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Electroviscous effect for a confined nanosphere in solution
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A charged colloidal particle suspended in an electrolyte experiences electroviscous stresses arising from
motion-driven electrohydrodynamic phenomena. Under certain conditions, the additional contribution from
electroviscous drag forces to the total drag experienced by the moving particle can lead to measurable deviations
of particle diffusion coefficients from values predicted by the well known Stokes-Einstein relation that describes
diffusive behavior of small particles in an unbounded charge-free fluid. In this study, we investigate the role of
electroviscous stresses on nanoparticle diffusion in confined geometries using both simulations and experiment.
We compare our experimental measurements with the results of a numerically solved continuum model based on
the Poisson-Nernst-Planck-Stokes system of equations and find good agreement between experiment and theory.
Depending on the radius of the counterion species in solution and the degree of confinement, we find that the
viscous drag on polystyrene nanoparticles can be augmented by approximately 10–25% compared to the values
predicted by pure hydrodynamic models in the absence of free charge in the fluid. This enhancement corresponds
approximately to a 5–10% increase compared to the electroviscous contribution for a charged particle in an
unbounded fluid. Contrary to recent reports in the experimental literature, we find neither experimental nor
theoretical evidence of an anomalously large enhancement of electroviscous forces on a confined charged
nanoparticle in solution.

DOI: 10.1103/PhysRevE.102.042607

I. INTRODUCTION

Transport of colloidal particles and macromolecules in
confined geometries is of great interest in a wide range of
biological [1–4], physical, and engineering contexts [5–8].
For a particle undergoing random thermal motion in an un-
bounded fluid, the diffusion coefficient is given by the well
known Stokes-Einstein relation, D∞ = kBT/γ , where kB and
T represent Boltzmann constant and temperature, respec-
tively. Here, γ = 6πμa is a friction coefficient derived from
Stokes’ law which gives the drag force exerted on a spherical
particle of radius, a, freely moving in a fluid of viscosity, μ.
Viscous forces on a moving object derive from long-ranged
hydrodynamic flow fields that can be strongly modified by
the presence of boundaries. The problem of calculating the
viscous retardation due to the presence of hydrodynamic
boundaries in the vicinity of a moving object has received
substantial theoretical attention [9–15]. These studies have
shown that the friction coefficient γ is indeed modified due
to the presence of boundaries, and the diffusion coefficient
of a confined particle, which is a common experimental mea-
surable, can turn anisotropic and particle-geometry dependent
[16]. Experiments on micro- and nanoparticles confined in
parallel-plate slits or near a single wall have tested these
models and have demonstrated that the measurements are in
good agreement with theory, with the measurements in some
cases lying within 5% of the theoretical prediction [17–20].
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The case of a charged diffusing particle adds an important
and interesting dimension to the general problem of confined
diffusion, and is the focus of this study. Colloidal particles or
molecules in the fluid phase generally acquire net electrical
charge on account of associative or dissociative reactions of
chemical groups they carry [21]. Screening of the electrical
potential at the surface by a cloud of oppositely charged
counterions in solution creates an electric double layer (EDL)
around the particle whose thickness is of the order of the

Debye screening length κ−1 =
√

ε0εrkBT/
∑

z2
i n0

i e2. Here, e,

εr, ε0, n0
i , and zi are the elementary charge, relative permittiv-

ity of the aqueous medium, permittivity of free space, bulk
concentration, and valence of the ith ionic species, respec-
tively. Perturbation of the equilibrium distribution of ions in
the EDL by an external electrical or flow field, or indeed
due to thermal motion of the particle, can lead to additional
forces on the particle, modifying the overall drag force. The
phenomenon has been termed the electroviscous effect and
has been examined theoretically for particles suspended in a
bulk fluid [22–26].

For a slowly moving particle in an unbounded fluid the
equilibrium distribution of ions is perturbed by the flow in-
duced by the motion of the particle, but the counterion cloud
can still follow the moving object through the fluid. At steady
state, the particle together with its double layer form a system
which is electrically equivalent to an open circuit; i.e., there is
zero net electric current in the particle and its double layer
at steady state. This implies that for small distortions, an
electric field must be induced such that its conductive current

2470-0045/2020/102(4)/042607(14) 042607-1 ©2020 American Physical Society

https://orcid.org/0000-0001-8685-0222
https://orcid.org/0000-0002-7891-3825
https://orcid.org/0000-0003-1274-7155
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.102.042607&domain=pdf&date_stamp=2020-10-13
https://doi.org/10.1103/PhysRevE.102.042607


ALI BEHJATIAN et al. PHYSICAL REVIEW E 102, 042607 (2020)

cancels the current due to convection of charges by the fluid
within the EDL. The induced electric field can affect the
motion of particle in two ways: first, the field can act on the
charge carried by particle, and second, the field induces an
electroosmotic flow by acting on the mobile ions in the fluid.
These mechanisms enhance the viscous drag by introducing
an additional force known as the electroviscous force, which
is proportional to velocity of the particle in the regime of small
Péclet numbers where the distortions are negligible. The effect
of electrokinetic phenomena on the motion of small particles
in free solutions has been investigated in numerous studies
[23,24,27,28]. Ohshima et al. [24] examined the impact of
charges on the sedimentation of charged colloidal particles
in an electrolyte. Using a semianalytical approach to solve
the coupled linearized Poisson-Nernst-Planck-Stokes (PNPS)
equations for arbitrary EDL thickness and surface potentials,
the analysis suggested that the terminal velocity of the particle
can be reduced by a maximum of 8% when the EDL thickness
is of the order of one particle radius; i.e., κa = 1. In other
words, the study revealed that the contribution of electro-
statics to the overall drag is maximal when the particle size
is comparable to the spatial extent of the counterion cloud.
Typically, the thickness of the neutralizing cloud of ions in
aqueous systems is in the range of 1–40 nm which implies
that the electroviscous effect is important for nanometer scale
particles where the double layer thickness, κ−1 is comparable
to the size of particle, a.

A charged colloidal particle undergoing Brownian motion
performs successive jumps due to random collisions with
solvent molecules. The characteristic time of a jump is the
momentum relaxation timescale, given by τ = mp/γ , where
mp is the mass of particle and γ is the associated friction
coefficient [29]. This timescale τ is the time required for a
particle to be brought to rest by the viscous force acting on it
after it has received a random kick from the solvent. A natural
velocity scale for the Brownian motion of a particle can be
obtained by assuming thermal equilibrium between the parti-
cle and the surrounding fluid. Following this assumption, the
velocity distribution of the particle will be Maxwellian [30],
and the mean kinetic energy of particle, Ekin, will be described
by a fixed quantity which is a function of the temperature, T ,
of the fluid [31],

Ekin = 1
2 mp〈U · U〉 = 3

2 kBT, (1)

where U is the velocity of the particle. The above equation in-
dicates that us = √

kBT/mp is an appropriate velocity scale of
the problem which defines the characteristic length of a jump
by ls = τus. The relaxation time of the ions in solution after
each jump of the particle, given by τr = l2

s /Dion, is another
relevant timescale of the problem. Here, Dion is the diffusion
coefficient of the ions which can be written in terms of the
radius of ions, rion, by applying Stokes-Einstein relation; i.e.,
Dion = kBT/6πμrion. It is evident that the EDL can retain
its equilibrium spatial distribution during these consecutive
jumps provided τr � τ [32]. For a spherical particle of radius
a with γ being 6πμa, this condition reduces to rion � a,
which is satisfied for particles of radii of the order of 10 nm.
Motivated by the above scaling analysis, Schumacher and van
de Van [32] used Ohshima’s theory to examine the impact of
electrokinetic forces on Brownian motion of charged particles

observed in experiments. They measured the diffusion coeffi-
cient of gold sols and latex particles for a wide range of κa
values and observed a minimum in the diffusion coefficient
for κa ≈ 1. It was also observed that the minimum values
were 3–8% lower than those measured in high (κa � 1) or
low ionic (κa � 1) concentrations. This observation was in
agreement with the theoretical result of Ref. [24] that predicts
electroviscous effect vanishes at both extremes of κa range
(κa � 1 and κa � 1).

However, several recent experimental measurements of dif-
fusion coefficients for particles confined in low ionic strength
aqueous solution have reported anomalously low values which
cannot be explained on the basis of pure hydrodynamics.
For example, Eichmann et al. [33] reported diffusion coef-
ficients that were 30–50% smaller than those given by the
Stokes-Einstein relation including hydrodynamic corrections
for the presence of boundaries in the vicinity of the particle.
A subsequent study [18] demonstrated that the effect van-
ishes when all surfaces are coated with proteins that mask
the surface charge in the system, indicating that the anoma-
lously small diffusion coefficients were due to the presence of
charged surfaces in the system. The observed drag enhance-
ment was attributed to a large electroviscous contribution due
to confinement. Other studies have reported mixed results
under slightly different conditions. In one instance, Kaji et al.
[34] have observed a reduction in the diffusion coefficient
of nanosized polystyrene carboxylated particles by a factor
of approximately 3 and 5 in slitlike channels, and channels
in the presence of nanopillars, respectively. They attributed
this effect to enhancement of water viscosity under confine-
ment. Similar observations of apparent drag enhancement
have been reported for confined quantum dots and for gold
nanoparticles confined in electrostatic fluidic traps [35,36].
Recent measurements on gold nanospheres confined between
a glass surface and a polymer-coated surface revealed a strong
monotonic decay of the diffusion coefficient with decreasing
gap distance between surfaces, and the values were found
to be 20–50% lower than the predictions based on pure hy-
drodynamic theories [37]. However, measurements by Kazoe
et al. [38] on charged polystyrene beads in nanochannels
under comparable conditions demonstrated that contrary to
previous studies, measured diffusion coefficients were in fact
in agreement with the Stokes-Einstein equation including hy-
drodynamic corrections for wall effects. Furthermore, there
have been suggestions that the anomalous retardation reported
in Ref. [33] could be influenced by transient adsorption of
the particles to the slit walls. Overall, it remains unclear as
to whether confinement of charged particles can indeed result
in anomalously large drag enhancements in experiment, much
above that expected in free solution, and if such behavior
can be rationalized using existing theoretical models. The
results of these experimental measurements are summarized
in Table I. Unsurprisingly, the measured diffusion coefficients,
D, are smaller than the bulk values, D∞, however in nearly
all cases, corrected diffusion coefficients, Dh, suggested by
purely hydrodynamic theories do not fully explain the dis-
parity in the measurement; i.e., Dh/D > 1. Considering the
Stokes-Einstein relation, this implies that the total drag force
in confinement is perhaps affected by an additional resis-
tive force which originates from sources different than pure
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TABLE I. Summary of the diffusion measurements in experi-
mental studies involving various types of charged particle confined
between silica walls. Here, Dh represents the diffusion coefficients
corrected for hydrodynamic interactions between the particle and
confining walls.

Study a (nm) 2h (nm) D∞/D Dh/D

Eichmann et al. [33]a 28.5 342 2.65 2.21
61.5 342 2.18 1.42
125 619 3.02 2.02

Hoang et al. [35]b 12.5 150 ≈3 2.40
Kaji et al. [34]c 25 400 3.11 2.72
Mojarad&Krishnan [36]d 40 215 3.40 2.21
Eichmann&Bevan [18]e 64 269 1.47 0.86
Kazoe et al. [38]f 32 410 1.29 1.10

aGold nanoparticles in a solution of 0.1 mM sodium dodecyl sulfate
(SDS) corresponding to a Debye length of κ−1 = 30 nm.
bQuantum dots in nanoslits. The Debye length is not reported but it
is estimated that κa � 1.
cPolystyrene nanospheres in nanoslits filled with water.
dGold nanoparticles in electrostatic fluidic traps.
eExperiments are done under conditions comparable to Ref. [33];
however, the surfaces are coated by proteins to eliminate electrovis-
cous contributions.
fPolystyrene particles in nanoslits filled with a solution of Na2B4O7.

hydrodynamic interactions between particles and wall, poten-
tially including a contribution from mobile charge in the fluid.

In the present study, we examine the effect of electrovis-
cous stresses on the diffusive behavior of charged colloidal
nanoparticles under confinement. To this end, using a nu-
merical model based on PNPS system of equations, we first
evaluate the combined effect of confinement and electrovis-
cous forces on the total drag exerted on a charged particle in
motion. Owing to the linear behavior of electroviscous forces
at low Pe regime, the presence of charges in the system leads
to modification of the friction coefficient, γ . We employ the
fluctuation-dissipation theorem [39] to relate the calculated
drag force to the diffusion coefficient using a modified Stokes-
Einstein relation. This approach has been utilized extensively
to estimate the diffusion coefficient of particles under different
conditions such as diffusion near a single wall [19] or between
two parallel plates [17,20,40]. Note that due to complexities of
the PNPS system of equations, performing more sophisticated
simulations such as Brownian dynamics (BD) simulations
including electrohydrodynamics is extremely costly and prac-
tically infeasible. Hence, in this study, we attempt to address
the problem by utilizing the fluctuation-dissipation theorem
which leads to a modified Stokes-Einstein relation. We then
examine the impact of electroviscous stresses on a confined
nanoparticle in solution by experimentally measuring the dif-
fusion coefficient of polystyrene particles in parallel-plate
nanofluidic silica slits of different depths, and in the presence
of different counterion species in solution. The goal of the
study is to explore the possibility of anomalously hindered
diffusion due to electroviscous effects by making a controlled
comparison of experimentally measured drag coefficients with
corresponding theoretical calculations.

II. PROBLEM DESCRIPTION

The effect of confining boundaries on the viscous drag
exerted on a sphere moving with a constant velocity, U , in
a pure fluid devoid of electrical charge, has been examined
in numerous theoretical works. For a detailed summary of
these studies, we refer the reader to Ref. [41] which provides
solutions to a large number of relevant problems. Among
them, two problems are particularly attractive for the purpose
of this study, namely, the drag on a sphere traveling along
the axis of a pipe, and drag exerted on a spherical particle
moving at the midplane of two infinitely large flat plates.
Both of these problems were initially addressed by Faxén [9]
using the method of reflection; however, Bohlin [42] found
a more accurate solution for the former case by extending
Faxén’s method to obtain a higher order solution. The solu-
tions show that, in general, the hydrodynamic force, Fh, can
be expressed as Fh = KF∞, where K > 1 is a geometric factor
which leads to augmentation of the drag force in comparison
with that in unbounded domain given by Stokes’ law F∞ =
6πμaU . Here, μ is the viscosity of fluid and a is the radius
of sphere. The geometric factors for the above problems are
described by

Kslit =
[

1 − 1.004

(
a

h

)
+ 0.418

(
a

h

)3

+ 0.21

(
a

h

)4

− 0.169

(
a

h

)5]−1

, (2)

and

Kpipe =
[

1 − 2.10443

(
a

R

)
+2.08877

(
a

R

)3

−0.94813

(
a

R

)5

− 1.372

(
a

R

)6

+ 3.87

(
a

R

)8

− 4.19

(
a

R

)10]−1

,

(3)

where 2h and R represent the distance between plates and
radius of the pipe, respectively. Here, our main goal is to
extend the discussed problems by considering the contribution
of electrokinetic phenomena to the total drag on the particle.
To gain some preliminary insight into the problem, we first
consider a spherical particle of radius, a, confined in a tube
of radius, R, to explain the mechanisms which give rise to the
electroviscous drag. The particle moves with a constant veloc-
ity U , and the surface of the tube carries a uniform negative
electrical surface charge. For rectilinear motion of the particle
along the axis of an infinitely long pipe, the fluid leaks through
the gap between the particle and wall. Figure 1(a) depicts the
streamlines in the laboratory frame of reference attached to
the wall. As shown in the figure, the flow in the gap would
be expected to displace ions in the EDL toward the tail of the
particle and induce a convective current within the EDL. This
convective current must be canceled by conductive current
due to Ew

s at the steady state. Furthermore, the electroosmotic
flow arising from the induced electric field Ew

s would be
in the direction opposite to the flow in the gap. This addi-
tional flow opposes free leakage of fluid through the gap and
thereby imposes an additional drag on the particle. All these
features point qualitatively in the direction of an enhanced
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FIG. 1. Schematic depiction of the confined nanosphere geome-
try used for computation. (a) Axisymmetric setup for an uncharged
particle moving along the axis of a circular pipe depicting the dis-
tortion of the double layer in the vicinity of a charged wall in the
laboratory frame of reference. (b) Deformation of the counterion
cloud around the particle due to its motion along the axis of an
uncharged pipe, in the particle frame of reference. Closed and open
circles represent positive and negative ions in the EDLs, respectively.
(c) 3D domain for a particle at the midplane of a slit created by
parallel plates separated by a distance of 2h.

electroviscous drag on a charged confined particle in solution
[43–45]. It should be noted that in the above description,
we assumed that the fluid only squeezes around the particle,
and the movement of particle does not produce long-range
nonvanishing velocity fields which has been recently reported
for particles tightly confined in pipes with open ends [46].
Misiunas et al. [46] have demonstrated long-range interac-
tions between two confined particles in tubes with open ends,
and have shown that this phenomenon arises from long-range
hydrodynamic interactions as a result of a nonvanishing axial
flow along the pipe. Their observations showed that an axially
moving particle is also capable of driving the fluid along the
pipe to induce a nonvanishing flow in axial direction. This
axial flow reduces to a simple Poiseuille flow far away from
particle, and they provided an approximation of the mean fluid
velocity associated with this Poiseuille flow, 〈u〉, for a sphere
of radius, a, moving with velocity, U , along the axis of a tube
of radius, R, and length, L, and have shown that

〈u〉
U

= R3a

R3a + Lδ5/2a1/2
, (4)

where δ = R − a is the minimum gap distance between parti-
cle and wall. The above equation can be rewritten as

〈u〉
U

= a/L

a/L +
√

a
R

(
1 − a

R

)5
, (5)

which implies 〈u〉/U is negligible provided a/L �√
(a/R)(1 − a/R)5. For a highly confined case of say

a/R = 0.5, the above approximation reveals that 〈u〉/U ≈ 2%
if a/L = 0.0025. This condition is typically met for a wide
range of nanochannels where the length of the channel is of
the order of a millimeter but the height or diameter is of the
order of hundreds of nanometers. Note that since particle
motion can only generate a finite pressure gradient, a moving
particle cannot displace a liquid column of infinite length.
Hence, provided that the length of the pipe is considerably
larger than its radius, the long-range Poiseuille flow due to
the perturbation of particle will be negligible [31,46]. This
allows one to assume that the fluid is nearly at rest far away
form particle, and simplifies the boundary conditions which
will be discussed in the next section.

Turning our attention to the EDL around the particle, it
is more appropriate to switch to a frame of reference mov-
ing with the particle. Figure 1(b) depicts the streamlines in
this frame of reference, and illustrates the distorted cloud of
counterions around the particle in a situation where the wall
carries no charge. Here, an electric field, Ep

s , must be induced
such that its conductive current cancels the convective current
at the steady state. Therefore, the induced electric field leads
to a higher drag by retarding the electrically charged particle
directly, as well as by generating an electroosmotic flow by
acting upon mobile ions in the fluid. It is worth mentioning
that in the literature, the phenomenon described above is
known as the primary electroviscous effect. In other words,
the primary effect is concerned solely with the resistance to
motion arising from distortions of the counterion clouds in the
system. In concentrated suspensions, repulsions between the
particles give rise to a secondary effect which is vanishingly
small at low particle volume fractions. For macromolecules
such as proteins, there also exists a tertiary effect which is at-
tributed to conformational and structural changes arising from
intraparticle interactions [47]. Since the present study as well
as other studies discussed in Sec. I are restricted to very low
volume fractions and single-particle measurements in dilute
systems of particles, the secondary effect is very small and
negligible. In the following section, we present our model for
a single charged confines particle in detail and develop on the
results in subsequent sections.

III. GOVERNING EQUATIONS AND DIMENSIONLESS
PARAMETERS

The equations describing electrohydrodynamic behav-
ior in our system are the incompressible Navier-Stokes
(NS) and continuity equations, the steady-state convection-
electrodiffusion equation for the charged ionic species in
solution, and Poisson equation which represents the reduced
form of Maxwell’s equations when magnetic fields are negli-
gible [27]. Neglecting the inertia term in the NS equation in
the limit of low Reynolds numbers, Re = ρUa/μ, where U is
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TABLE II. Diffusion coefficients and stokes radii for different
ionic species used in the simulations.

Ion Dion (m2s−1) rion (Å)

K+ 1.957 × 10−9b 1.25a

Cs+ 2.056 × 10−9b 1.19a

Li+ 1.029 × 10−9b 2.39a

THA+ 0.413 × 10−9c 5.94c

Cl− 2.032 × 10−9b 1.21a

aStokes radius based on stick condition [48].
bDiffusion coefficients are calculated form molar conductivity of ions
at infinite dilution [49].
cValues are obtained by extrapolation of data from Ref. [49] which
provides diffusion coefficients for lighter tetra-alkyl-ammonium
ions.

the particle velocity, we solve the Stokes equation for the fluid
flow. The governing equations are, therefore,

μ∇2u − ∇p − ρe∇φ = 0, (6)

∇ · u = 0, (7)

−∇ · (ε∇φ) = ρe, (8)

∇ · Ji = 0, (9)

where u, p, ε = ε0εr, ρe = ∑
zieni, and φ are the velocity of

the fluid, pressure, permittivity of aqueous medium, charge
density, and electric potential, respectively. Here, the ionic
flux Ji is defined as

Ji = −Di∇ni + niu − Dizie

kBT
ni∇φ, (10)

where ni is the number density of the ith ionic species and Di

represents its corresponding diffusion coefficient. For the case
of symmetric-monovalent electrolytes (z1 = −z2 = 1), we re-
place the index (i) with (+) and (−) to distinguish the positive
and negative ions, respectively. Table II provides the values
of diffusion coefficients for ionic species used in subsequent
simulations. The species listed in the table correspond to four
monovalent salts, namely, KCl, CsCl, LiCl, and tetrahexylam-
monium chloride (THAC).

A no-slip boundary condition for fluid velocity is applied at
all solid surfaces. In the frame of reference of the particle, this
implies a zero velocity at the surface of particle and a uniform
velocity of −U in the y direction at the walls of pipe or slit
(Fig. 1). Similarly, at the outer boundaries of the pipe and
slit, where the perturbation of the sphere vanishes as L → ∞
(Rd → ∞), we use a uniform velocity in the y direction as
the boundary condition. A constant surface charge density is
applied at all solid surfaces and is denoted by σp at the particle
surface and σw at the wall. We assume that the electrical fields
induced by particle motion vanish far away from the particle,
implying that at a large distance from the particle the spatial
potential distribution in the slit is identical to that of a particle-
free, electrolyte-filled slit at equilibrium; i.e., ∇φ · n = 0 at
the edges of the geometry. Furthermore, we assume that
matter cannot penetrate any surface and therefore employ a
no-flux boundary condition for Eq. (9) at the particle surface

TABLE III. A summary of the boundary conditions used for the
numerical simulations.

Boundary Poisson Nernst-Planck Stokes

Axisymmetric Problem

1© −ε∇φ · n = σp J± · n = 0 u = 0
2© Symmetry Symmetry Symmetry
3© −ε∇φ · n = σw J± · n = 0 u = −Uey
4© −ε∇φ · n = 0 n± = neq

± u = −Uey
5© −ε∇φ · n = 0 n± = neq

± u = −Uey

3D-slit Problem

1© −ε∇φ · n = σp J± · n = 0 u = 0
2© −ε∇φ · n = σw J± · n = 0 u = −Uey
3© −ε∇φ · n = σw J± · n = 0 u = −Uey
4© −ε∇φ · n = 0 n± = neq

± u = −Uey

and slit walls. The bulk concentrations for both ionic species
are assumed to be equal for all the systems under considera-
tion; i.e., n0

+ = n0
− = nb. The concentrations of ionic species

at the edges of the slit and pipe domains are held constant
at their equilibrium values, neq

± = nb exp(∓φeqe/kBT ), where
φeq is the electrical potential when the particle is station-
ary; i.e., U = 0. This equilibrium potential, φeq, is obtained
from the solution of the Poisson-Boltzmann equation for the
corresponding system. Table III summarizes these boundary
conditions for the axisymmetric and 3D slit problems shown
in Fig. 1. Since the Poisson Eq. (8) with a pure Neumann
boundary condition is undetermined up to a constant, a con-
straint must be applied to the potential, φ, to obtain a unique
solution. This constraint can be applied either by fixing the
potential at a single point in the domain or by constraining
the volume average of the potential [50]. We adopt the second
approach and constrain the average of potential to the average
of the equilibrium potential φeq; i.e.,

∫
V φdv = ∫

V φeqdv.
The dimensionless parameters of interest in the sys-

tem are Pe = Ua/D+, ω = D+/D−, Sp = σpea/εkBT , Sw =
σwea/εkBT , Ha = nbkBTa/μU , and s = κa. Here Pe is the
ratio of diffusion timescale of ions in the system, a2/D+, to the
timescale of convection, a/U , and s is a dimensionless system
size. Further, ω is the ratio of the diffusion coefficients of the
ionic species in solution, while Sp and Sw represent the di-
mensionless surface charge density of the particle, σp, and the
wall, σw, respectively. Finally, the electric Hartmann number,
Ha, gives the ratio of electric forces to viscous forces in the
system. For motion driven electrokinetic phenomena, Yariv
et al. [51] demonstrated that Ha can be written in terms of s,
Pe, and another dimensionless parameter α = εζ 2

T/μD+; i.e.,
Ha = s2Pe−1α. Here, ζT = kBT/e is the thermal potential, and
therefore, α is a property of the electrolyte independent of the
geometry of the system. For typical aqueous ionic solutions,
this parameter is of order of unity (α ≈ 0.5), and hence for
most cases, the magnitude of Ha is determined by the other
two dimensionless parameters of the system, namely, Pe and
s. In other words, Ha is not an independent nondimensional
parameter once the properties of electrolyte are fixed; i.e., α

becomes a fixed parameter for the system.
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IV. IMPLEMENTATION AND VALIDATION OF THE
THEORETICAL MODEL

To compute the contribution of electroviscous stresses to
the total drag force, Ft , acting on a particle in a confined
system, we numerically solved the above system of equa-
tions subject to the relevant boundary conditions. As shown
in Fig. 1, we consider two different geometries in the com-
putation. The first is a simplified 2D axisymmetric setup
corresponding to a particle of radius, a, moving along the
axis of a pipe of radius, R [Fig. 1(b)], and the second is
a three-dimensional parallel-plate slit geometry correspond-
ing to the experiments consisted of a particle of radius, a,
confined between two parallel disks separated by a distance,
2h [Fig. 1(c)]. The computational cost of calculations in a
2D axisymmetric geometry is much lower than that of a 3D
system, so we examine general trends in the axisymmetric
case and perform 3D computations only for comparison with
experiments and specific cases of interest.

The confined particle system is assumed to be in equilib-
rium with an electrolyte reservoir where the bulk concentra-
tion of ionic species is given by nb. Our investigations are
in the regime of slightly overlapping double layers (κh =
4.3, 6.6), where the most probable location of the confined
particle is, in practice, Boltzmann-weighted to the midplane
of slit. This inherent geometrical symmetry may be exploited
to reduce computational cost, and therefore in our geometric
models for computation the center of the sphere is always
located at the midplane of the slit or axis of the cylindrical
pipe.

We applied finite element (FE) analysis to solve the nonlin-
ear system of Eqs. (6)–(9), numerically. We used COMSOL
multiphysics for the axisymmetric cases and FEniCS [52]
which is an open-source software for the three-dimensional
slit geometry. For axisymmetric cases with a few thousands
of degrees of freedom, the discretized equations can be solved
efficiently by direct solvers using a fully coupled numerical
scheme, however, a hybrid scheme using iterative solvers was
found to be more effective for large 3D systems involving
millions of degrees of freedom. In this scheme, Eqs. (8) and
(9) are discretized together using a coupled block solver and
Eq. (6) is solved subsequently using a fixed point iteration
technique. Further details may be found in Ref. [53].

We computed the spatial distribution of electrical potential
and the hydrodynamic flow field in the system for a particle
moving at constant velocity, U ∝ us. We then determined the
total drag force exerted on the particle by integration of the
traction vector, t = T · n, over the surface of particle S; i.e.,
Ft = ∫

S tds. Here, n is the unit outward normal vector at
the surface of particle and T = Th + Te is the total stress
tensor, where Th and Te represent the hydrodynamic [54] and
Maxwell stress [55] tensors, respectively. In practice due to
the symmetries, only y component of the total force, F y

t , is
nonzero, and therefore, we use the magnitude of this compo-
nent, Ft = |F y

t |, for our subsequent analyses.
The role of electroviscous stresses on the sedimentation of

a charged colloidal particle was studied by Ohshima et al.
[24], who calculated the terminal velocity of a slowly sed-
imenting particle in the regime of Pe = 0 by considering a

force-free particle at the steady state. In this approach, the
total drag exerted on the particle is known and equal to the
buoyancy force, which is the driving force behind the motion,
and the terminal sedimentation velocity, USED, is the unknown
quantity in the problem. The study showed that in the presence
of charged species such as ions in solution, the terminal ve-
locity of a charged particle is smaller than the corresponding
value in the absence of charges, U ST

SED, obtained by writing a
balance between buoyancy force and the Stokes’ drag; i.e.,
USED/U ST

SED < 1. The reciprocal of this problem is the case of
a charged particle which moves with some constant velocity,
U , in an electrolyte. In this case, the velocity, U , is known
a priori and the resistive force due to the fluid, Ft , is the
unknown. From this perspective, the effect of electroviscous
stresses leads to a resistive force larger than the Stokes’s drag,
F∞. In this study, we use the latter approach and show that
both routes are in fact equivalent; i.e., U ST

SED/USED ≡ Ft/F∞.
Figure 2(a) presents the results of our calculations of total

drag, Ft , including the contribution of electroviscous stresses
for a system considered in Ref. [24] using constant surface
potential, ψp = φpe/kBT , on the particle surface. Noting that
U ST

SED/USED ≡ Ft/F∞, the results of our computation are in
good agreement with the semianalytical results of that study.
It should be noted that in our simulations, the velocity U is
adjusted such that Pe is small enough and compatible with the
underlying assumptions of the analytical solution of Ref. [24]
(Pe � 1). Figure 2(b) presents isosurfaces of streaming po-
tential, φst = φ − φeq, which may be thought of as the excess
local electrical potential induced by the motion of the particle.
As depicted, the convection of the charged species within the
double layer polarizes the charge cloud giving rise to a dipo-
lar streaming potential around the particle. Having validated
the results of the theoretical model in a bulk electrolyte, we
next provide a brief description of the experimental setup and
results. Following sections compare the results of our drag
measurements with those of calculations.

V. EXPERIMENTAL METHODS AND MATERIALS

A. Nanoslit preparation and experimental procedure

We fabricated silica slits of various heights using glass
and Silicon/Silicon dioxide substrates as previously described
[56]. First, an array of parallel channels was patterned on a
Silicon dioxide surface using photolithography, and subse-
quently etched using reactive-ion etching (RIE). Slit heights
were measured using atomic force microscopy. Two different
slit geometries were used for the experiments with heights
of 2h = 261 nm and 2h = 397 nm and a width of 5 μm.
Fully functional nanoslits were created by anodically bonding
the processed Silicon/Silicon dioxide substrates with glass
coverslips of thickness ∼170μm, compatible with high NA
microscopy. We loaded the device with a suspension of flu-
orescent particles at a number density of 2.7 × 108 ml−1 in
a solution of salt concentration 0.1 mM using a pressure
driven flow through the slit. After a few minutes, the flow was
arrested and the reservoir at the outlet of the slits was filled
with the particle solution. The device was sealed to prevent
evaporation and the system was allowed to equilibrate for
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FIG. 2. Drag enhancement for a charged particle in unbounded
fluid. (a) Calculation of the drag enhancement, Ft/F∞, as a func-
tion of nondimensional particle surface potential, ψp = φpe/kBT .
Curves marked with circle, square, and diamond represent the semi-
analytical solution of Ohshima et al. [24] in the zero Pe regime.
Calculations (blue curves) are presented for a particle of radius
a = 50 nm in solutions of KCl, where electrolyte properties are taken
from Ref. [24]. These parameters include T = 298 K, μ = 0.891
mPa s−1, and εr = 78.5. The nondimensional parameters of the sim-
ulations are α = 0.26, Pe = 0.2, ω = 0.96. For κa = 1 and 10, the
results of computations converge to those of unbounded domain with
an error of less than 1% considering R/a = 40, and L/a = 80 but
for κa = 0.1, these parameters have been increased by a factor 4
to eliminate the boundary effects due to presence of the thick EDL.
(b) Iso-surfaces of streaming potential, φst , induced by the distortion
of the EDL due to motion of the fluid. The streaming potential, φst ,
corresponds to a case of κa = 1 and ψp = 4.

15 min before measurement. The electrical conductance of the
particle suspension used was measured both before and after
the experiment to determine the salt concentration during the
measurement. For all experiments, the salt concentration was
0.1 mM corresponding to a Debye length κ−1 ≈ 30 nm. To
examine the effect of ion size on particle diffusion, we also
performed experiments with three different monovalent salts,
namely, LiCl, CsCl, and THAC.

B. Measurements of nanoparticle diffusion coefficients

Carboxylated fluorescent polystyrene beads with a nomi-
nal radius of 55 nm were used (F8887, Lot #1761661, Life
Technologies) for all experiments. The average particle radius
was determined by measuring translational diffusion us-
ing two-focus fluorescence correlation spectroscopy (2fFCS)
and single-particle tracking (SPT) in free solution. These
measurements showed that the average particle radius is ap-
proximately 63 nm, hence in our 3D-slit simulations, we use
a particle radius of a = 63 nm. The details of 2fFCS setup
were similar to that described in Müller et al. [57]. Briefly,
the distance between the two foci was calibrated against
a diffusion standard, usually a fluorescence dye molecule
that can be excited using the same wavelength as the par-
ticles. We used an aqueous solution of Rhodamine 6G dye
molecules (J62315, Alfa Aesar) that has a diffusion coefficient
of (4.14 ± 0.05) × 10−6 cm2s−1 at 25◦C. In 2fFCS, although
changes in coverslip thickness, or refractive index mismatches
may introduce optical aberrations and distort the shape of
the molecular detection function of each focus, the distance
between the two foci acts as an intrinsic ruler for the diffusion
coefficient calculation and is robust to aberrations. Having
determined this interfocus distance, we measure the diffusion
coefficient of the fluorescent bead species in solution at a
concentration of about 1 nM, both in pure water and in 10 mM
NaCl solution. The values obtained from these measurements
were used to determine the true radius of the particles in our
experiments and the corresponding value of hydrodynamic
drag in free solution, F∞.

Diffusion coefficient measurements on nanoparticles, con-
fined in nanoslits of various heights and in free solution, were
performed using wide-field fluorescence imaging and SPT.
In our custom-built wide-field setup, fluorescence excitation
was achieved by illuminating the particles with a 532 nm
DPSS laser (MGL-III-532-100 mW, PhotonTec, Berlin) that
was focused at the back aperture of a high numerical aperture
objective (UPLSAPO 60×, 1.35 N.A., Olympus, UK). The
emitted fluorescence was separated from the laser excitation
using a dichroic mirror (F38-532, AHF Analysentechnik) and
was imaged using a sCMOS camera (Prime 95B, Photo-
metrics). Particle coordinates were obtained by fitting a 2D
Gaussian function to the intensity profile in each image, and
these coordinates were used to generate the particle trajec-
tories. Diffusion coefficients were determined from plots of
mean squared displacement versus lag time [58].

VI. RESULTS

A. Axisymmetric simulations

We began by investigating the role of the surface charge
densities, σp and σw, on the magnitude of the electroviscous
effect. We varied both parameters independently and assessed
their contribution to the total drag force, Ft , exerted on a
polystyrene particle of radius a = 50 nm, where a mass den-
sity of ρ ≈ 1060 kg m−3 for polystyrene results in a ballistic
velocity of us ≈ 0.08 m s−1. First we considered an uncharged
particle with σp = 0, traveling along the axis of a cylindri-
cal pipe of surface charge density, σw, in an electrolyte of
κ−1 = 50 nm (κa = 1). Here, the electrolyte is a KCl solution
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FIG. 3. Calculated electroviscous drag enhancement factor, fEV, for a polystyrene particle of radius a = 50 nm moving with velocity,
U = us ≈ 0.08 m s−1, along the axis of a pipe of radius, R. The electrolyte contains KCl, and the Debye length, κ−1 = 50 nm, with all
parameters taken from Ref. [24]. These parameters include T = 298 K, μ = 0.891 mPa s−1, and εr = 78.5. The nondimensional parameters
are α = 0.26, Pe = 2.2, ω = 0.96, L/a = 40, κa = 1. (a) fEV for an uncharged particle (Sp = 0) moving along the axis of a tube of surface
charge density, Sw. (b) fEV for motion of a charged particle in an uncharged pipe (Sw = 0). (c) Effect of overlapping double layers on fEV for
the confined case of R/a = 2, when both particle and wall are charged.

whose properties were taken from Ref. [24], and therefore,
the counterions correspond to K+ with a Stokes radius of
rK+ ≈ 1.25 Å [48]. We determined the magnitude of the total
drag force, Ft , for various values of R/a and σw. To isolate the
effect of electroviscous stresses, we define the electroviscous
drag enhancement factor, fEV = Ft/Fh, as the ratio of total
force on the confined particle to the pure hydrodynamic force
in confinement and in the absence of any electrical charge in
the system. Note that given the Stokes-Einstein relation, the
enhancement factor is the same as the ratio Dh/D reported
in Table I. In an unbounded fluid, Fh is equivalent to F∞
and therefore fEV = Ft/F∞, which is the same as the quantity
plotted in Fig. 2. We found that for our smallest value of
R/a = 2, fEV is maximally 5% and occurred for relatively
large wall charge densities, Sw � 30, which corresponds to
σw � 0.067e nm−2 [Fig. 3(a)].

We then set σw = 0 and turned our attention to the role
of electrical charge on the particle. We note that the drag
enhancement factor, fEV, initially increases in response to
increasing particle charge but then the rate of change of fEV

with respect to Sp decreases considerably [Fig. 3(b)]. Our
understanding of this behavior is linked to an increasing non-
linearity in the electrostatics with increasing particle charge.
For high values of surface charge, the Poisson-Boltzmann
equation enters the highly nonlinear regime characterized by
over exponential decay in the electrical potential with distance
from surface. In this regime, further increasing the surface
charge only affects the volumetric charge density in the im-
mediate vicinity of the surface and leaves the “far field”
nearly unchanged. The main contribution to the enhanced
drag comes from the “far field” of the particle, which for our
purposes is the region of the electrolyte beyond a few nanome-
ters from the particle surface. Due to the no-slip boundary
condition at the particle surface, fluid velocities are very
small in the near-field region which therefore does not make
a substantial contribution to the drag force on the particle.
Importantly, we note that confinement on its own can increase
the magnitude of the electroviscous drag force compared to
that in free solution [compare the solid and dashed curves

with the dotted curves, Fig. 3(b)]. Our interpretation of this
observation is that the main contribution of the confining walls
to the observed drag enhancement is the spatial compression
of the EDL around the particle. The amplification of the local
charge density increases the effective polarizability of the
EDL in fluid flow, which in turn enhances the drag force
on the particle [see Fig. 2(b)]. Figure 4 elucidates this point
presenting a plot of the equilibrium charge density, ρ

eq
e , along

a line parallel to the axis of the cylinder which passes through
the gap between particle and wall. The local charge den-
sity around the particle, ρ

eq
e , clearly increases in response to

confinement.
Next we examine the effect of overlapping EDLs for R/a =

2 in situations where both particle and wall carry surface
charges [Fig. 3(c)]. Counterintuitively, we note that when
particle is strongly charged, fEV reduces slightly in response
to an increase in magnitude of wall surface charge, Sw. The
examination of the equilibrium potential, φeq, along the axis
of pipe reveals that increasing the surface charge of the wall
tends to shift the centerline potential, far away from particle,
toward negative values (Fig. 5). This is a known effect in
nanochannels with strongly overlapping EDLs where a shift
in the centerline potential is required to satisfy the elec-
troneutrality condition. The potential shift, in fact, elevates the
number density of counterions, n+, to values beyond the bulk
density, nb, everywhere in the channel. In this situation, the
parameter, κ−1, does not serve as a good approximation for
the actual thickness of the EDL, and attempts have been made
to introduce an effective Debye length to address this problem
[59,60]. Baldessari [60] showed that the effective thickness of
the diffuse double layer in nanochannels with EDL overlap is
given by κ−1/

√
cosh(φeq

c e/kBT ), where φ
eq
c is the centerline

potential in the channel. The effective Debye length therefore
decreases with increasing departure of the centerline potential
in the channel from zero. Hence, our understanding of the
reduction in fEV in response to an increase in Sw relates to
the reduction of the effective thickness of EDL in the system.
As shown in Fig. 5, far away from particle, the nondimen-
sional centerline potential, φ

eq
c e/kBT , corresponding to a case
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FIG. 4. Spatial distribution of charge density, ρeq
e /nbe, around

a confined particle at equilibrium (κa = 1, Sw = 0, Sp = 45) for
(a) R/a = 2, and (b) R/a = 5. (c) Variations of the equilibrium
charge density along a line parallel to the axis of the pipe located
at r/a = 1.5 [dashed lines in panels (a) and (b)]. The charge density
increases due to compression of the EDL by the confining wall.

with Sw = 30 is approximately −1.34 which is tantamount to
≈30% reduction in the EDL thickness.

This preliminary examination of the electroviscous effect
in a simple cylindrical geometry reveals that the surface
charge density in the system, particularly that of the particle,
does exert an influence on the value of fEV. However, fEV

is proportional to particle surface charge only in the weakly
charged limit and rapidly loses its sensitivity to surface charge
when the electrostatics enters the highly nonlinear regime.
This indicates that the surface charge densities in the system
are not likely to serve as suitable tuning parameters to explain
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FIG. 5. Variation of the equilibrium electrical potential, φeq,
along the axis of the pipe as a function of wall charge density, Sw.
The curves correspond to a case with κa = 1, where Sp = 45. Far
away from particle, the centerline potential deviates from zero as Sw

increases, leading to smaller effective EDL thicknesses.

the significantly higher drag enhancement factors reported in
the experimental literature [33–37]. We further note the that
charge on the confining walls is expected to play a relatively
minor role in the confined electroviscous effect compared to
the charge on the particle.

Next, we examine drag enhancement as a function of the
parameter κa for varying values of the confinement parameter,
R/a, and two values of particle radius, a = 5 and 50 nm. The
trends presented in Fig. 6 reveal that the drag enhancement
factor, fEV depends on both the electrostatic system size, κa,
and the confinement parameter, R/a. Clearly, smaller values
of both parameters promote an increase of the electroviscous
drag. Furthermore, we find that an order of magnitude re-
duction in the radius of the particle dramatically lowers the
drag enhancement factor, fEV. This is due to the fact that in
our study, U ∝ us, and therefore, the Péclet number varies in
proportion to a−1/2. Smaller particles imply a comparatively
larger Pe and therefore the process of charge transport is
dominated by convection. Large convective velocities can lead
to very large distortions in the cloud, and ultimately, for very
large Pe, the EDL will be swept away by the fluid flow; i.e.,
the electroviscous effect vanishes as Pe → ∞ [26].

A related observation concerns the effect of particle mass.
For a given particle size, an altered velocity of ballistic motion
may be expected to influence the magnitude of electroviscous
drag. Such a change in the velocity scale for a given radius
could arise for particles of a different density. For example,
as us ∼ ρ−1/2, gold particles with a density of approximately
19.3 × 103 kg m−3 would be described by a much lower aver-
age ballistic velocity compared to polystyrene particles with
a density of approximately 1060 kg m−3; i.e., UPS/UAu ≈ 4.
We examine this contribution by altering U in the calculation
retaining all remaining parameters constant. Interestingly, we
find that an order of magnitude reduction in particle velocity
can indeed enhance fEV to values up to about 1.5 for strongly
confined, weakly screened particles of radius about 50 nm in
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FIG. 6. Effect of EDL thickness on the electroviscous drag en-
hancement factor, fEV. (a) Calculated fEV values for a polystyrene
particle of radius, a = 50 nm, traveling along an axisymmetric tube
of radius, R, at two different particle velocities, namely, U = 0.1us

and U = us ≈ 0.08 m s−1, and for various values of κa. (b) Re-
sults of the same study as in panel (a) performed for a polystyrene
particle of radius, a = 5 (us ≈ 2.7 m s−1 nm). All calculations
were performed for KCl solutions, where corresponding nondimen-
sional parameters are α = 0.26, ω = 0.96, Sp = 60, Sw = 0, and
L/a = 80.

a tubelike axisymmetric confinement. While the reduction of
Pe leads to a considerable increase in fEV for the axisymmet-
ric case shown in Fig. 6(a), we will show in the following
sections that this effect is much smaller in a parallel plate
slit which resembles most closely the experimental studies
on gold nanoparticles [33,36,37]. Hence, the large hindered
diffusion coefficients reported for gold particles cannot be
attributed to a change in average velocity of the diffusing
particles as a result of higher density of gold.

B. 3D simulations

In this section, we discuss the 3D simulations for system
parameters corresponding to our experimental results. The ax-
isymmetric simulations showed that surface charge associated

TABLE IV. Input parameters for 3D simulations corresponding
to slit experiments. For all cases, bulk concentration of salt is fixed
to 0.1 mM.

2h (nm) a (nm) T (K) εr μ (mPa s) us (m s−1)

261a 63b 295 78.5c 0.954 0.06d

397a 63b 295 78.5c 0.954 0.06d

aSlit height measured by atomic force microscopy.
bParticle radius determined by free-diffusion measurements.
cε0 = 8.854 × 10−12 F m−1.
dBallistic velocity of the particle, us = √

kBT/mp, where mass of
polystyrene particle mp is calculated by considering a mass density
of ρ = 1060 kg m−3.

with wall has only a small effect on the total drag exerted on a
charged particle moving along the axis of a pipe. Our prelim-
inary 3D simulations showed that the effect is even smaller
for a 3D slit compared to its axisymmetric counterpart. We
regarded the magnitude of the contribution as not significant
enough to justify the computational cost of resolving the wall
double layers throughout the slit geometry, and therefore set
Sw = 0 for all calculations involving the slit geometry.

We now examine the calculated drag enhancement for
the experimental cases corresponding to a particle of radius
a = 63 nm in parallel-plate slits of heights 2h = 261 and
397 nm, respectively. Simulations are performed using dif-
ferent electrolyte solutions (CsCl, LiCl, and THAC) with a
bulk concentration of 0.1 mM which corresponds to a Debye
length of κ−1 ≈ 30 nm. The input parameters for the simu-
lations are determined based on experimental conditions and
are listed in Table IV. Figure 7 represents the results of these
simulations, and compares the drag enhancement factor, fEV,
for a confined particle with that for a particle under the same
conditions in an unbounded fluid. We note that as expected
the drag enhancement for κh = 6.6 is lower than that for
κh = 4.3 for a given salt species in solution. This is in line
with the view described in Sec. VI A that the general effect of
confining walls is to increase the polarizability of the charge
cloud around the particle, or in different terms to enhance the
“interaction cross-section” of the diffuse charge cloud with the
hydrodynamic flow field.

Finally, we examine the effect of counterion radius on
the electroviscous effect. Similar to the discussion on Pe in
Sec. VI A, the rate of relaxation of the counterion cloud to a
hydrodynamic perturbation determines the overall magnitude
of the electroviscous drag. An increase in counterion size
results in a larger Pe which in principle is expected to decrease
the magnitude of fEV. Figure 8(a) shows the effect of Pe
on fEV for different electrolytes in unbounded domain. As
shown, fEV increases with decreasing Pe but asymptotes to its
maximum value in the Pe � 1 regime where the timescale of
diffusion of ions, a2/D+, is much smaller than the advective
timescale a/us. But in the regime of Pe = O(1), typical for
polystyrene nanoparticles in this study, fEV in fact weakly
depends on Pe. Figure 8(b) represents this effect for particles
confined in a 3D slit by plotting fEV vs h/a for different values
of κa. As shown, contrary to axisymmetric simulations, an
order of magnitude of reduction in Pe has only a negligible
impact on the drag enhancement factor, fEV, for a 3D slit.
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FIG. 7. Electroviscous drag enhancement factor, fEV, for a par-
ticle of radius, a = 63 nm, moving along the mid-plane of a slit of
height, 2h = 261, 397 nm. Symbols denote various geometrical con-
figurations: κh = 4.3 (star), κh = 6.6 (square), and an unbounded
fluid (∞). The confined cases of κh = 4.3 and 6.6 are chosen
specifically in accordance with the experimental configurations of
this study. The Curves denote various counterion species: THAC
(solid lines), CsCl (dashed lines), and LiCl (dashed-dotted lines).
For all cases, κa = 2.08, Rd/a = 20, Sw = 0, and U = us, which
corresponds to a Pe = 9.5, 1.9, and 3.8 for THAC, CsCl, and LiCl,
respectively.

A decrease in D+, however leads to an increase in α, which
is an “intrinsic” Péclet number defined by the velocity scale
of electroosmotic flow, εζ 2

T/μa, in the system [27,51]. Since
electroosmotic flow opposes the flow generated by the motion
of particle, the overall result of an increase in counterion size
is an enhancement of the electroviscous drag on the parti-
cle. Furthermore, although for low values of particle surface
charge, the magnitude of electroviscous drag is expected to
depend symmetrically on the size of both cations and an-
ions in solution, for larger values of surface potential co-ions
are effectively excluded from the EDL and therefore their
contribution to drag enhancement becomes negligible [32].
Therefore, we focused our study on monovalent salts such
that the co-ion species was chloride ion with a stokes radius
of rCl− = 1.21 Å. Examining the influence of the cationic
species in solution, we calculate fEV for three counterion
radii, namely, rCs+ = 1.19 Å, rLi+ = 2.39 Å and rTHA+ = 5.94
Å representing Cs, Li, and THA cations in solution. We find
a systematic increase in the asymptotic value of the drag
enhancement factor, fEV, with increasing ion size. Over the
range of cation radii and conditions probed, we note approxi-
mately 10–15% increase in fEV for an increase in counterion
radius by a factor rTHA+/rCs+ = 5.

Importantly, by comparing the axisymmetric results with
3D slit simulations, we note that the ratio of the total force
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FIG. 8. Effect of Pe on drag enhancement factor, fEV. (a) fEV

for a particle of radius, a = 63 nm, in an unbounded fluid, where
κa = 2.08 and Sp = 60 (σp ≈ 0.1e nm−2). The electroviscous effect
decreases significantly when Pe � 1. (b) fEV for the same particle as
in (a) suspended in a solution of CsCl (α = 0.26, ω = 1.0) in a 3D
slit.

in confinement, Ft , to the confined hydrodynamic drag in the
absence of any surface charge, Fh, is in general larger for a
charged particle in cylindrical tube or pipelike confinement
than for one in a parallel-plate slit. Our computational re-
sults suggest that depending on the counterion species in the
system, the drag enhancement factor, fEV, in a slit can be ap-
proximately 10–25% and 8–20% for configurations κh = 4.3
and κh = 6.6, respectively (Fig. 7).

C. Comparison with experiments

We now proceed to compare experimental measurements
of the electroviscous effect with the values predicted by the
computational model. The diffusion coefficients of the par-
ticles in bulk fluid, D∞, and under confinement, D, are two
measurable quantities which can be used to relate experi-
mental measurements to the calculated drag forces. To do
so, we define an effective viscosity, μeff , assuming that the
total force, Ft , on a confined particle can be represented by
a modified Stokes law of the form, Ft = 6πμeffUa. In other
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words, μeff is an effective viscosity which represents the total
contribution of hydrodynamic confinement, and electrovis-
cous stresses to the drag force. Accordingly, the ratio of the
total drag force on the confined particle, Ft , to the Stokes
drag on an uncharged particle, F∞ = 6πμUa, can be seen
as the ratio of the effective viscosity, μeff , to the viscosity
of the bulk fluid, μ; i.e., Ft/F∞ = μeff/μ. It should be noted
that Ft/F∞ can also be written as Ft/Fh × Fh/F∞, where the
first ratio, Ft/Fh = fEV, is regarded as the contribution due to
electroviscous stresses alone, and the second, Fh/F∞ = Kslit ,
represents the hydrodynamic effect of the confining walls in
the absence of the electrical charge in the system. According
to fluctuation-dissipation theorem, this viscosity ratio relates
directly to the experimental quantity, D∞/D, where D is the
diffusion coefficient measured for a confined particle and
D∞ = kBT/6πμa is that measured for the same nanoparticle
sample in free solution; i.e., D∞/D = μeff/μ = Kslit × fEV.
Figure 9 presents a comparison of experimental measure-
ments and results of the computational model for a = 63 nm
and κ−1 ≈ 30 nm, and for two values of system size κh =
4.3, 6.6, and three different counterion species in solution.
The ordinate on the left presents μeff/μ which reflects the
ratio of diffusion coefficients, D∞/D, including the contribu-
tions of both hydrodynamic confinement and electroviscous
forces. The ordinate on right presents the corresponding fEV

values which reflect contribution of the electroviscous stresses
alone. As shown, for the geometries under consideration
which are comparable to previous studies, fEV is maximally
1.2–1.3 and does not approach larger values (≈2 or larger)
that would explain the anomalously large hindered diffusion
in previous studies [33–37]. In the experiments we also note
a clear increase in the magnitude of the measured drag en-
hancement with increasing counterion radius. As expected,
the effect is more pronounced for the κh = 4.3 case where
the degree of confinement of the particle is higher.

Although calculations show that the magnitude of fEV

varies in proportion to the charge of the particle for low val-
ues of particle charge density, the magnitude of the effective
surface charge density of the particles in the experiment is
a priori unknown and has not been directly measured. We
therefore map the measured μeff/μ values on to the computed
curves and infer the range of particle surface charge implied
by the measurement. We find the measurements lie on the
curves within a range of particle surface charge density val-
ues of Sp = 5–18 which corresponds to charge densities of
σp = 0.009–0.0315e nm−2. Considering a charge regulation
boundary condition [61] at the surface, this range corresponds
to ionizable surface group densities of 0.01–0.1 nm−2 and
is in good agreement with values typically encountered for
polystyrene particles [62].

VII. CONCLUSION

Polystyrene nanospheres suspended in a surfactant-free
electrolyte containing well-characterized monovalent ions at
known concentrations and confined in a parallel-plate system
composed of silica walls offers an ideal experimental system
for a careful comparative study between experiment and the-
ory for the electroviscous effect. We find that contrary to many
previous reports, the experimental trends are well captured by

FIG. 9. Comparison of measured and calculated values of the
effective viscosity, μeff , for a particle of radius a = 63 nm confined in
a slit of height, 2h for (a) κh = 4.3 (2h = 261 nm) and (b) κh = 6.6
(2h = 397 nm). The salt concentration is 0.1 mM corresponding to
a Debye length of κ−1 ≈ 30 nm. Open symbols correspond to the
experimental data obtained from diffusion coefficient measurements
of polystyrene nanospheres in nanoslits. Shaded zones (green) rep-
resent the range of possible values of particle surface charge density,
Sp, implied by the measured values and their corresponding uncer-
tainties. For all cases, κa = 2.08, Rd/a = 20, Sw = 0, and U = us,
which corresponds to a Pe = 9.5, 1.9, and 3.8 for THAC, CsCl,
and LiCl, respectively. Horizontal lines illustrate the contribution of
purely hydrodynamic confinement (Kslit) to the effective viscosity.

the electrohydrodynamic model based on the PNPS system
of equations. Calculations show that in general, depending
on the geometry and electrolyte used in the system, the en-
hancement factor, fEV, is typically limited to about 1.1–1.25,
which is only about a 10% increase in drag compared to
the bulk electroviscous effect [24]. Tubelike confinement is
capable of generating much stronger effects (20–30% over the
bulk electroviscous effect) but we have limited this study to
parallel-plate systems which are the focus of several experi-
mental studies in the literature [33–35,37].

Our measurements on spheres in a parallel plate silica
slit are in good agreement with the results of the standard
electrohydrodynamic model and do not evince anomalously
large values of drag enhancement factors, fEV, of up to a
factor 2 reported in previous studies [33–37]. Taken together,
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these results indicate that it is unlikely that previous re-
ports of anomalously small diffusion coefficients for charged
nanoparticles in confined fluidic systems can be attributed
exclusively to an enhancement of the electroviscous effect. It
is likely that measurements in the regime of weak electrostatic
screening, where the electroviscous effect has a measurable
effect, are disproportionately influenced by contributions from
other sources such as confining potentials and surface in-
homogeneities. It is also possible that organic or surfactant
layers conferring surface charge on metallic nanoparticles or
slit surfaces contribute to the effect in a manner that is not
envisaged within the continuum electrohydrodynamic model

based on PNPS equations. For experimental systems that do
conform to the premises of the outlined theoretical model, we
find that neither model nor measurement give any indication
of anomalous enhancement of the electroviscous drag force
on charged particles in confinement.
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