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Composition fluctuations in polydisperse liquids: Glasslike effects well above the glass transition
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We study a two-dimensional glass-forming system of slightly polydisperse (LJ) particles using molecular
dynamics simulations and demonstrate that in the liquid regime (well above the vitrification temperature) this
model shows a number of features typical of the glass transition: (i) the relation between compressibility and
structure factor S(q) is strongly violated; (ii) the dynamical structure factor S(q, t ) at low q shows a two-step
relaxation; (iii) the time-dependent heat capacity cv (t ) shows a long-time power-law tail. We show that these
phenomena can be rationalized with the idea of composition fluctuations and provide a quantitative theory for
the effects (i) and (ii). It implies that such effects must be inherent in all polydisperse colloidal models, including
binary LJ mixtures.
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I. INTRODUCTION

It is well-known that vitrification of molecular liquids or
polymer melts is accompanied by a number of characteristic
features [1,2]. One of these features is the emergence of an
intermediate plateau in dynamical correlation functions, like
the shear relaxation modulus G(t ) or the dynamical structure
factor S(q, t ) [3], upon cooling the liquid toward the glass-
transition temperature Tg. The plateau is truncated by the
(segmental) α-process. As the associated relaxation time τα

grows with decreasing temperature (T ), the plateau increases
in size, turning into a finite long-time plateau for T < Tg

on the experimental time scale �t since τα � �t . Another
feature of the glass transition is the emergence of nonequi-
librium effects for T � Tg. One example is the drop of the
specific heat (cp or cv) on cooling through Tg [4]. In the liquid
phase, this effect is supplemented by a significant frequency
dependence of the dynamic heat capacity implying its slow in-
crease toward the equilibrium value on long time scales [5,6].
Another example is the violation of the relation between the
compressibility and the structure factor S(0) ≡ S(q → 0) for
vanishing wave vector q in the glass. The latter relation—the
so-called compressibility equation (CE)—is given by [3,7]

S(0) = c0T

KT
, (1)

where KT is the static isothermal bulk compression modulus
and c0 = N/V , the mean concentration of particles [8]. This
fluctuation-dissipation relation is valid in the equilibrium liq-
uid, but is not satisfied below Tg [2,9,10], where the concept
of an effective “compressibility temperature” Tχ defined via
Eq. (1) was introduced (Tχ is higher than the actual tempera-
ture T for T < Tg) [10].

Many glass-forming systems have multiple components to
suppress the tendency for structural ordering [11–14]. For
systems with n components it is known since the work by
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Kirkwood and Buff that the CE must be modified even under
equilibrium conditions [3,15,16]. The Kirkwood-Buff theory
expresses the compressibility in terms of the inverse matrix
of partial structure factors Si j (q → 0), where i, j = 1, . . . n.
For binary systems, the resulting expression for S(0) takes
a compact form: S(0) is given as a sum of c0T/KT and a
term related to composition fluctuations and their coupling to
number fluctuations [8,17]. This expression can be utilized to
analyze experimental data [17]. However, if n is large, then the
matrix inversion becomes “conceptually and computationally
difficult” [18], in particular in the limit of continuous distribu-
tions of particle sizes. To cope with this problem, a systematic
expansion of the Kirkwood-Buff theory in terms of the size
deviation from the mean particle diameter was suggested [18].
This method is powerful if structural information about partial
pair correlations is available, as demonstrated by applications
to jammed packings of size-disperse spheres [18] and random
close-packed colloidal dispersions [19].

Here we propose a different approach that does not require
knowledge on partial pair correlations, but combines thermo-
dynamic (KT ) and simple compositional information (related
to the polydispersity index of particle sizes, PDI = δp) to
predict the polydispersity contribution (Spl) to static, S(q), and
dynamical, S(q, t ), structure factors for low q. Our approach
is valid in any spacial dimension (d) and explains why the
monodisperse CE, Eq. (1), can be violated strongly even for
systems with very low PDI (δp ∼ 1%). We compare our theory
to results from molecular dynamics (MD) simulations of a
two-dimensional (2D) system of polydisperse particles and
show that polydispersity gives rise to glasslike effects already
for T well above Tg: S(q, t ) at low q decays in two steps with
an intermediate plateau (at S ≈ Spl), and the time-dependent
specific heat increases slowly toward its static equilibrium
value (with a power-law relaxation for the gap). These relax-
ation features persist upon cooling toward Tg and are expected
to interplay with the glassy dynamics [20–23].

In the next section we describe the model and the computa-
tional approach. Then we turn to the numerical results for the
static structure factor (Sec. III A) and dynamical correlation
functions (Sec. III B). The theory of the long-time correlation
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effects is presented in Sec. IV. The paper is summarized in the
last Sec. V.

II. MODEL AND NUMERICAL ALGORITHM

A. Model

We study a 2D polydisperse system of Lennard-Jones
(LJ) particles [24,25]. The total number of particles is N =
104. Similar models, including Kob-Andersen binary mix-
tures [26], are widely used in simulations of (2D and 3D)
glass-forming liquids [12]. The diameters of the particles, σl

with l = 1..N , are uniformly distributed between (1 − �)σ̄
and (1 + �)σ̄ with � = 0.2. The mean-square particle size is
σ 2 = (1 + �2/3)σ̄ 2, leading to the size polydispersity index
of δp = σ 2/σ̄ 2 − 1 = �2/3 ≈ 0.013. All particles have the
same mass mp. Following Refs. [24,25], each pair of particles
(of diameters σl and σk) interacts with energy uLJ(r/σlk ),
where σlk = (σl + σk )/2 and uLJ(s) = 4ε(s−12 − s−6). The
energy is truncated at scut = 27/6 ≈ 2.24 and shifted to avoid
discontinuity, so that u(s) = 0 for s > scut. In what follows, all
quantities are given in LJ units, i.e., the energy ε, the particle
mass mp, the mean particle diameter σ̄ and the Boltzmann
constant kB are set to unity. This also implies that the Lennard-

Jones time τLJ =
√

mpσ
2/ε = 1. Standard periodic boundary

conditions (PBC) were applied. The system was kept at con-
stant external pressure p0 = 2. The linear dimension of the
simulation box, L ∼ 100, thus shows a weak decrease with
temperature T . The system volume V = Ld , d = 2, so that
V ∼ N and particle concentration c0 = N/V ∼ 1.

B. Equilibration and simulation runs

The particle swap Monte Carlo (MC) technique [12],
combined with volume-fluctuation moves to impose a con-
stant pressure, was used to equilibrate the system. The MC
dynamics was employed only at the tempering stage to ac-
celerate the structural relaxation and to prepare m = 50 ÷
100 well-equilibrated independent configurations. The so-
obtained independent configurations served as starting points
for MD simulations (using the LAMMPS code [27,28]).
Each configuration was first tempered for �t1 = 2 × 105 in
the NPT ensemble (using the Nosé-Hoover thermostat and
barostat) to further equilibrate the system state including the
particle velocities and then for another �t1 in the canonical
NVT ensemble (using Nosé-Hoover thermostat) where the
volume V was fixed at a volume corresponding to p0 = 2. The
production runs (served to obtain all correlation functions)
were performed during the total sampling time �t = 105 in
the NVT ensemble.

Parallel to that, we also carried out cooling runs using
MD only. The cooling runs consisted of two steps: contin-
uous cooling from the initial temperature T = 1 with rate
−dT/dt = 10−5 followed by NPT and NVT tempering as
described above. These cooling runs allowed to determine
the glass-transition temperature Tg. Tg depends on the total
time spent during cooling and tempering. For the times on
the order of 105 used in this study we obtained Tg ≈ 0.26
defining Tg as the onset of a quasi-static elasticity (when the
long-time shear modulus μ exceeds 1% of the instantaneous

FIG. 1. RDF for T = 0.5, 0.4, 0.3, 0.24 (from bottom to top),
r is distance in LJ units. The curves are shifted vertically with step
0.5 for clarity. Solid lines correspond to configurations obtained by
particle swap, symbols (x)—to slow cooling with MD. There is no
detectable difference between RDFs for the two types of configura-
tions (standard MD and MC with swaps).

affine shear modulus μA). Nearly the same Tg was obtained
previously from MC simulations using a similar continuous
cooling protocol and a dilatometric criterion [25].

For T > Tg equilibration can also be achieved by MD.
The results obtained after tempering by SWAP Monte Carlo
or by MD only are compared in Figs. 1 and 2. The Kirk-
wood radial distribution function (RDF) is presented in Fig. 1.
It shows that the RDFs obtained by both approaches are

×

×

×

×

×
× × × ×

FIG. 2. The mean-square displacement (MSD) of particles vs.
time t (in LJ units) for T = 0.5, 0.4, 0.3, 0.24 (from top to bottom)
based on initial configurations obtained by slow cooling with MD
(symbols, x) and by particle swap (solid curves).
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exactly the same at all temperatures. A similar comparison for
the mean-square particle displacement (MSD) demonstrates
that the particle dynamics does not depend on the equilibra-
tion method for T > Tg (cf. Fig. 2). At a lower temperature
(T = 0.24 < Tg) a small difference is visible at long times. It
signals that the standard slow cooling via MD is not sufficient
to fully equilibrate the system for T = 0.24 as the total tem-
pering time is too small compared to the relaxation time τα .
Note however that this regime (T < Tg) is not considered in
the present paper.

III. SIMULATION RESULTS

A. Structure factor

The dynamical structure factor is

S(q, t ) = 1

N

N∑
l,k=1

〈eiq·(rl (t+t ′ )−rk (t ′ ))〉, (2)

where rl (t ) is position of particle l at time t , and 〈...〉 means
ensemble averaging. As the system we consider is isotropic,
the structure factor depends only on q = |q|: S(q, t ) = S(q, t ).
This factor can be also defined as a correlation function of
concentration fluctuations:

S(q, t ) = V

c0
〈cq(t + t ′)c∗

q (t ′)〉, (3)

where averaging is taken over the equilibrium ensemble, V is
d-dimensional system volume,

cq(t ) =
∫

c(r, t )e−iq·rdd r/V = 1

V

∑
k

e−iq·rk (t ), (4)

and c(r, t ) is the local concentration at time t and position r.
The static structure factor S(q) ≡ S(q, 0) for our 2D sys-

tem is shown for several temperatures above Tg in Fig. 3(a).
Its behavior is typical for glass-forming liquids: S(q) shows a
strong peak at q = qmax ≈ 2π/σ̄ corresponding to the mean
particle size. The behavior of S(q) at low q is highlighted in
Fig. 3(b). A smooth dependence of S(q) on q2 is obvious; S(q)
is nearly linear in q2 for q � 1.

Equation (2) is not applicable exactly at q = 0 (for a sys-
tem with fixed number of particles). In this case we define
S(0) ≡ limq→0 S(q). S(0) can be obtained by linear extrapo-
lation indicated in Fig. 3(b). The minimal q for which S(q)
can be calculated using Eq. (2) with PBC is qmin = 2π/L.
For all T ’s considered in this study the relative deviation
S(qmin)/S(0) − 1 is below 4 × 10−4, which is smaller than
the statistical error on S(qmin). The difference between the
extrapolated S(0) and S(qmin) is therefore totally negligible;
it is disregarded in what follows.

By contrast, the q-dependence of S(q, t ) is very important
also for low q as discussed below [29].

B. Computational results on dynamical correlations

Let us first consider the specific heat per particle, cv =
1
N

∂E
∂T |

V,N
. Its time-dependent generalization can be defined

via the energy (E ) response to a small instant T -jump (from

FIG. 3. (a) The static structure factor S(q) for the 2D polydis-
perse model at T = 0.5 (thin curve), 0.4 (thicker curve), 0.3 (the
thickest curve). (b) S(q) vs. q2 at low q’s for T = 0.5, 0.4, 0.3
(from top to bottom). The straight segments (dashed lines) show
extrapolation to q = 0 for T = 0.5 and 0.3. The vertical bar with
“×” symbols (red online) indicates qmin = 2π/L.

T − δT to T at t = 0):

cv (t ) = 〈E (t ) − E (0)〉
NδT

. (5)

The static (equilibrium) heat capacity cv equals to cv (∞).
By virtue of the fluctuation-dissipation theorem (FDT) the
response function cv (t ) is related to the energy correlation
function CE (t ) = 〈�E (t + t ′)�E (t ′)〉, where �E = E − 〈E〉
and 〈...〉 denotes the canonical equilibrium average (averaging
over t ′ is assumed as well):

cv (t ) = 1

NT 2
[CE (0) − CE (t )]. (6)

For ergodic systems the function CE (t ) → 0 at t → ∞,
so Eq. (6) turns into the classical relation cv (∞) =
〈(�E )2〉/(NT 2). The time-dependent heat capacity cv (t ) is
thus fully defined by CE (t ) which was recorded at different
T ’s for m = 50 ÷ 100 independent trajectories. The results for
�cv (t ) = cv (∞) − cv (t ) at T > Tg are shown in Fig. 4. Its re-
laxation for short times, t < τα [cf. Fig. 4(a)], involves a sharp
increase, then decrease with further overshoots. This behavior
is qualitatively consistent with the frequency dependence of cv

above Tg revealed in a simulation study of viscous silica [5].
One can observe, however, a new feature at t � τα: a weak
long-time tail emerged already well above Tg, at T = 0.45
[cf. Fig. 4(b)]. It appears that the tail follows a power
law scaling �cv ∝ 1/t [cf. the dashed lines in Fig. 4(b)].
The power-law tail gets stronger as T decreases down to
T = 0.325 (which is still significantly above Tg ≈ 0.26).
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FIG. 4. (a) Specific heat gap, �cv (t ) = cv (∞) − cv (t ), at differ-
ent temperatures T = 0.45, 0.4, 0.35, 0.325 (curves from bottom to
top at t = 1) for short time t , 0 < t < 4 (t in LJ units). (b) Long-time
behavior of �cv (t ) = cv (∞) − cv (t ) for 4 < t < 104 at T = 0.45,
0.4, 0.35, 0.325 (from bottom to top). �cv is scaled by the factor of 2
for T = 0.45 and 0.4. Dashed lines: fits with a power law, �cv ∝ 1/t .

Remarkably, the terminal time-scale of the tail is much longer
(by a factor ∼100) than the structural time τα defined as the

relaxation time of the shear stress [cf. Fig. 5(a)] or of the co-
herent intermediate scattering function φq(t ) = S(q, t )/S(q)
for q = qmax at the peak of S(q) [cf. Fig. 5(b)]. The heat
capacity cv (t ) thus still increases for t � τα .

To verify the generality of this long-time behavior we
performed MD simulations of a rather different glass-forming
system—a binary mixture in three dimensions at T well
above the glass transition—to find a similar power-law tail for
�cv (t ) (cf. Fig. 8 and the Appendix).

Figure 6 presents φq(t ) for the lowest wave-vector q =
qmin = 2π/L at different T > Tg. A pronounced long-time
shoulder is visible at T = 0.5; it develops into a quasi-
plateau persisting for t up to ∼1000τα in the T -range between
T = 0.5 and 0.3. Finally, Fig. 7 shows the relative devia-
tion from the CE, Eq. (1), defined as δ = 1 − SK/S0, where
SK ≡ c0T/KT [30] and S0 = S(qmin, 0) is nearly equal to S(0)
obtained by extrapolation of S(q) to q = 0 (cf. the previous
section). One can observe that δ always exceeds 70% meaning
that Eq. (1) is not satisfied. A significant difference between
S(0)/(c0T ) and the compressibility 1/KT was also discussed
for jammed packings of size-dispersed hard disks and spheres
[18], and in dynamic light scattering of colloidal dispersions
[31]. In both cases the difference was shown to originate from
polydispersity effects. These findings support our view that
the anomalous behaviors reported in Figs. 4, 6, 7, and 8 are
also related to multi-component nature of the studied systems.
This idea is clarified below.

IV. THEORY FOR TWO-STEP RELAXATION
OF COHERENT SCATTERING FUNCTION

A. Simple model

The polydispersity effects for the dynamical structure fac-
tor are quantified below. We first outline a general theoretical
approach and then combine it with a simple heuristic model
to explain our simulation results.

The dynamical structure factor is defined in Eq. (3) as a
correlation function of concentration waves. According to the
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×
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G(t)

t t

φq(t)

FIG. 5. (a) Relaxation modulus G(t ) for T = 0.45, 0.4, 0.35, 0.325. (b) Coherent intermediate scattering function φq(t ) for the same T ’s
at q ≈ qmax ≈ 6.35 corresponding to the maximum of S(q). In both cases T decreases from bottom to top.
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FIG. 6. Coherent intermediate scattering function φq(t ) =
S(q, t )/S(q) at q = qmin = 2π/L (L is the linear dimension of the
simulation box). Dashed lines show theoretical prediction, Eq. (13),
for the slow stage. T = 0.5, 0.4, 0.35, 0.325, 0.3 (from bottom to
top).

FDT [3,32,33] the dynamical factor is related to the response
function R(q, t ) defining the concentration wave cq(t ) induced

by a weak external potential field U (r, t ) = U0eiq·r applied to
the system at t > 0:

〈cq(t )〉 = −R(q, t )U0/T, (7)

δ

Tg

T
0.25 0.3 0.35 0.4 0.45 0.50

0.2

0.4

0.6

0.8

1

FIG. 7. T -dependence of δ = Spl/S0 with (i) simulation data for
S0 and Spl = S0 − SK (black crosses “x”), (ii) theory with S0 = SK∗ =
cT/K∗ and Spl defined in Eq. (12) (dashed blue curve), (iii) asymptot-
ically exact theory with Spl = A defined in Eq. (25) (with d = 2) and
S0 = A + SK (solid red curve). In all the cases SK = c0T/KT with KT

obtained by simulations [30]. The vertical dotted line indicates Tg.
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FIG. 8. Log-log plot of �cv (t ) vs. t (given in units of τLJ) for the
3D binary mixture at T = 0.9 (symbols). The dashed line indicates
the power law �cv (t ) ∝ 1/t3/2.

where obviously R(q, 0) = 0. The FDT relation is

S(q, t ) = c−1
0 [R(q,∞) − R(q, t )]. (8)

It implies that S(q, 0) is defined by the static response
R(q,∞).

Let us now focus on the low q regime (qσ̄  1), including,
in particular, q = qmin. The field U produces the volume force
−c∇U which generates a hydrodynamic flow leading to the
pressure (δp = pq) and concentration (δc = cq) waves. The
mechanical balance for t � τα then demands δp � −cU with

δp � KT δc/c0, hence R(q, t ) � T c2
0

KT
leading to the classical

result for monodisperse systems, S0 = S(q, 0) � T c0/KT (for
qσ̄  1). In the general (polydisperse) case the considered
mechanism implies that the colloidal composition stays un-
changed for each element of the system. This is valid for
the first (fast) stage of concentration relaxation which serves
to establish the local mechanical balance (∇p + c∇U = 0).
However, later on the concentration wave amplitude [and
therefore R(q, t )] still increases further due to an exchange
between small and large particles by their slow mutual dif-
fusion (“slow” stage). The amplitude of this increase can be
deduced from a simple model assuming that the free energy
of interactions between the particles depends primarily on the
local volume concentration, φ(r) = ∑

i vici(r), where vi =
σ d

i [34]. Then, the total free energy density is [position r is
omitted for φ(r) and ci(r)]:

f = 1

v̄
f ∗(φ, T ) + T

n∑
i=1

ci ln ci,

where the first term is due to particle interactions, v̄ ≡ σ d ,
and the second term in the right-hand side (r.h.s.) accounts
for the entropy of mixing. The assumption to express the
excess part f ∗ in terms of φ is backed by the success of
similar approximate expressions employed to explore phase
equilibria in polydisperse systems [35]. The crucial role of
the local volume fraction for jammed polydisperse systems
was also highlighted in Ref. [18]. As we focus here on
the linear response, we may expand f for small deviations
δci = ci − c(0)

i from the equilibrium state, and keep only the
quadratic terms (the linear term is irrelevant as its volume
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integral is const = 0):

δ f /T � v∗δφ2/(2v̄2) +
∑

i

(δci )
2/(2ci ), (9)

where δφ = ∑
i viδci and the volume v∗ is defined by

T v∗/v̄ = ∂2 f ∗/∂φ2 at φ = φ0 = ∑
i vic

(0)
i .

During the fast mechanical stage a fluid element de-
forms as a whole, keeping the same composition: δci/ci =
δc/c0, where δc = ∑

i δci. Using Eq. (9) with this condition
leads to

δ f � KT (δc)2
/(

2c2
0

)
, KT = T c0(c0v

∗ + 1).

Therefore the plateau response (for t � τα and after the

fast mechanical relaxation stage) is Rpl � T c2
0

KT
= c0

c0v∗+1 . To
get the terminal amplitude R∞ = limq→0 limt→∞ R(q, t ) =
c0S(0) [recall that R(q, 0) = 0] we have to allow for com-
position variations. This is achieved by the minimization of
f , Eq. (9), with respect to δci with the only side condition∑

i δci = δc. The result is: δ f = K∗(δc)2/(2c2
0 ) with [36]

K∗ = T c0[Z (1 − SK ) + 1]/[Z (1 − SK ) + SK ], (10)

where SK = c0T/KT and

Z =
∑

i

Ni

N
(1 − vi/v)2 = v2/v̄2 − 1

d=2= 4δp(1 + δp/5)/(1 + δp)2. (11)

Therefore, the terminal response is given by R∞ = T c2
0/K∗.

On this basis we get the structure factor at vanishing q: S(0) =
R∞/c0 = SK∗, where SK∗ ≡ c0T/K∗. It is thus predicted that
S(q, t ) relaxes from the initial value S0 � S(0) = SK∗ [which
is close to the static structure factor at q → 0, S(0)] to the
intermediate plateau at Spl = (R∞ − Rpl)/c0,

Spl = SK∗ − SK = Z (1 − SK )2

1 + Z (1 − SK )
. (12)

The amplitude of this decrease is thus given by SK = c0T/KT .
This result resonates with the Kirkwood-Buff theory [16,17]:
For a polydisperse system S(0) can be expressed as a sum
of a compressibility contribution (SK ) and a term related to
composition fluctuations (Spl). Here, however, Spl is defined
as a dynamic quantity (rather than a combination of partial
structure factors [16,17]). Note also that our approach is akin
to the analysis of DLS of polydisperse colloidal suspensions
in Ref. [31].

The theoretical function δ = Spl/SK∗ is compared with the
simulation data in Fig. 7. A very good agreement is obvi-
ous. The proposed simple model thus accounts very well
for the composition fluctuation effects. It shows that the
“polydispersity” contribution to S0 tends to Spl � Z

Z+1 in the
“incompressible” limit KT → ∞, so Spl (which is roughly
proportional to the size PDI, δp) can strongly exceed the
compressibility term SK for however low δp [cf. Eq. (11)].

Furthermore, we find that the terminal relaxation of S(q, t )
from Spl to 0 can be described by a single diffusion constant
equal to the mean self-diffusion coefficient Ds deduced from
the MSD averaged over all particles:

S(q, t ) � (S0 − SK ) exp(−q2Dst ), t � τα, (13)

where S0 = S(q, 0) and qσ̄  1, as noted before. The theo-
retical curves (dashed) are shown in Fig. 6 for t > 100. A
very good agreement with the MD data is obvious. Thus, it
appears that the collective interdiffusion coefficient governing
the concentration relaxation for t � τα is close to the aver-
age self-diffusion coefficient, which means that the so-called
Vineyard approximation [3] works very well here. The gener-
ality of this result for weak polydispersity is demonstrated in
the next section. The importance of interdiffusion processes
for glass-forming systems with size polydispersity was dis-
cussed qualitatively in Refs. [21,31] and for binary mixtures
in the framework of mode-coupling theory in Ref. [20]. The
theory for binary mixtures yields an expression analogous
to Eq. (13) with an amplitude given by the Kirkwood-Buff
result for S0 − SK [17] and a relaxation rate determined by the
interdiffusion coefficient (cf. Eq. (10b) of Ref. [20]).

B. General theory for low PDI

In this section we obtain the long-time dependence of
S(q, t ) up to the leading order in the deviations of σi from
the average σ . Our analysis is akin to, but is different from
the perturbative approach proposed in Ref. [18] (as only static
quantities were considered there).

The argument given below Eq. (7) in the previous section
shows that the scattering function S(q, t ) [defined in Eq. (3)]
relaxes in two stages: (i) fast compression stage, (ii) slow
compositional stage. A mechanical balance is established after
the first stage, at t � τα: the pressure becomes nearly uni-
form, p(r) � p0 = const . For monodisperse systems it also
leads to complete relaxation of concentration fluctuations, i.e.,
c(r) = const , since p(r) is a function solely of c(r) and T .
(Coarse-grained functions c(r), p(r) are considered here with
coarsening length much longer than particle size σ , but much
smaller than 1/q.) However, the situation is different in a
polydisperse system where pressure depends also on the local
composition, that is, on the partial concentrations ci(r) [34].

In the general case the pressure is a function of all
partial ci:

p = p(c1, c2,..cn). (14)

The space position r is omitted here: it is implied that p =
p(r), c1 = c1(r), etc.; the temperature variable T is omitted as
well. Dealing with the function of many variables in Eq. (14)
is a hard problem. Fortunately, however, the things can be
simplified in the case of a weak polydispersity.

It is useful to start with the reference monodisperse system
involving particles of the same size σref = σ̄ (σ̄ = ∑

i Niσi/N
is the mean size for the original polydisperse system), with
pressure p = pref (c), where c = ∑

i ci. It is clear that the
effect of a small deviation of a particle size from σ̄ must be
nearly proportional to σ − σ̄ :

p = pref (c) + α
∑

i

(σi − σ̄ )ci + O(�2), (15)

where α = α(T ) is a constant. The second term in the r.h.s.
is linear in � = max |σ/σ̄ − 1|, and O(�2) stands for the
omitted quadratic (in �) and higher-order terms. Solving the
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above equation for c with p = p0 one gets

c = c0 − α′ ∑
i

(σi/σ̄ − 1)ci + O(�2), (16)

where c0 is defined by pref (c0) = p0, and constant α′ =
σ̄ α( ∂ pref

∂c )
−1

T
. Omitting O(�2) leads to

c(r) − c0 � −�(r)α′�, (17)

where � is the compositional order parameter

�(r) =
∑

i

zi
(
ci(r) − c(0)

i

)
, zi ≡ σi − σ̄

σ̄�
, (18)

and c(0)
i = Ni/V is the average concentration of ith compo-

nent. Note that zi is changing between −1 and 1 and that∑
i zic

(0)
i = 0 by definition of σ̄ . On recalling Eqs. (3) and

(17), the dynamical structure factor (for the slow stage, t �τα)
becomes

S(q, t ) � �2(α′)2S� (q, t ), (19)

where

S� (q, t ) = N

c2
0

〈�q(t )�∗
q (0)〉. (20)

Now let us consider the limit � → 0, where all the parti-
cles become physically the same. We can still define the order
parameter � for this reference system treating zi formally
as the “color” parameter for the ith group. In this case the
dynamical structure factor becomes [cf. Eq. (2)]:

S(q, t ) ≡ 1

N

N∑
l,k=1

〈eiq·(rl (t )−rk (0))〉

= Sself(q, t ) + N − 1

N
Scross(q, t ),

where rl (t ) is position of particle l at time t ,

Sself(q, t ) = 〈eiq·(r(t )−r(0))〉, Scross(q, t ) = N〈eiq·(r′(t )−r(0))〉,
and r(t ), r′(t ) are positions of two arbitrarily chosen dif-
ferent particles at time t . Here Sself is the self-intermediate
(incoherent) scattering function, and Scross accounts for cross-
correlations between the particles.

Using the definition, Eq. (18), we find for the monodisperse
system:

S� (q, t ) = 1

N2

(∑
i

Nizi

)2

Scross(q, t )

+ 1

N

(∑
i

Niz
2
i

)[
Sself(q, t ) − 1

N
Scross(q, t )

]
.

(21)

Obviously, during the slow stage (t � τα) the self-
intermediate function relaxes by self diffusion:

Sself(q, t ) � exp(−q2Dsreft ),

where Dsref is the self-diffusion constant of particles in the
reference monodisperse system. Taking into account that

∑
i Nizi = 0 and that 1

N (
∑

i Niz2
i ) = 1/3 (for uniform size dis-

tribution) we get for the reference system

S� (q, t ) = 1
3 Sself(q, t ) = 1

3 exp(−q2Dsreft ). (22)

Note that the term Scross(q, t )/N in Eq. (21) was neglected
since N � 1 and Scross(q, t ) remains finite in the thermody-
namic limit: Scross(q, t ) → S(q, t ) − Sself(q, t ) for N → ∞.

Let us return to the polydisperse system with �  1. Ob-
viously, the function S� (q, t ) now depends on �. However, if
� is changed to −�, then the system remains physically the
same, and so does S� [note that σi − σ̄ = σ̄ zi�, so reversing
the sign of both zi and � does not affect either S(q, t ) or
S� (q, t )]. Hence, there is no correction linear in � to ei-
ther S(q, t ) or S� (q, t ), and the leading correction must be
quadratic,

S� (q, t ) = 1
3 exp(−q2Dsreft ) + O(�2).

For the same reason the mean self-diffusion constant remains
nearly equal to the reference value:

Ds = Dsref + O(�2).

Recalling Eq. (19), we obtain

S(q, t ) � A exp(−q2Dst ) + O(�4), (23)

where

A = (α′)2
�2/3 + O(�4). (24)

The above equation justifies the time-dependence of S(q, t )
adopted in Eq. (13). The �2 dependence of the amplitude
is also in agreement with the theoretical prediction for Spl

specified in Eq. (12). Moreover, it is easy to show that α

is related to p and KT , leading to α′ = d (1 − p0/KT ). This
result is based on the following covariance property: Consider
the reference monodisperse system with σi = σref , c = c0 and
pressure pref (c0) = p0. If each its particle gets swollen in size
by the factor λ = 1 + ε leading to σi − σref = εσref (here σref

is a constant parameter equal to σ̄ before expansion) and the
total concentration is changed to c = c0λ

−d , then the pres-
sure will decrease exactly to p = p0λ

−d [since the Kirkwood
radial distribution function g(r) would obviously transform
to g(r/λ) upon the expansion]. Applying Eq. (15) (with σ̄

replaced by σref ) for this transformation leads to the following
relation (valid to the first order in ε  1):

p0λ
−d � pref (c0λ

−d ) + α
∑

i

εσrefci,

which implies that ασ̄ = d (KT − p0)/c0, where KT =
( ∂ pref

∂ ln c )
c=c0,T

. Thus, we arrive at the general result for the
amplitude A:

Spl = A = d2δp(1 − p0/KT )2 + O
(
δ2

p

)
, (25)

where δp = σ 2/σ̄ 2 − 1 is the size-polydispersity index.
The asymptotically exact expression for Spl = A, Eq. (25),

gives δ = A/(A + SK ) plotted in Fig. 7 as a solid curve. An ex-
cellent quantitative agreement of Eq. (25) with experimental
data is obvious. It also agrees very well with Eq. (12).
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The generalized compressibility equation therefore reads
[cp. Eq. (1)]

S(0) � c0T

KT
+ d2δp(1 − p0/KT )2, (26)

which is valid for low PDI to O(δ2
p). The presented argument

employs the symmetry of the particle size distribution. Other-
wise, it is applicable to any narrow size distribution, whether
uniform or not. Note the factor d2 in Eqs. (25) and (26): It
shows that the structure factor S(q, t ) becomes very sensitive
to size polydispersity for large space dimension, d � 1.

V. SUMMARY AND DISCUSSION

We performed MD simulations of a 2D polydisperse LJ
system well above Tg and found that (i) the monodisperse
compressibility equation (CE), Eq. (1), is strongly violated;
(ii) the dynamical structure factor S(q, t ) shows a two-step
relaxation at low q, from S0 to Spl on the time scale ∼100
(LJ units) and then from Spl to 0 with a relaxation time much
longer than τα (cf. Fig. 6); (iii) the time-dependent heat ca-
pacity cv (t ) and the related energy correlation function CE (t )
show long-time power-law tails. The long-time power-law tail
in the dynamical heat capacity gap, �cv (t ) = cv (∞) − cv (t ),
was also identified for a 3D glass-forming mixture (cf. Ap-
pendix).

The long-time effects for S(q, t ) are quantitatively ex-
plained both with a simple model assuming that the excess
free energy density depends only on the local volume concen-
tration (Sec. IV A) and with a general theory developed for a
low polydispersity degree (Sec. IV B). The theory attributes
the effects to slowly relaxing composition fluctuations. The
polydispersity contribution (Spl) to S0 is obtained in quan-
titative agreement with our simulation data (cf. Fig. 7) and
exceeds 70% of S0. Such a large deviation from Eq. (1), even
for very low PDI (δp ∼ 1%), comes as a result of a competi-
tion between polydispersity and compressibility.

We obtained an asymptotically exact generalized CE [cf.
Eq. (26)] which is valid for weakly polydisperse systems
(δp  1) in any spatial dimension. The polydispersity term
Spl is identified with the second term on the r.h.s. of Eq. (26).
Thus, the monodisperse CE can still be used once S(0) is
replaced with S(0) − Spl, a result that resonates with the
Kirkwood-Buff theory [18]. However, instead of determining
Spl from the matrix of static partial structure factors [18], we
show that Spl can be obtained from the relaxation of collective
density fluctuations.

Moreover, we established that the terminal decay of S(q, t )
(for t � τα and qσ̄  1) is exponential for weak polydis-
persity, with a rate defined by the self-diffusion constant Ds

averaged over all particles.
We therefore established that the long-time plateau of the

coherent scattering function is due to a coupling between con-
centration and the slowly-relaxing composition fluctuations.
Our idea is that the long-time tails in �cv (t ) and the en-
ergy correlation function CE (t ) result from a similar coupling
between the total energy and composition fluctuations. Both
effects are therefore generally due to the polydispersity.

It is known that glassy dynamics significantly depend on
the space dimension d [37–39]. Some aspects of this effect
are related to soft cooperative fluctuations leading to the
system size (L) dependence of the particle MSD which gets
more pronounced for low d (in particular, for d = 2) [38,39].
Moreover, for d = 2 the standard MSD significantly differs
from its ‘cage-relative’ analog [38]. While these effects are
generally important, our crucial point is that (as proved in
Sec. IV B) the dynamics of composition fluctuations reflected
in the long-time behavior of S(q, t ) are universally defined by
the self-intermediate scattering function associated with the
standard MSD and self-diffusion constant Ds [cf. Eq. (13)].

All effects discussed above can be measured experimen-
tally and are quite generic. They must be present in all
polydisperse systems, including binary mixtures. Therefore,
our work raises intriguing questions on the impact of composi-
tion fluctuations (which are important also because of growing
awareness that they may trigger instability to crystallization
[11]) and their interplay with the glassy dynamics [20–23].
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APPENDIX: DYNAMIC SPECIFIC HEAT
FOR A 3D BINARY MIXTURE

We also examined the binary Lennard-Jones mixture of
Kob and Andersen in three dimensions [26,40]. The interac-
tion potential is given by ui j (r) = 4εi j[(σi j/r)12 − (σi j/r)6]
for the two particle species i, j = A, B. The potential pa-
rameters are defined as εBB = 0.5εAA, εAB = 1.5εAA, σBB =
0.88σAA, and σAB = 0.8σAA. The mixture is therefore nonad-
ditive and also exhibits energy dispersity. The LJ potential is
truncated at 2.5σi j and shifted to zero to avoid discontinuity.
All results are presented in reduced units where εAA = 1,
σAA = 1, the mass (m) of the particles is set to unity as
is also the Boltzmann constant. The simulated system con-
sists of N = 1000 particles with NA = 800 A particles and
NB = 200 B particles. All simulations were performed with
the LAMMPS code in the NVT ensemble at constant density
ρ = N/V = 1.2. The equations of motion were integrated
with the velocity-Verlet algorithm with a time step of 0.001

τLJ =
√

mσ 2
AA/εAA. Temperature is maintained by the Nosé-

Hoover thermostat.
After equilibration we calculated the energy correlation

function CE (t ) as a time average over one trajectory of total
length 105 τLJ. Figure 8 shows the results for

�cv (t ) = 1

NT 2
CE (t )

at T = 0.9 which is well above the glass-transition tempera-
ture Tg ≈ 0.39 (obtained for cooling rate = 10−5 [41]). The
dashed line indicates the power-law decay, �cv (t ) ∼ 1/t3/2.
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