the p/q = 0 lock-
ing step, θD = 26.56◦ on the p/q = 1/2 locking step, and in
a nonlocking region at θD = 30◦. On the p/q = 0 and 1/1
locking steps, 〈Vx〉 decreases monotonically with increasing
lr . For p/q = 1/2, 〈Vx〉 initially decreases with increasing lr
until it reaches a minimum near lr = 0.05 and then increases
with increasing lr . In the nonlocking region at θD = 30◦, 〈Vx〉
monotonically increases with increasing lr . Trends similar to
those shown in Fig. 14 appear at higher lr .

In Fig. 15(a) we plot p/q versus θD for the system in Fig. 13
showing that as lr increases, the steps gradually disappear.
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FIG. 15. (a) The evolution of p/q vs. θD for varied lr for the sys-
tem in Fig. 13 with FM = 0.5, FD = 0.5, and robs = 1.0 highlighting
steps with p/q = 0, 1/2, 1/1, and 2/1. The value of lr ranges from
lr = 0 (red, lower left) to lr = 0.2 (pale purple, upper left). (b) The
widths of the locking steps p/q = 0, 1/2, 1/1, 2/1, and 1/0 as a
function of θD vs. lr .
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FIG. 16. 〈Vx〉 (orange) and 〈Vy〉 (light blue) versus external drive
angle θD for a system with FM = 0.5, robs = 1.0, and lr = 25.
(a) FD/FM = 5.0, where there is only a small locking window at
p/q = 1/1. (b) FD/FM = 15, where the p/q = 1/1 locking window
is much more extended.

This is clearest on the p/q = 1/1 locking step. The fact that
the steps gradually vanish suggests that it would be possible
to sort particles with varied run length lr . For example, if the
drive angle is set to θD = 45◦, particles with short run lengths
will lock to 45◦ while particles with longer run lengths will
move at an angle less than 45◦ as indicated in Fig. 14. In
Fig. 15(b) we illustrate the evolution of the p/q = 0, 1/2,
1/1, 2/1, and y direction locking steps as lr increases. The
p/q = 1/2 and 2/1 locking steps disappear when lr > 0.03,
while the other locking steps persist up to lr = 0.2. Partial
locking (not shown) persists up to lr = 0.3. For larger robs,
the locking phases for p/q = 0, 1/1 and y direction locking
extend out to higher values of lr .

A. Effect of applied driving force magnitude

We next consider a system in which both the direction and
the magnitude of the external biasing force are varied while
the motor force magnitude FM is held fixed. We consider
a range of values from the motor force dominated regime
with FD/FM � 1.0 to the external biasing force dominated
regime with FD/FM > 1.0. As shown in the previous section,
when FD/FM ≈ 1.0 the directional locking effects disappear
for lr � 1.0. We consider samples with FM = 0.5 and lr = 25,
a combination which produces no locking in any direction
when FD/FM < 2.0. In Fig. 16(a) we plot 〈Vx〉 and 〈Vy〉 at
FD/FM = 5.0, where locking in x and y appears in only a
small region with p/q = 1/1. At FD/FM = 15 in Fig. 16(b),
an extended p/q = 1/1 locking region appears over which
〈Vx〉 = 〈Vy〉. In Fig. 17(a) we plot p/q versus θD for the system
in Fig. 16 at FD/FM = 17, 15, 13, 11, 9, 7, 6, 5, 4, and
3.0, highlighting the p/q = 0/1 and 1/1 locking steps. For
FD/FM = 3.0, there is almost no locking at p/q = 0/1 and no
locking at p/q = 1/1, while for FD/FM = 4.0, weak locking
appears at p/q = 0/1 but there is still no locking at p/q =
1/1. As FD/FM increases, the p/q = 1/1 locking step emerges
and becomes wider, and indications of partial locking appear
near p/q = 1/4 and p/q = 1/2. In Fig. 17(b) we plot the total
velocity 〈V 〉 versus θD for the same system at FD/FM = 17,
15, 13, 11, 9, 7, 6, 5, 4, 3, 2, 1.5, and 1. As FD/FM increases,
the net velocity increases, and strong oscillations emerge in
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FIG. 17. (a) p/q vs. θD for a system with FM = 0.5, robs = 1.0,
and lr = 25 at FD/FM = 17 (red), 15, 13, 11, 9, 7, 6, 5, 4, and 3
(blue), from lower left to upper left, showing that the p/q = 1/1 step
disappears as FM/FD decreases. (b) 〈V 〉 vs. θD in the same system
at FD/FM = 17 (red), 15, 13, 11, 9, 7, 6, 5, 4, 3, 2, 1.5, and 1 (light
purple), from top to bottom.

〈V 〉 so that the locking steps at p/q = 0/1, 1/1, and y direc-
tion locking appear as clear bumps. For FD/FM = 17 and 15,
there are smaller bumps near θ = 26◦ and 65◦, correspond-
ing to p/q = 1/2 and p/q = 3/2; however, this locking is
only partial. For FD/FM = 1.0, 〈V 〉 does not depend on θD,
indicating the absence of full or partial locking. In Fig. 18
we plot the locations of the p/q = 0, 1/1, and 1/0 steps as
a function of θD versus FD/FM , showing that locking effects
occur only when FD/FM > 2.0. These results indicate that
even for very long run lengths, directional locking can occur
as long as the external biasing force is at least twice as large
as the motor force. This suggests that particles that couple
differently to the external drive could be separated, with slow
moving active particles following the direction of the external
drive and fast moving active particles locking to one of the
different symmetry directions.
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80
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1/0

1/1

0

FIG. 18. Locations of the p/q = 0, 1/1, and 1/0 steps as a func-
tion of θD versus FD/FM for a system with FM = 0.5, robs = 1.0, and
lr = 25.
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FIG. 19. (a) The total velocity 〈V 〉 vs. θD for a system with
FD = 0.5, FM = 0.5, and lr = 0.01 for robs = 0.75, 1.25, 1.5, 1.55,
1.556, 1.562, 1.5675, 1.57, 1.58, 1.5875, and 1.5925, from center
top (purple) to center bottom (red). (b) Dynamic phase diagram as a
function of θD vs. robs for the system in (a) with robs > 1.5, showing
the locations of the p/q = 0, 1/1, and 1/0 locking steps, nonlocking
regimes, and the clogged state.

B. Clogging effects

We next consider large obstacles which can induce clog-
ging effects depending on the level of activity in the systems.
In Fig. 19(a) we plot the total velocity 〈V 〉 versus θD for a
system with FD = 0.5, FM = 0.5, and lr = 0.01 at robs = 0.75,
1.25, 1.5, 1.55, 1.556, 1.562, 1.5675, 1.57, 1.58, 1.5875, and
1.5925. For robs = 0.75, locking steps appear at p/q = 0, 1/2,
1/1, 3/2, and y direction locking. As robs increases, the net
velocity decreases. When robs < 1.562, 〈V 〉 drops to zero for
driving in certain directions but locking steps are still present
for θD = 0◦, 45◦, and 90◦, while for robs > 1.57 locking oc-
curs only along the x and y directions. At large enough robs, the
system becomes completely clogged. In Fig. 19(b) we show a
dynamic phase diagram for the system in Fig. 19(a) in the
regime robs > 1.5, where we highlight the p/q = 1/1 and 1/0
locked phases, regions where unlocked flow occurs, and the
clogged state. The clogging regions interdigitate with the non-
locking regions, indicating that there is a higher susceptibility
to clogging for driving at certain nonlocking angles. For the
larger obstacle sizes, the system is always clogged.

The tendency for a system with a periodic array of obsta-
cles to clog for driving in different directions was previously
studied for passive bidisperse disks in Ref. [82]. Even when
free flow of the disks is possible along the x or y directions,
the system can clog for driving at incommensurate angles
due to collisions between the disks and the obstacles. For a
square obstacle array, the disks can move without collisions
for driving along 45◦; however, the effective distance between
the obstacles is smaller compared to driving in the x or y
directions, so the system reaches a clogged state at lower robs

for the 45◦ driving compared to x or y driving. In the active
particle system we consider here, the clogging is a single par-
ticle effect that is produced by the interplay between the drive
force, the motor force, and the disk-obstacle interactions. For
a disk-obstacle interaction with a softer form, the onset of
clogging shifts to larger values of robs, whereas if FD or FM

are reduced, then the clogging onset shifts to smaller values
of robs. The amount of clogging that occurs for a fixed drive
and motor force also depends on the size of lr . If collective
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FIG. 20. 〈V 〉 vs. θD for the system in Fig. 19 with FD = 0.5,
FM = 0.5, and robs = 1.5875 at lr = 0.005, 0.01, 0.03, 0.07, 0.1, 0.2,
0.3, 0.4, 0.7, 5, and 25, from center bottom (red) to center top (light
purple).

particle-particle interactions become important, then distinct
types of jamming or clogging effects [83–86] could arise
that differ from what we observe. The activity could reduce
clogging effects at small run lengths, but could increase the
clogging or induce partial clogging for large run lengths, as
shown in studies of active particles driven through randomly
placed obstacles [22,25].

In Fig. 20 we plot 〈V 〉 versus θD for the system in Fig. 19
at robs = 1.5875 for lr = 0.005, 0.01, 0.03, 0.07, 0.1, 0.2, 0.3,
0.4, 0.7, 5, and 25. Increasing the run length produces a variety
of effects. At θD = 0◦, 〈V 〉 gradually increases with increasing
lr until reaching the value 〈V 〉 = 0.355 near lr = 0.7. As lr is
increased further, 〈V 〉 decreases to 〈V 〉 = 0.21 due to a self-
trapping effect. At θD = 45◦, 〈V 〉 monotonically increases
with increasing rl and the clogging effect disappears entirely
for lr > 0.1. If robs is increased, then the value of lr at which
an unclogged state appears increases. A local maximum in
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FIG. 21. 〈V 〉 vs. lr at θD = 0 (orange) and θD = 45◦ (blue) for
the system in Fig. 20 with FD = 0.5, FM = 0.5, and robs = 1.5875.
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〈V 〉 appears at θD = 45◦ when lr = 0.1, 0.2, and 0.3 due to
a partial locking to the p/q = 1/1 step. These results suggest
that active particle sorting could be achieved using clogging
effects in which the less active particles with shorter run
lengths would be trapped but the more active particles with
longer run lengths would be mobile.

In Fig. 21 we plot 〈V 〉 versus lr for the system in Fig. 20 at
θD = 0◦ and θ = 45◦. For lr < 0.01, the system is completely
clogged. When lr � 0.01, 〈V 〉 for θD = 0◦ increases with
increasing lr to a maximum value near lr = 1.0, after which
〈V 〉 decreases with increasing lr . At θD = 45◦, the sample is
clogged below lr = 0.5. There is then an increase in 〈V 〉 with
increasing lr up to a maximum value near lr = 100, followed
by a slight decrease in 〈V 〉.

VI. SUMMARY

We have examined active run-and-tumble particles inter-
acting with a square array of obstacles. For a system without
any external biasing, we find that for short run times the
particles act close to the Brownian limit and explore space
randomly. For long run times, the particles become direction-
ally locked and move only along certain symmetry directions
of the substrate. These directions correspond to angles θ =
arctan(p/q) where p and q are integers. As the radius of the
obstacles increases, the number of locking angles decreases

until only the steps at p/q = 0, p/q = 1/1, and y direction
locking remain. The locking can be measured by examining
the ratio of the x and y direction velocities as well as the
instantaneous velocity distribution functions. When an addi-
tional biasing drive is applied in the x direction, the average
drift velocity decreases if the run time is increased, while an
increase in the magnitude of the external biasing force rela-
tive to the motor force can produce peaks in the differential
velocity-force curves. As the direction of the external drive is
changed, we observe a directional locking effect similar to that
found in nonactive systems. Increasing the run time destroys
the directional locking, but if the ratio of the biasing driving
force to the motor force is made large enough, then the direc-
tional locking reappears. For large obstacles, the system can
exhibit a directional depinning and clogging effect in which
increasing the run time can induce the onset of clogging.
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