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Statics and dynamics of a finite two-dimensional colloidal system with competing attractive
critical Casimir and repulsive magnetic dipole interactions
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We continue our theoretical study of a recently proposed two-dimensional colloidal system with attractive
critical Casimir and repulsive magnetic dipole forces that can be tuned easily and independently from each other
via the temperature and the strength of an external magnetic field, respectively [K. Marolt, M. Zimmermann, and
R. Roth, Phys. Rev. E 100, 052602 (2019)]. Using this freedom, it is possible to construct a competing interaction
potential that causes microphase separation featuring spatially inhomogeneous cluster, stripe, and bubble phases
in the bulk, i.e., in an infinite system without an external potential. In the present work, we demonstrate by means
of density functional theory that microphase separation can also occur in finite geometries. In a square cell with a
side length of 20 or 30 colloid diameters, we observe the emergence of highly structured cluster and ring phases
at intermediate bulk densities in addition to almost uniform fluid phases for lower and higher bulk densities. We
then employ dynamic density functional theory to determine how the system reacts when the temperature and the
magnetic field are altered over time, and we show how to induce a transition from the liquid to the cluster/ring
phase and also from the cluster directly to the ring phase. We find that often a slowly varying and nontrivial path
in parameter space is required to reach a stable state, whereas abrupt changes are prone to lead to metastable
configurations.

DOI: 10.1103/PhysRevE.102.042608

I. INTRODUCTION

Under the right circumstances, certain soft matter systems
are known to exhibit stable density profiles with curious
inhomogeneities [1]. Remarkably, this so-called microphase
separation can also be observed if the external potential is
spatially uniform and, therefore, has to be primarily a con-
sequence of the interparticles forces. In the case of diblock
copolymers comprising two immiscible species of monomers,
for example, the dependence of these forces on the molecules’
orientation leads, at sufficiently low temperatures, to the for-
mation of domains rich in either one or the other monomer
type [2,3]. However, even isotropic interactions can be the
cause of density modulations, as demonstrated by monolay-
ers of amphiphilic molecules, such as phospholipids, at a
flat air/water interface [4,5]. The amphiphiles align them-
selves roughly perpendicular to the interface: Their polar,
hydrophilic head is drawn toward the water, whereas their
apolar, hydrophobic tail is exposed to the air. While the tails
attract each other over short distances due to van der Waals
forces, the heads’ dipoles repell one another even across larger
separations. Although these interactions are radially symmet-
ric within the monolayer, the competition between them can
induce the development of microphases [6]: When balanced
just right, the short-ranged attraction promotes local agglom-
erations of molecules that are, in their entirety, driven apart by
the long-ranged repulsion.
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Such self-assembling systems possess very similar phase
diagrams [7–9], and, as shown by Ciach et al., share a uni-
versal sequence of microphases for increasing bulk densities
[10,11], irrespective of the details of the interaction among
the constituent particles. In (effectively) two-dimensional sys-
tems, the three structures that usually emerge are clusters,
stripes and bubbles. In an infinitely large system, theory pre-
dicts the thermodynamically stable configurations to be highly
symmetrical insofar that clusters and bubbles are circular,
equal in size and arranged in a hexagonal pattern, and that
stripes are straight and parallel [12]. In experiments, however,
this symmetry is always broken to some degree [13]; for
instance, one may encounter haphazardly scattered clusters
of different shapes and sizes, or stripes that bend and form
labyrinthine networks [14–16].

Of course, some defects are inevitable since conditions
are never completely ideal in an experiment; but it seems
questionable whether excessively irregular patterns are even
anywhere close to the true thermodynamic equilibrium. One
might therefore ask which factors increase the likelihood of
reaching a metastable state. We suspect that nonequilibrium
dynamics, and specifically the manner in which the system is
brought into the microphase regime, play a pivotal role. This
would be in line with a report by Helm and Möhwald that, in
a phospholipid monolayer, a rapid transition into the cluster
phase through a fast compression leads to a much higher
dispersity of cluster sizes than a slower one [17].

We wanted to carry out further investigations into this mat-
ter using a two-dimensional colloidal system with attractive
critical Casimir and repulsive magnetic dipole forces that we
have recently proposed and begun to study theoretically, and
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that we expect to be also accessible to experiments [18]. The
notable feature of this setup is that the strengths of attraction
and repulsion can be adjusted independently from each other
by simply altering two extrinsically controllable parameters:
The temperature and an external magnetic field, respectively.
The results of our density functional theory (DFT) calcula-
tions for an unbounded system have demonstrated that, given
the correct tuning of these parameters, this system undergoes
microphase separation offering the typical clusters, stripes and
bubbles.

Now, for the present study, we were particularly interested
in the time evolution of the density profile as a response
to abrupt or gradual changes of the temperature and the
magnetic field. In the hope of gaining new insights into the
aforementioned difficulties of producing regular structures in
experiments, we wanted to ascertain whether it would be
possible to guide the system from one stable state to another
in this way, and whether the fact that we have two independent
parameters to tinker with would give us an advantage.

We chose to employ the framework of dynamic density
functional theory (DDFT) for this task because it is a natural
extension of DFT and allowed us to leverage most of the
effort already put therein. Unfortunately, for infinite systems,
one stumbles across a problem. In the static case, these can
only be analyzed because the stable phases all have a periodic
density profile, so that it is sufficient to consider only a single
unit cell. However, the size of that unit cell depends on the
parameters of the system, so that it becomes necessary to
compare unit cells of different dimensions to find the true ther-
modynamic equilibrium. This implies that in the dynamical
case, the volume (and perhaps even the shape) of the unit cell
would potentially have to change over time to represent the
real evolution of the system. Since we are not aware of any
version of DDFT designed to accommodate this, we decided
to restrict ourselves solely to bounded systems.

While this meant that we could not simply use our previous
findings and jump directly into the dynamics, we thought it
in and of itself worthwhile to study the effects of competing
interactions in a finite geometry. On the one hand, because
it by no means clear whether thermodynamically stable mi-
crophases exist at all in the presence of walls, and if so, what
these might look like; on the other hand, because it should
allow for more meaningful comparisons with experiments
since these are subject to the same constraint.

We shall proceed as follows. In Sec. II, we first describe
the general setup of our model system and the interactions
between the particles. In Sec. III, we then explain how to
analyze the static properties with DFT and present phase
diagrams for square geometries of different sizes. Next, in
Sec. IV, we give an overview of DDFT and demonstrate the
dynamic behavior via the time evolution of the density profile
for multiple scenarios, before finally drawing our conclusion
in Sec. V.

II. SETUP

The experimental setup we aim to model essentially fuses
that by Zvyagolskaya et al. [19,20] with the one by Bubeck
et al. [21]. Spherical silica colloids with a paramagnetic core
and a diameter a on the order of a few microns are submerged

in a binary mixture of water and 2,6-Lutidine. Under the force
of gravity, they sediment toward the bottom of a confining
glass cell with a rectangular base area A = Lx × Ly and form
a flat monolayer (provided that they are sufficiently massive so
that thermal fluctuations of their vertical position are negligi-
ble). The cell is placed on top of a heating element to control
the temperature T and inside a homogeneous magnetic field
with flux density B perpendicular to the monolayer.

The magnetic field induces the magnetic dipole moment
M = χeffB in the colloids, where χeff is the effective magnetic
susceptibility of their paramagnetic core. Between two col-
loids whose centers are a distance r apart, the dipole-dipole
interaction leads to a long-ranged repulsion given by the po-
tential

Vmag(r) = μ0

4π

M2

r3
= μ0

4π

χ2
effB

2

r3
, (1)

with the vacuum permeability μ0.
Through contact with the aqueous solvent, the surface of

the silica colloids (and also that of the glass cell) acquire a
negative charge [22]. This causes a screened electrostatic re-
pulsion that weakens exponentially with the Debye screening
length κ−1 � a, and can be effectively approximated as a hard
core with diameter d > a [19].

Because of their negative surface charge, the colloids also
become hydrophilic and hence favor water over 2,6-Lutidine.
Close to the critical demixing temperature Tc of the binary
mixture, the confinement of the concentration fluctuations
generates an attractive critical Casimir force between two
adjacent colloids [23,24] that is described by the potential [19]

Vcas(r) = kBT

4

a

r − a
θ
[ r − a

ξ (T )

]
, (2)

where kB is the Boltzmann constant and θ is the scaling
function plotted in Fig. 1 [25,26]. The strength and range
of Vcas depend predominantly on the mixture’s bulk corre-
lation length ξ (T ) = ξ0 (|T − Tc|/Tc)−0.63 which diverges in
the limit T → Tc. In principle, colloids would become insep-
arably glued to each other as soon as their proper surfaces
came into contact, since Vcas(r) → −∞ as r → a; in practice,
though, this is very unlikely because, as measurements show
[23], the electrostatic repulsion beats the Casimir attraction

FIG. 1. The scaling function θ for the critical Casimir potential
Vcas appearing in Eq. (2).
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for very short particle separation. We note that the critical
Casimir potential given in Eq. (2) is strictly speaking only
valid for two isolated colloids. Due to their geometric ori-
gin, the critical Casimir forces are actually nonadditive and
the interaction between three or more nearby colloids cannot
be simply expressed as the pairwise sum of Vcas [27–29].
Dang et al. attribute discrepancies between the experimen-
tally determined and theoretically predicted phase diagram
of a colloidal system under the influence of critical Casimir
forces to many-body effects [30], and Paladugu et al. were
able to directly measure three-body critical Casimir forces
[31]. While they are not irrelevant, many-body effects are
unfortunately notoriously difficult to quantify and to incorpo-
rate because of their complicated dependence on the position,
orientation and geometry of the interacting objects; even for
the relatively simple case of three identical spherical colloids
there does not yet exist a comprehensive description of the
critical Casimir force. For this reason, we decided to indeed
assume pairwise additivity for the critical Casimir interaction
and neglect many-body effects of higher order. Although this
approximation might negatively affect the quantitative accu-
racy of our theoretical predictions in comparison to possible
experiments, we do not expect a considerable impact on the
qualitative behavior.

All the following calculations are for colloids with a =
3 μm, d = 3.1 μm [19] and χeff = 7.62 × 10−11 Am2T−1

[32] immersed in a water–2,6-Lutidine mixture with Tc =
307 K and ξ0 = 0.2 nm [23]. Note that, because the colloids
are confined to a flat monolayer by design, the thermody-
namics of the system are essentially two-dimensional and will
therefore have to be dealt with as such.

III. STATICS

A. Density Functional Theory

Let �
eq
μ be the grand potential of a two-dimensional

grand-canonical ensemble with chemical potential μ and
(one-particle) density distribution ρeq in equilibrium. Density
functional theory (DFT) then asserts that there exists a unique
functional �μ of the density distribution ρ such that

�eq
μ = �μ[ρeq] < �μ[ρne] (3)

for all ρne �= ρeq [33]. For a two-dimensional system with area
A and external potential Vext, this functional can be written as

�μ[ρ] = F[ρ] +
∫

A
d2r [Vext(r) − μ] ρ(r), (4)

where F = Fid + Fex denotes the intrinsic Helmholtz free-
energy functional of the system, split up into an ideal gas
part Fid and an excess part Fex. The ideal gas contribution
is exactly known [34] to be

Fid[ρ] = kBT
∫

A
d2r ρ(r) {ln[	2ρ(r)] − 1}. (5)

The choice of thermal wavelength is of no significance in
our case; we used 	 = √

π/4 d for convenience. The excess
contribution depends on the interactions between the parti-
cles in the system and is for our model best expressed as
Fex = Fhd

ex + F ci
ex.

For the approximation of the electrostatic repulsion as a
hard core with diameter d > a we use the quite accurate hard
disk functional

Fhd
ex [ρ] = kBT

∫
A

d2r φhd[n(ρ, r)] (6)

from Ref. [35], where

φhd(n) = −n1 ln(1 − n2) + 19n3 ·n3 − 5n4 ·n4 − 14n5 ·n5

48π (1 − n2)

(7)

is a function of a set n = (n1, . . . , n5) of five weighted
densities. Each weighted density nα is the convolution of a
corresponding weight function ωα with ρ,

nα (ρ, r) =
∫

A
d2r′ ρ(r′) ωα (r − r′). (8)

The weight functions are defined as

ω1(r) = δ(d − 2|r|)/(πd ),

ω2(r) = �(d − 2|r|),
ω3(r) = δ(d − 2|r|), (9)

ω4(r) = δ(d − 2|r|) r/|r|,
ω5(r) = δ(d − 2|r|) rr/|r|2,

where δ is the Dirac delta function, � the Heaviside step
function, and rr ∈ R2×2 with (rr)i j = xix j for r = (x1, x2).

We treat the competing critical Casimir and magnetic
dipole forces as a small perturbation to the hard core inter-
action and employ the random phase approximation (RPA)

F ci
ex[ρ] = 1

2

∫
A

d2r ρ(r)
∫

A
d2r′ ρ(r′)Vci(|r − r′|), (10)

with

Vci(r) =
{Vcas(d ) + Vmag(d ) if r � d,

Vcas(r) + Vmag(r) otherwise. (11)

The artificial extension of the potential into the hard core is
an empirical correction to the systematic underestimation of
correlations with RPA [36].

1. Grand-canonical minimization

Given a chemical potential μ, we now want a way to deter-
mine the equilibrium density distribution ρeq. Since we know
that �μ has a minimum at ρeq, it follows that the (functional)
derivative of �μ must vanish for ρeq. Hence, we have

0 = β
δ�μ[ρ]

δρ(r)

∣∣∣
ρ=ρeq

= β
δF[ρ]

δρ(r)

∣∣∣
ρ=ρeq

+ βVext(r) − βμ

= β
δFid[ρ]

δρ(r)

∣∣∣
ρ=ρeq

+ β
δFex[ρ]

δρ(r)

∣∣∣
ρ=ρeq

+ βVext(r) − βμ

= ln[	2ρeq(r)] − c(1)(ρeq, r) + βVext(r) − βμ

= ln
ρeq(r)

ρb
eq

− c(1)(ρeq, r) + βVext(r) − βμex
(
ρb

eq

)
, (12)

with β = (kBT )−1, the excess chemical potential

μex(ρb) = μ − μid(ρb) = μ − kBT ln(	2ρb), (13)
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the bulk density

ρb = 1

A

∫
d2r ρ(r), (14)

and the one-body direct correlation function

c(1)(ρ, r) = −δFex[ρ]

δρ(r)
. (15)

One finds that c(1)(ρ, r) = c(1)
hd (ρ, r) + c(1)

ci (ρ, r), where

c(1)
hd (ρ, r) = −

5∑
α=1

∫
A

d2r′ ∂φhd(n)

∂nα

∣∣∣
n=n(ρ,r′ )
ωα (r′ − r) (16)

and

c(1)
ci (ρ, r) = −

∫
A

d2r′ ρ(r′) βVci(|r − r′|). (17)

We can now recast Eq. (12) into the self-consistency rela-
tion

ρeq(r) = ρb
eq exp

[
c(1)(ρeq, r) − βVext(r) + βμex

(
ρb

eq

)]
(18)

and use it in a Picard iteration to minimize �μ. Starting with
an initial density distribution ρ0, we successively generate a
series (ρi )i∈N via

ρi+1(r) = αiρ
b
i exp

[
c(1)(ρi, r) − βVext(r) + βμex

(
ρb

i

)]
+ (1 − αi ) ρi(r), (19)

where the mixing parameters αi ∈ (0, 1) are chosen such that
�μ[ρi+1] < �μ[ρi] for all i ∈ N, and stop once a convergence
criterion is satisfied. Of course, the is no guarantee that one
arrives at the thermodynamically stable global minimum of
�μ; it is just as well possible to reach a metastable local
minimum. The destination primarily depends on the starting
point, and choosing a suitable ρ0 may involve some educated
guessing.

This minimization procedure can be considered grand-
canonical in the sense that it yields the grand potential as
a function of the chemical potential, which is very handy
for determining phase coexistence. If �μ has two different
minima ρA

eq and ρB
eq with equal pressure Pμ[ρA

eq] = Pμ[ρB
eq],

where Pμ[ρ] = −�μ[ρ]/A, then the phases “A” and “B” can
coexist.

2. Quasicanonical minimization

Because the chemical potential is a rather hard quantity to
grasp, it can be more practical to replace μ with the equilib-
rium bulk density ρb

eq or, equivalently, the particle number

N [ρ] = Aρb =
∫

A
d2r ρ(r) = −∂�μ[ρ]

∂μ
, (20)

by minimizing the Helmholtz free-energy functional

A[ρ] = �μ[ρ] − μ
∂�μ[ρ]

∂μ
= �μ[ρ] + μN [ρ]

= F[ρ] +
∫

A
d2rVext(r) ρ(r), (21)

which is the Legendre transform of �μ with respect to μ,
under the constraint that C[ρ] = 0 for

C[ρ] =
∫

A
d2r ρ(r) − ρb

eqA. (22)

This is accomplished by minimization of the modified func-
tional

A′[ρ] = A[ρ] − γ C[ρ]

= F[ρ] +
∫

A
d2r [Vext(r) − γ ] ρ(r) + γ ρb

eqA, (23)

which, in equilibrium, gives us

0 = β
δA′[ρ]

δρ(r)

∣∣∣∣∣
ρ=ρeq

= β
δF[ρ]

δρ(r)

∣∣∣∣∣
ρ=ρeq

+ β [Vext(r) − γ ]

= ln[	2ρeq(r)] − c(1)(ρeq, r) + βVext(r) − βγ . (24)

This can be rearranged into

ρeq(r) = exp(βγ )

	2
exp[c(1)(ρeq, r) − βVext(r)] (25)

and combined with C[ρeq] = 0 to obtain

exp(βγ )

	2

∫
A

d2r exp[c(1)(ρeq, r) − βVext(r)] = ρb
eqA, (26)

allowing us to eliminate the Lagrange multiplier γ in Eq. (25)
and arrive at the quasicanonical self-consistency equation

ρ(r) = ρb
eq

exp[c(1)(ρeq, r) − βVext(r)]
1
A

∫
A d2r′ exp[c(1)(ρeq, r′) − βVext(r′)]

. (27)

In analogy to the grand-canonical case, we construct a series
(ρi )i∈N with ρb

i = ρb
eq and A[ρi+1] < A[ρi] using the recur-

rence relation

ρi+1(r) = αiρ
b
eq

exp[c(1)(ρi, r) − βVext(r)]
1
A

∫
A d2r′ exp[c(1)(ρi, r′) − βVext(r′)]

+ (1 − αi )ρ
b
eq

ρi(r)
1
A

∫
A d2r′ ρi(r′)

(28)

and suitable mixing parameters αi ∈ (0, 1).

B. Implementation

The calculation of many quantities such as F ci
ex, nα and

c(1)
ci involves the convolution of the density distribution ρ with

some other function f ,

g(r) =
∫

A=Lx×Ly

d2r′ ρ(r′) f (r − r′). (29)

These are rather expensive to compute in real space, but can
be reduced to a simple and fast multiplication in Fourier space
with the convolution theorem: The Fourier series coefficients
of g are

ĝmn = ρ̂mn f̂ (kmn) (30)

for m, n ∈ Z and kmn = (m/Lx, n/Ly ), where

ρ̂mn = 1

A

∫
A

d2r ρ(r) exp(−i2πkmn · r) (31)
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are the Fourier series coefficients of ρ and

f̂ (k) =
∫
R2

d2r f (r) exp(−i2πk · r) (32)

is the Fourier transform of f . Attention must be paid to the
fact that this move to Fourier space treats the integral in
Eq. (29) as if it extended over all of R2, and ρ as if it were
an (Lx, Ly)-periodic function with ρ(r + R) = ρ(r) for r ∈ A
and R ∈ {(nLx, mLy ) | n, m ∈ Z}. This introduces infinitely
many artificial mirror images of the original system which
could potentially interfere with each other. The system must
therefore be isolated, which can by achieved by truncating
the competing interaction so that Vci(r) = 0 for r > rci

max =
(L2

x + L2
y )1/2 (the maximum possible distance between two

colloids), and enclosing the system in a hard wall of thickness
W = max{d, rci

max}/2. To implement the wall, we increase the
system size in both dimensions by 2W to L′

x = Lx + 2W and
L′

y = Ly + 2W , and impose the external potential

Vext(r) =
{0, if r ∈ [W,W + Lx] × [W,W + Ly],
∞, otherwise. (33)

We perform the grand-canonical and quasicanonical mini-
mization on a workstation by discretizing density distributions
on a regular grid with Nx × Ny lattice points and a resolution
of min{Nx/L′

x, Ny/L′
y} � 20/d . We combine the efficient fast

Fourier transform algorithm with the parallel computing facil-
ities of modern graphics processing units [37] to significantly
accelerate the calculations.

C. Results

The search for stable microphases in a finite system re-
quired a certain amount of trial and error since we did not
know what kind of structures to expect and look for. Naturally,
we used our findings for the infinite system as a starting point,
and at first considered something akin to a hexagonal cluster
phase with one cluster in each of the four corners of the system
and a fifth in the center to be feasible. The result of a qua-
sicanonical minimization initialized with a hexagonal cluster
pattern for the bulk packing fraction ηb = (π/4) d2ρb = 0.15,
magnetic field B = 7.5 μT, temperature T = Tc − 0.16 and
Ly = 39.5d = √

3 Lx can be seen in Fig. 2(a). While the
effects of the competing interactions are clearly evident in
that the clusters do not diffuse away but actually prevail, the
center cluster surprisingly moves to the right edge and the
clusters in the left corners acquire a slightly different shape
compared to their counterparts on the other side. This breaks
the horizontal mirror symmetry and also the twofold rotational
symmetry, suggesting a metastable state; and indeed, when the
minimization is started with a flat density profile instead, one
reaches the configuration shown in Fig. 2(b), which features
two opposing stripes or elongated clusters (the distinction is
not really clear in this case) close and parallel to either one
or the other short side, offers the expected symmetry, and
has a lower Helmholtz free energy. For lower ηb we have
found a phase with only four clusters [one in each corner; see
Fig. 2(c)], whereas for higher ηb a closed ring formed along
the walls [Fig. 2(d)].

Since we were unable to stabilize a hexagonal arrange-
ment of clusters, it seemed arbitrary to stick to Ly/Lx = √

3,

FIG. 2. Density profiles for a cell with Ly = 39.5d = √
3Lx ,

magnetic field B = 7.5 μT and temperature T = Tc − 0.16 K. For
the bulk packing fraction ηb = 0.15, the quasicanonical minimiza-
tion reaches an asymmetric, metastable state when initialized with
a hexagonal pattern (a); starting with a flat, uniform density distri-
bution leads to a symmetric stripe phase with a lower Helmholtz
free energy (b). For ηb = 0.10, a cluster emerges in each of the four
corners, whereas a ring forms for ηb = 0.30 (d).

which was of course initially chosen precisely because it is
the aspect ratio of a rectangular unit cell for a hexagonal
lattice. We therefore decided to continue with a square cell,
Lx = Ly = L. To assess the impact of the system size, we
looked at both L = 20d and L = 30d . For Lx = Ly, we have
likewise found a cluster phase for lower ηb [Figs. 3(b) and
3(f) for L = 30d and Fig. 4(a) for L = 20d] and a ring phase
for higher ηb [Figs. 3(c) and 3(g) for L = 30d and Fig. 4(b)
for L = 20d]. However, we did not discover a stripe phase as
we did for Ly = √

3Lx; this makes sense, though, because a
square geometry has a 4-fold rotational symmetry that would
by broken by a stripe pattern. For very low and very high ηb,
the system loses any distinct patterns and acts as an almost
uniform vapor [Figs. 3(a) and 3(e)] or liquid [Figs. 3(d) and
3(h)], respectively.

For L = 30d and higher magnetic fields, the ring phase can
assume a curious variety of shapes upon increasing ηb: While
for B = 8.7 μT and ηb = 0.19, we have a rather thin ring
that encloses a roughly square region [Fig. 3(g)], this region
morphs into a four-leaf clover for ηb = 0.28, a horseshoe for
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FIG. 3. Equilibrium density profiles for a square cell with side
length L = 30d , temperature T = Tc − 0.16 K and various values of
the magnetic field strength B and the bulk packing fraction ηb. With
increasing ηb, we can observe a vapor phase [(a) and (e)], a cluster
phase [(b) and (f)], a ring phase [(c) and (g)] and a liquid phase
[(d) and (h)].

FIG. 4. Equilibrium density profiles for a square cell with side
length L = 20d , temperature T = Tc − 0.16 K and magnetic field
strength B = 7.8 μT. We find a cluster phase for the bulk packing
fraction ηb = 0.19 (a) and a ring phase for ηb = 0.27 (b).

FIG. 5. Different manifestations of the ring phase for a square
cell with side length L = 30d , temperature T = Tc − 0.16 K, and
magnetic field strength B = 8.7 μT. The region enclosed by the
ring looks like a four-leaf clover for ηb = 0.28 (a), a horseshoe
for ηb = 0.34 (b), a slit for ηb = 0.38 (c), and a small disk for
ηb = 0.40 (d).

ηb = 0.34, and a slit for ηb = 0.38 before ending up as a
small disk for ηb = 0.40 [Figs. 5(a)–5(d), respectively]. The
fact that the slit violates the fourfold rotational symmetry and
the horseshoe also the vertical mirror symmetry may indicate
that the ring phase is only metastable for intermediate bulk
packing fractions and that more stable phases exist of which
we are not aware; but this is hard to test as it necessitates
correctly guessing a priori how these phases might look like.

The observation that clusters and rings tend to form in the
corners or along the walls of the cell, respectively, can be
explained by the long-ranged repulsion between the colloids:
Since there are no particles outside the cell to compensate the
repulsion within, the structures are pushed apart toward the
system border [38].

The effects of confinement in systems with microphase
separation have already been the target of several studies.
Serna et al. investigated a three-dimensional colloidal system
with competing interactions and focused on the hexagonal
cylindrical phase [39], which is similar to the two-dimensional
hexagonal cluster phase extended in the perpendicular direc-
tion. They found that this phase can also be stable when
confined to channels with hard walls and a triangular or
hexagonal cross-section, i.e., a shape compatible with the
equilibrium pattern in the bulk; it would not be surprising if
we saw the same behavior in our system, but we have so far
only looked at rectangular cell geometries. For square cross-
sections, the cylinders form in some cases a square lattice
comparable to the cluster phase we observed in a square cell;
however, whereas we never encountered a stable phase with
more than four clusters, this restriction does not seem to hold
for cylinders. Interestingly, for larger chemical potentials (and
thus particle densities), Serna et al. also found analogs of

042608-6



STATICS AND DYNAMICS OF A FINITE … PHYSICAL REVIEW E 102, 042608 (2020)

the ring phase in the form of (possibly multiple concentric)
tubes parallel to the channels. Pękalski et al. likewise observed
concentric rings in their study of a two-dimensional trian-
gular lattice model with competing interactions in hexagonal
confinement [40]. In a two-dimensional system with a short-
ranged Yukawa attraction, long-ranged Coulomb repulsion
and a circular logarithmic trap, Xu et al. found cluster and
ring structures along with other more exotic ones [41]; similar
patterns emerged in a two-dimensional system studied by Liu
et al., featuring a short-ranged exponential attraction, long-
ranged Yukawa repulsion and circular quadratic trap [42].

Without making any claims as to their completeness, we
have calculated phase diagrams for T = Tc − 0.16 K that
incorporate the vapor, cluster, ring and liquid phases by de-
termining their points of coexistence for a range of magnetic
field strengths B. For two adjacent phases “A” and “B”, we
vary μ until we find the coexistence chemical potential μc

for which the corresponding equilibrium density distributions
ρA

eq and ρB
eq give rise to the same pressure, Pμc [ρ

A
eq] = Pμc [ρ

B
eq].

The bulk packing fractions of the states of coexistence are then
plotted versus the associated magnetic field. The resulting
phase diagram for L = 30d is displayed in Fig. 6(a), that for
L = 20d in Fig. 6(b). Both look very similar and show that
the cluster phase is remarkably narrow with regard to ηb in
relation to the ring phase and that it borders on rather wide
regions of coexistence, especially for lower B. This stands
in marked contrast the phase diagram for the infinite system
in Ref. [18], where the width of the cluster, lamellar and
bubble phases are almost equal and the gap separating them
is comparatively thin. The difference in width between the
cluster and the ring phase may indicate that both the lamellar
and bubble patterns morph into a ring structure when confined
to a square geometry.

The phase diagram for L = 30d offers an interesting fea-
ture that the one for L = 20d does not have: The cluster and
ring phases overlap to some extent in that for a small range of
bulk packing fractions, 0.17 � ηb � 0.20, the system can be
in either of the two phases, depending on the magnetic field;
this means that it should be possible to induce a transition
from one phase to the other by altering B while keeping ηb

constant, which is something to keep in mind for our study of
the dynamics that is about to follow.

IV. DYNAMICS

A. Dynamic density functional theory

The trajectories [ri(t )]i∈{1,... ,N} of a system of N colloids
submerged in a solvent can be described by a coupled set of
Langevin equations,

m
d2ri(t )

dt2
= − ∇Vext(ri ) − ∇

N∑
j=1 ( j �=i)

Vint(|r − r j |) − γ
dri(t )

dt

+ ϕi(t ), (34)

where the terms on the right-hand side correspond to the ex-
ternal force acting on the ith colloid, the interparticles forces
due to the pair interaction potential Vint, the Stokes drag with
friction coefficient γ , and a stochastic force ϕi to account

FIG. 6. Phase diagrams for a square cell with L = 30d (a) and
L = 20d (b) at temperature T = Tc − 0.16 K. Filled symbols show
the magnetic field strength B and bulk packing fraction ηb of the
coexistence states of adjacent phases; the regions of coexistence in
between are hatched. Unfilled symbols mark the state points for the
density profiles shown in Figs. 3 and 4. For L = 30d , but not for
L = 20d , the cluster and ring phases overlap to some extent in that
for certain ηb (0.17 � ηb � 0.20), the system can be in either of the
two phases, depending on B.

for the thermal agitation of the colloid as a result of random
collisions with the molecules of the solvent. For colloids, the
drag is so large that, compared to the time scales we are
interested in, any inertial motion is damped down practically
immediately. We can therefore consider the left-hand side to
be negligible and find that

γ
dri(t )

dt
= −∇

[
Vext(ri ) +

∑
j �=i

Vint(|r − r j |)
]

+ ϕi(t ). (35)

Solving this stochastic differential equation and defining the
instantaneous density distribution at time t as

ρt (r) =
〈

N∑
i=1

δ[r − ri(t )]

〉
, (36)

042608-7



KEVIN MAROLT AND ROLAND ROTH PHYSICAL REVIEW E 102, 042608 (2020)

where 〈 · 〉 denotes the average over all possible realization of
the stochastic force, one can derive [43–45] that

γ
∂ρt (r)

∂t
= ∇

[
kBT ∇ρt (r) + ρt (r) ∇Vext(r)

+
∫

d2r′ ρ (2)
t (r, r′) ∇Vint(r − r′)

]
. (37)

Unfortunately, the instantaneous two-particle density distribu-
tion

ρ
(2)
t (r, r′) =

〈
N∑

i, j=1

δ[r − ri(t )] δ[r′ − r j (t )]

〉
(38)

is not known in general. An approximation that has proved
quite successful is to use the exact equilibrium relation∫

d2r′ ρ (2)
eq (r, r′) ∇Vint(r − r′)

= −kBT ρeq(r) ∇c(1)(ρeq, r) (39)

also in nonequilibrium by replacing ρeq with ρt . Equation (37)
can then be cast into the continuity equation

∂ρt (r)

∂t
= −∇ · jt (r), (40)

with the instantaneous particle current

jt (r) = −D{∇ρt (r) + ρt (r) ∇[βVext(r) − c(1)(ρt , r)]}

= −Dρt (r) β∇δA[ρt ]

δρt (r)
, (41)

where D = kBT/γ is the diffusion coefficient and A is the
Helmholtz free-energy functional. This is the central result of
density functional theory (DDFT) that, given an initial density
profile ρ0 at t = 0, allows us to compute the time evolution of
ρt by (numerically) integrating Eq. (40).

It is worth noting that the dynamics correctly preserve the
number of particles in a closed system since

dN [ρt ]

dt
=

∫
A

d2r
dρt (r)

dt
= −

∫
A

d2r ∇ · jt (r)

= −
∫

∂A
dA(r) · jt (r) = 0, (42)

because ρt (r) = 0 and therefore jt (r) = 0 for r ∈ ∂A. Further-
more, it is easily shown that

dA[ρt ]

dt
=

∫
A

d2r
δA[ρt ]

δρt (r)

∂ρt (r)

∂t

= −βD
∫

A
d2r ρt (r)

[
∇ δA[ρt ]

δρt (r)

]2

� 0, (43)

which means that the Helmholtz free energy will only ever de-
crease over time. Last, if ρ0 = ρeq, then ρt = ρeq and A[ρt ] =
A[ρeq] for all t, because

δA[ρeq]

δρeq(r)
= 0. (44)

B. Implementation

As in the static case, many calculations are more easily
performed in Fourier space. This of course again includes

any convolutions, but also the spatial derivatives that enter in
Eqs. (40) and (41): The Fourier transform of g(r) = ∇ f (r) for
some function f is simply ĝ(k) = ik f̂ (k).

Furthermore, Eq. (40) can be more accurately integrated
in Fourier space using a method known as exponential time
differencing [46,47]. Expressing this equation in real space as

1

D

∂ρt (r)

∂t
= ∇2ρt (r) + σt (r), (45)

with σt (r) = ∇ · [ρt (r) ∇{βVext(r) − c(1)(ρt , r)}], its Fourier
transform is given by

1

D

∂ρ̂t (k)

∂t
= −k2ρ̂t (k) + σ̂t (k). (46)

Formally, this differential equation has the exact solution

ρ̂t+�t (k) = ρ̂t (k) exp(−Dk2�t )

+
∫ �t

0
dτ D σ̂t+τ (k) exp[−Dk2(�t − τ )], (47)

which is not that useful, unfortunately, since the right-hand
side implicitly depends on ρ̂t+τ for τ ∈ [0,�t] through σ̂ .
However, if �t is sufficiently small so that σ̂t+τ � σ̂t for
τ ∈ [0,�t], then we can approximate the integral analytically
and arrive at

ρ̂t+�t (k) � ρ̂t (k) exp(−Dk2�t )

+ σ̂t (k)

k2 [1 − exp(−Dk2�t )]. (48)

We use this relation to successively evolve ρt in time with
steps of �t/τB = 5 × 10−4, where τB = d2/D is the so-called
Brownian time; this appeared to give a good accuracy at mod-
erate computational costs. We check that every step indeed
lowers the Helmholtz free energy as per Eq. (43).

DDFT is incompatible with the hard walls as implemented
for the statics because the external potential and the density
distribution have a discontinuity at the wall, and the spatial
derivatives in Eq. (41) become therefore ill-defined. To avoid
this problem, we slightly soften the wall up by introducing a
thin transition area of thickness w between the proper system
and the wall where the external potential smoothly increases
from V trans

ext (0) = 0 to V trans
ext (w) = V wall

ext according to

V trans
ext (z) =

(
−20

z7

w7
+ 70

z6

w6
− 84

z5

w5
+ 35

z4

w4

)
V wall

ext .

(49)

In this case, the competing interaction potential should be
truncated to rci

max = [(Lx + 2w)2 + (Ly + 2w)2]1/2 and the ef-
fective system size increased to L′

x = Lx + 2 (W + w) and
L′

y = Ly + 2 (W + w) with W = max{d, rci
max}/2. Since a

continuous external potential requires V wall
ext < ∞, we use

V wall
ext = 50 kBT , which is sufficiently high to practically pre-

vent the particles from overcoming the walls. In combination
with w = d , this soft wall is barely distinguishable from a
hard wall while still allowing for well-behaved dynamics.

C. Results

Our study of the dynamics focused on the reaction of the
system to changes of B and T while keeping L and ηb fixed.
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FIG. 7. Density profile for y = L/2 of the fluid configurations
with B = 0 used as the initial states for the dynamics. For equal bulk
packing fractions, the profiles for L = 20d and T = Tc − 0.2 K are
very similar to those for L = 30d and T = Tc − 0.195 K. At equal
temperatures, the differences would be more significant.

More precisely, we wanted to answer the following question:
Starting out with some initial equilibrium state at (Bt , Tt ) =
(Bi, Ti ) for t < 0, how do we need to vary the magnetic field
and temperature over time to eventually reach the stable con-
figuration at a given final state (Bt , Tt ) = (Bf, Tf ) for t → ∞?
We were particularly interested in paths that lead from stable
liquid states with only weak attraction and no repulsion (and
hence no competing interactions) into the microphase regime,
ideally arriving at the cluster and ring phases discussed in
Sec. III. For L = 30d , ηb = 0.19, and Tf = Tc − 0.16 K, we
targeted the cluster state at Bf = 7.2 μT [Fig. 3(b)] and the
ring state at Bf = 8.7 μT [Fig. 3(g)], whereas for L = 20d ,
Tf = Tc − 0.16 K and Bf = 7.8 μT, we aimed for the cluster
state at ηb = 0.19 [Fig. 4(a)] and the ring state at ηb = 0.27
[Fig. 4(b)]. We chose the fluid configuration at Bi = 0 and
Ti = Tc − 0.195 K as starting point for L = 30d , and Ti =
Tc − 0.2 K for L = 20d . We opted for these slightly differ-
ent temperatures because the initial density distributions for
L = 20d and L = 30d are then qualitatively very similar for
equal bulk packing fractions, as demonstrated by Fig. 7.

The most direct way to transition from (Bi, Ti ) to (Bf, Tf ) is
to perform an instantaneous, discontinuous jump at t = 0,

(Bt , Tt ) =
{(Bi, Ti ) for t < 0,

(Bf, Tf ) otherwise. (50)

Figure 8 shows what happens when this method is used in
an attempt to go from the fluid to the cluster state for L =
30d . After a short time [t/τB = 10, Fig. 8(b)] the increased
attraction, as a consequence of abruptly raising the temper-
ature closer toward Tc, causes the particles to aggregate into
numerous small clusters and thin stripes. The structures in the
center of the system then coalesce into two rings, whereas
the outer stripes contract and separate from the clusters in
the corners [t/τB = 30, Fig. 8(c)]. Eventually, the two central
rings merge into one large cluster and the outer stripes shrink
into a roughly elliptical shape, resulting in a total of nine
cluster of different sizes kept apart by the magnetic repulsion
[t/τB = 900, Fig. 8(d)]. This configuration is only metastable
since it has a higher Helmholtz free energy than the one with

FIG. 8. Dynamic evolution of the density profile of a system with
L = 30d and ηb = 0.19 after equilibrating into a fluid state at B = 0
and T = Tc − 0.195 K (a), and then abruptly setting B = 7.2 μT and
T = Tc − 0.16 K at t = 0. See the Supplemental Material [48] for an
animation.

only four clusters [Fig. 3(b)]. We have seen the same general
behavior also when targeting the ring phase or when L = 20d .

The observed tendency that, for a liquid initial density
profile, the sudden imposition of competing interactions first
leads to the formation of many small agglomerations due to
the strong short-range attraction, which then combine until
they are large enough for the weak long-range repulsion to
take over, presents in our view the biggest hurdle for the
emergence of stable configurations in a dynamic evolution the
system. This would especially concern experiments, where
any slight asymmetry would only become more pronounced
over time, causing a haphazard growth of highly irregular
structures.

We next checked whether it would be an improvement to
continuously transition from the initial to the final parameters
over some nonzero but finite time τt. The simplest choice is to
connect (Bf, Tf ) and (Bi, Ti ) through a linear path, i.e.,

(Bt , Tt ) =
⎧⎨
⎩

(Bi, Ti ) for t < 0,

(Bi, Ti ) + (�B,�T ) t
τt

for 0 � t < τt,

(Bf, Tf ) otherwise,
(51)

with �B = Bf − Bi and �T = Tf − Ti. This indeed turned out
to be a successful strategy for reaching the ring phase, as as
demonstrated by Fig. 9 for L = 30d . Due to the increasing
attraction, the colloids are first drawn toward the center of the
cell and begin to form a smaller squarish ring that is thicker
near the corners. Over time, the thickness equalizes and the
ring starts to grow in diameter as the repulsion between oppo-
site points of the ring becomes stronger. After about 2000 τB,
the system has essentially reached the stable equilibrium
[cf. Figs. 9(h) and 3(g)]. Figure 10 shows the magnetic field
and the temperature as a function of time. We chose a transi-
tion time of τt = 1000 τB, which seemed to be near the lower
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FIG. 9. Dynamic evolution of the density profile of a system
with L = 30d and ηb = 0.19 after equilibrating into a fluid state at
B = 0 and T = Tc − 0.195 K (a), and then going quasilinearly to
B = 8.7 μT and T = Tc − 0.16 K during the period [0, 1000 τB] as
shown in Fig. 10. After about 2000 τB, the system has practically
reached the stable ring configuration [cf. panel (h) and Fig. 3(g)].
See the Supplemental Material [48] for an animation.

end of the range of values that produce a ring. Since regular
recalculation of the competing interactions can become quite
expensive, we approximated Eq. (51) with a staircase function
of step length τs = 5 τB,

(Bt , Tt ) =
⎧⎨
⎩

(Bi, Ti ) for t < 0,

(Bi, Ti ) + (�B,�T ) �t/τs
τt/τs

for 0 � t < τt,

(Bf, Tf ) otherwise,

(52)

which significantly reduces the frequency of the required
updates.

FIG. 10. Magnetic field Bt and temperature Tt as a function of
time t during the dynamic evolution from the fluid to the ring config-
uration for L = 30d and ηb = 0.19 shown in Fig. 9.

We observed a high sensitivity to the choice of the initial
state. For example, if we start with a slightly lower temper-
ature, Ti = Tc − 0.20 K, then the initial density profile is too
uniform [Fig. 11(a)] and a cluster develops in the middle of
the ring [Fig. 11(b)]; if, however, we set out with a marginally
higher temperature, Ti = Tc − 0.19 K, then the colloids are too
concentrated near the center [Fig. 11(c)] and eventually form
a single large cluster instead of a ring [Fig. 11(d)].

Unfortunately, this (quasi)linear change of the parameters
into the microphase regime is not a universal solution that is
guaranteed to result in a stable state if only the right initial
temperature and transition time is picked. For instance, going
from the fluid at (Bi, Ti ) = (0, Tc − 0.195 K) to the cluster

FIG. 11. Dynamic evolution of the density profile of a system
with L = 30d and ηb = 0.19. After equilibrating into a fluid state at
B = 0 and T = Tc − 0.20 K (a) and then going quasilinearly to B =
8.7 μT and T = Tc − 0.16 K during the period [0, 1000 τB], a ring
with a central cluster eventually develops (b). When starting with
T = Tc − 0.19 K instead (c), only a single large cluster forms (d).
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FIG. 12. Dynamic evolution of the density profile of a system
with L = 30d and ηb = 0.19 after equilibrating into a fluid state
at B = 0 and T = Tc − 0.195 K (a), and then going to B = 7.2 μT
and T = Tc − 0.16 K during the period [0, 1500 τB] according to
Eqs. (53) and (54) as shown in Fig. 13. After about 2850 τB,
the system has practically reached the stable cluster configuration
[cf. panel (h) and Fig. 3(b)]. See the Supplemental Material [48] for
an animation.

state at (Bf, Tf ) = (7.2 μT, Tc − 0.16 K) over τt = 1000 τB for
L = 30d and ηb = 0.19, does not produce four clusters as in
Fig. 3(b), but a metastable ring instead. This does not come
as a large surprise, however: Since the early-time dynamics
are dominated by the temperature-dependent attraction, the
evolution toward two final states with equal temperature and
only slightly different magnetic fields (i.e., Bf = 7.2 μT for
the cluster vs. Bf = 8.7 μT for the ring state) can be expected
to be very similar in the beginning; and once a solid ring has
developed in this stage, it becomes hard (if not impossible,
even) to break it apart into clusters by increasing the repulsion.

FIG. 13. Magnetic field Bt and temperature Tt as a function of
time t during the dynamic evolution from the fluid to the cluster
configuration for L = 30d and ηb = 0.19 shown in Fig. 12.

Our findings so far suggest that the path taken through
parameter space into the microphase regime has a larger influ-
ence on the dynamics and the ensuing structure of the system
than the endpoint of that path itself, and that similar paths lead
to similar states (which may very well only be metastable).

Devising a route from the fluid into the cluster phase
proved rather challenging and took dozens of failed attempts
until we finally came upon a strategy that seemed to work
reliably. As before, the temperature is simply increased quasi-
linearly from Ti to Tf over a transition time τt with a step length
of τs � τt,

Tt =
⎧⎨
⎩

Ti for t < 0,

Ti + (Tf − Ti )
�t/τs
τt/τs

for 0 � t < τt,

Tf otherwise.
(53)

The magnetic field, however, first remains at Bi until some
time τm ∈ (0, τt ), at which point it jumps instantaneously to an
intermediate value Bm ∈ (Bi, Bf ) and then goes quasilinearly
to Bf at time τt,

Bt =
⎧⎨
⎩

Bi for t < τm,

Bm + (Bf − Bm) �(t−τm )/τs
(τt−τm )/τs

for τm � t < τt,

Bf otherwise.
(54)

Again, the correct choice of Ti, τt, Bm, and τm (we always use
Bi = 0 for an initial fluid configuration) is crucial, but also not
that difficult in the end, as we shall demonstrate. Figure 12
shows the evolution of the density profile for L = 30d and
ηb = 0.19 from Bi = 0 and Ti = Tc − 0.195 K to Bf = 7.2 μT
and Tf = Tc − 0.16 K using the method just described; the
corresponding magnetic field and temperature as a function of
time can be seen in Fig. 13. The transition time τt, and hence
the rate of change of the temperature, needs to be chosen
such that after some time, a ring forms that has four thick
corners connected by very thin and short bridges [Fig. 12(b)];
for the current example, we settled on τt = 1500 τB. At one
point, the corners of the ring are the most pronounced and
the links between them the weakest; this is the moment τm

when we turn the magnetic field up to Bm. For the present
case, we chose τm = 350 τB and Bm = 0.6 Bf. The sudden
increase of the repulsion blows the ring apart and severs the
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FIG. 14. Dynamic evolution of the density profile of a system
with L = 30d , ηb = 0.19 and T = Tc − 0.16 K after equilibrating
into a cluster state at B = 7.2 μT [cf. panel (a) and Fig. 3(b)], and
then going to B = 8.7 μT during the period [0, 2250 τB] as shown
in Fig. 15. After about 2500 τB, the system has practically reached
the stable ring configuration [cf. panel (h) and Fig. 3(g)]. See the
Supplemental Material [48] for an animation.

connections between its corners [Fig. 12(c)]. As the attraction
gets stronger, the remains gather into four clusters [Figs. 12(d)
and 12(e)] that become more distinct over time and repel each
other [Figs. 12(f) and 12(g)] as they slowly reach their final
position while the system approaches a stable equilibrium [cf.
Figs. 12(h) and 3(b)].

Until now, we have only looked at the rather complicated
dynamics from the fluid to the cluster or ring phase. The
opposite direction turned out to be much simpler: Starting
with a cluster or ring configuration, an instantaneous jump
in parameter space into the fluid regime with B = 0 unsur-
prisingly always led to the dissolution of the structures and
eventually resulted in a stable state.

FIG. 15. Magnetic field Bt and temperature Tt as a function of
time t during the dynamic evolution from the cluster to the ring
configuration for L = 30d and ηb = 0.19 shown in Fig. 14.

More interesting are transitions from the cluster to the ring
phase, and vice versa. Recall that we found these two phases
to overlap for L = 30d and T = Tc − 0.16 K [Fig. 6(a)],
which means that there exists both stable cluster and ring con-
figurations for equal packing fractions but different magnetic
fields. Examples for ηb = 0.19 are the previously targeted
cluster state at B = 7.2 μT [Fig. 3(b)] and the ring state at
B = 8.7 μT [Fig. 3(g)]. Our attempts to take the magnetic
field directly from one value to the other, be it abruptly or
(quasi)linearly, failed; either the clusters would recede further
into the corners of the system or the ring would contract
and shrink, but no phase transition could be observed. To
destabilize and leave one phase, we first had to go beyond
the magnetic field at which we actually wanted to end up.
Figure 14 shows the dynamic evolution from the cluster to
the ring state when the magnetic field is varied according
to Fig. 15. By changing B from 7.2 μT to 12.7 μT at t = 0,
the cluster are blown apart and the particles are subsequently
pushed against the walls. After a thin ring has formed at
t = 250 τB, we quasilinearly dial B very slowly (otherwise,
small clusters would develop inside the ring) down to 8.7 μT
for t/τB ∈ [250, 2250]. By approximately t = 2500 τB, the
density profile has basically converged to equilibrium [cf.
Figs. 14(h) and 3(g)]. Unfortunately, we were unable to find
a solution for the other way around, i.e., breaking a ring
into four clusters by only manipulating the magnetic field; if
B is brought too far below 7.2 μT, then the tightening ring
eventually just becomes one large cluster.

Let us last also take a brief look at the smaller system
with L = 20d . The general behavior we observed proved to
be more or less identical to the one for L = 30d . In particular,
the same strategies could be used to go from a fluid to a clus-
ter [Figs. 16(a)–16(d) and 17(a)] or ring [Figs. 16(e)–16(h)
and 17(b)] configuration. Interestingly, however, the required
transition times for L = 20d (τt = 150 τB into the cluster and
τt = 100 τB into the ring phase) are an order of magnitude
shorter than those for L = 30d . It turns out that transition
times can also be too long; for instance, using τt = 1000 τB

instead of τt = 100 τB produces a single large cluster instead
of a ring for L = 20d .
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FIG. 16. Left column: Dynamic evolution of the density profile of
a system with L = 20d and ηb = 0.19 after equilibrating into a fluid
state at B = 0 and T = Tc − 0.2 K (a), and then going to B = 7.8 μT
and T = Tc − 0.16 K according to Fig. 17(a) during the period
[0, 150 τB]. After about 750 τB, the system has practically reached
the stable cluster configuration [cf. panel (d) and Fig. 4(a)]. Right
column: The same scenario, but with ηb = 0.27 and the transition
shown in Fig. 17(b) during [0, 100 τB]. After about 750 τB, a stable
ring has formed [cf. panel (h) and Fig. 4(b)]. See the Supplemental
Material [48] for animations.

V. CONCLUSION

We have studied a finite two-dimensional colloidal system
with attractive critical Casimir and repulsive magnetic dipole
forces that can be tuned easily and independently from each
other via the temperature and the strength of an external mag-
netic field, respectively.

Our analysis of the statics by means of density functional
theory in square geometries with side lengths of 20 and 30
colloid diameters revealed evidence for microphase separa-

FIG. 17. Top: Magnetic field Bt and temperature Tt as a function
of time t during the dynamic evolution from the fluid to the cluster
configuration for L = 20d and ηb = 0.19 shown in Figs. 16(a)–
16(d). Bottom: The same, but for the dynamic evolution from the
fluid to the ring configuration for L = 20d and ηb = 0.27 shown in
Figs. 16(e)–16(h).

tion. For certain temperatures and magnetic field strengths, we
were able to identify four phases that alternatingly become
stable as the bulk packing fraction is increased: A vapor, a
cluster, a ring, and a liquid phase. The density distributions
of the vapor and the liquid phase are almost uniform and
thus rather unremarkable, whereas those of the cluster and
ring phase display clear signs of the competing interactions
between the particles: Due to a strong short-ranged attraction,
the colloids form dense cluster or ring structures that are kept
apart by a weak long-ranged repulsion. For a fixed tempera-
ture, we compiled phase diagrams that show which phases are
stable for which combinations of the bulk packing fraction and
the magnetic field. We noticed that the cluster phase is only
stable for a relatively small range of bulk packing fractions
and that it is separated from the vapor and ring phases by wide
regions of coexistence. An interesting feature only present in
the larger system is an overlap between the cluster and ring
phases in the sense that for certain packing fractions, one can
in principle transition from either phase to the other just by
changing the magnetic field.

We then went on to investigate the dynamics of the system
via dynamic density functional theory. Going from a fluid
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configuration with only minimal attraction and no repulsion
(by cooling the system further below the critical temperature
and turning the magnetic field off) into the cluster or ring
regime of the phase diagram by varying the temperature and
the magnetic field over time, we tried to ascertain how the path
taken through parameter space affects the outcome of the tem-
poral evolution of the density profile. We found that a single
instantaneous jump from the initial to the final parameters al-
ways resulted in metastable states with a multitude of smaller
structures, a consequence of the development of many local
aggregations due to the suddenly increased attraction. In fact,
our research suggests that different strategies are necessary to
generate different stable configurations. For the assembly of a
ring, a linear change of the temperature and the magnetic field
proved successful, provided that a suitable initial state and
transition time are chosen. A slight modification, whereby the
magnetic field at first remains disabled for a certain amount
of time before it is abruptly turned on to some intermediate
value and then increased linearly to its final strength, was

also able to produce a stable cluster configuration. These two
methods worked for both the smaller and the larger system,
but the latter required much slower transitions than the former.
Where the two phases overlapped, we showed that it is even
possible to go from a cluster to a ring state by only altering
the magnetic field, but failed to discover a way to do so for the
opposite direction.

Our findings demonstrate that it is highly nontrivial to
produce a configuration with a specific structure in a system
with competing interactions, even if it is thermodynami-
cally stable. Carefully choosing a path into and inside the
microphase regime turns out to be crucial; otherwise, the
system is more likely than not to reach a metastable state,
potentially with a highly irregular density profile. We sus-
pect that this could be an important reason for the difficulty
to observe stable and symmetric configurations in experi-
ments, and would be very interested to see whether our
proposed solutions work as well in practice as they do in
theory.
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