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Coevolution of cooperation and language
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As a cooperative act decreases an individual’s fitness for others to benefit, it is expected to be selected against
by natural selection. That, how contrary to this naive expectation cooperation has evolved, is a fundamental
problem in evolutionary biology and social sciences. Here, by introducing a mathematical model, we show that
coevolution of cooperation and language can provide an avenue through which both cooperation and language
evolve. In this model, individuals in a population play a prisoner’s dilemma game and at the same time try to
communicate a set of representations by producing signals. For this purpose, individuals try to build a common
language, which is composed of a set of signal-representation associations. Individuals decide in language
learning based on their payoff from the prisoner’s dilemma game and decide about their strategy in the prisoner’s
dilemma game based on their success in conveying symbolic information. The model shows cooperators are able
to build a common language and protect it against defectors’ attempt to decode it. The language channels the
benefit of cooperation toward cooperators, and defectors, being banished from the language, are unable to exploit
cooperators, and are doomed to extinction.
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I. INTRODUCTION

The evolution of cooperation poses a fundamental chal-
lenge in evolutionary biology: If individuals are to be selected
based on their fitness, then any altruistic trait that reduces an
individual’s fitness for the sake of others is to be selected
against [1,2]. Nevertheless, a high level of cooperation is
observed in biological and social world [3–5]. As a result of
many efforts devoted to resolve this apparent paradox, some
mechanisms are identified by which cooperation can evolve
in a population of self-interested agents subject to natural
selection [6,7]. Kin selection can promote cooperation among
relatives [2]. If individuals live in relatively closed groups,
then competition between groups can lead to a situation in
which groups composed of more cooperative individuals per-
form better. This promotes cooperation via group (multilevel)
selection [8,9]. In repeated interactions between individuals,
cooperation can evolve by direct reciprocity [10]. When in-
teractions are not repeated, indirect reciprocity, according to
which cooperation increases the chance for the individual
to receive benefit, can promote cooperation [11–13]. Spatial
selection and network reciprocity can promote cooperation
in structured populations by increasing associativity between
cooperators [14,15]. Tag-based mechanisms promote cooper-
ation through a similar effect by increasing the associativity
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between cooperators [16,17]. Finally, voluntary participation,
such that individuals have the option to opt out of the game
and resort to a safe income, can promote cooperation as well
[18,19]. Punishment is shown to promote cooperation in pub-
lic goods games in human experiments [20]. Although, due to
second-order free riding on punishers, it seems to be unable
to promote cooperation by its own, but it is shown to increase
cooperation level if supplemented by another mechanism to
avoid free riding [21–24]. In addition, reward is shown to be
able to promote cooperation [25,26]. Recently, it is shown that
strategic signaling can provide a new road to the evolution of
cooperation, which seems to be able to explain the evolution
and maintenance of costly signals as well [27].

It is argued that language can be another means by which
high levels of cooperation has evolved in human populations
[6,28]. Even more, it is suggested that the positive role of
language in the evolution of cooperation can be among the
factors which have given rise to the evolution of language
[29,30]. However, a mathematical model which shows how
language and cooperation can co-evolve is still lacking. Here,
we provide this missing piece of the puzzle. To this goal, we
consider a model in which individuals in a population are
paired to play a collective action game [prisoner’s dilemma
(PD) game] and at the same time, try to communicate a
set of representations by producing signals. For this pur-
pose individuals try to learn a set of associations between
signals and representations. That, from whom to learn their
associations, is determined by their payoff from the pris-
oner’s dilemma game. In the same way, individuals decide
about their strategy in the prisoner’s dilemma game based
on their success in communication with their coplayer. The
model shows cooperators can cooperatively build and protect
a protolanguage against defectors’ attempts to decode their
language. The language allows cooperators to identify each
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other based on their success in conveying symbolic informa-
tion. In this way, language channels the benefit of cooperation
towards cooperators. Cooperation, is the key to the common
language. Refraining from cooperation, expels defectors from
the language. Being banished from the common language,
defectors are unable to exploit cooperators and are doomed to
extinction.

II. THE MODEL

We consider a population of individuals who can engage
in symbolic communication and at the same time play a co-
operative task. We model the cooperative task by a PD game.
This game is extensively used in the studies on the evolution
of cooperation [1,6]. In this game, each individual has two
strategies: cooperation and defection. If both individuals co-
operate, both receive a payoff R. If one defects while the other
cooperates, the defector receives a payoff T , and the coopera-
tor receives a payoff S. If both defect, then both get a payoff
P. The payoffs are such that, S < P < R < T and T < 2R.
With these conditions, this game constitutes a social dilemma:
Cooperation offers the highest total payoff while defection is
the most rational strategy. To begin with, we set the payoff
values equal to S = 0, R = 1, P = 0.1, and T = 1.5. Later we
study how the model behaves for other values.

We assume individuals can also engage in symbolic
communication by producing signals to signify a set of rep-
resentations or meanings that they have [31–38]. For this
purpose they have access to n signals to signify n representa-
tions. In addition, they are equipped with two communication
channels, for production and comprehension of signals. Pro-
duction channel, Pα (σ |r) gives the probability that signal σ

is produced for representation r, and comprehension channel
Qα (r|σ ) gives the probability that representation r is com-
prehended when receiving signal σ . Here, the index α refers
to an individual α. Individuals learn their languages, i.e., P
and Q, by forming associations between representations and
signals from their experience, such that Pα (σ |r) = Aα (σ,r)∑

σ Aα (σ,r)

and Qα (r|σ ) = Aα (σ,r)∑
r Aα (σ,r) . Here, Aα (σ, r) is the association

between signal σ and representation r, for individual α.
The cooperative game and the coordination games are

coupled. To model this, we assume individuals first play a
language game in which one is the speaker and the other is the
hearer, and try to communicate over l randomly chosen repre-
sentations. That is, in each of the l communication attempts,
the speaker produces a signal σ for a randomly chosen repre-
sentation rs and the hearer guesses a representation rh based
on the signal. Individuals can be defectors or conditional co-
operators. Defectors always defect. Conditional cooperators,
however, cooperate if lt out of l communication attempts are
successful (i.e., rs = rh for lt times out of l attempts) and
defect otherwise. l is a measure of how much individuals have
the opportunity to engage in symbolic communication, and
lt is a measure of how stringent a conditional cooperator is
to cooperate. After the PD game, players coordinate if the
opponent cooperates (i.e., increase the association between
the signals and representations which led to a successful com-
munication with an amount d). However, if they cooperate and
the opponent defects, then they anticoordinate (i.e., decrease

the association between the signals and representation which
led to a successful communication by an amount d).

We consider two different population structures, a well-
mixed population, and a structured population. In the well-
mixed population, at each time step, individuals are paired at
random to play the games. In the case of the structured pop-
ulation, the individuals are set on a network and at each time
step play the games with all their neighbors. As the population
network, we consider a first-nearest-neighbor square lattice
with periodic boundaries. The motivation behind this choice
resides in the fact that lattices are a good approximation for
a spatial structure, where many evolutionary processes take
place. Besides, the simplicity and genericity of lattices allows
us to make sure the observed behavior of the model is rather
generic and does not result from ad hoc aspects of the network
structure. For these reasons, latices are extensively used in
many of the studies in evolutionary games [14,15,19,21,23].

Individuals gather payoff according to the outcome of the
prisoner’s dilemma game. After playing the games, a selection
occurs in which an individual is selected with a probability
proportional to its payoff and produces an offspring. The
offspring replaces a randomly chosen individual. With prob-
ability 1 − ν, the offspring inherits the strategy of its parent
and with probability ν, a mutation occurs in which case the
strategy of the offspring is randomly set to be either C or D.
The association matrix of the offspring o is given by Ao =
(1 − η)Ap + η[ 1

n2 ]. Here, [ 1
n2 ] is a matrix all whose entries

are equal to 1
n2 , and Ap stands for parent’s association matrix.

η can be seen as the amount of noise in parental learning,
and 1 − η is a measure of the amount of parental learning:
with η = 0 the offspring learns the language of its parent with
certainty, and with η = 1, it starts with a uniformly random
language and has to start from scratch to learn a language.

III. RESULTS

In Fig. 1, the population fraction of conditional coopera-
tors, m, for a population of size N = 100 as a function of time
is plotted (solid blue line). In Fig. 1(a), the case of a well-
mixed population is considered and in Fig. 1(b), a population
residing on the lattice is considered. Here, and in the following
simulations (unless otherwise stated), we set: η = 0.1, l = 10,
lt = 2, n = 50, d = 0.1, ν = 0.01, and individuals start with
random language and strategies. As can be seen in Fig. 1,
a large fraction of conditional cooperators is maintained in
the population. This results from the fact that cooperators
are able to form a common language and preserve their lan-
guage from defectors’ attempts to decode it. As a measure
of individuals’ success to communicate symbolic informa-
tion, we consider the population consistency of language
defined as [31] PC = 1

2Nn

∑N
α,β=1

∑n
σ,r=1[Qα (r|σ )Pβ (σ |r) +

Qβ (r|σ )Pα (σ |r)], and plot this in Fig. 1(a) (red dashed
line). As individuals start off with random languages, PC
takes a small value in the beginning of the simulation. As
time unfolds, individuals begin to form a common language
and PC increases. Interestingly, m and PC evolve in a cor-
related fashion. When PC is large, cooperators exchange
symbolic information more easily, and can recognize each
other through linguistic interactions. This allows them to
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FIG. 1. Time dependence of the model. (a), (b) The population fraction of conditional cooperators m (blue solid line), and the population
consistency of the language PC (red dashed line), a measure of how well individuals understand each other. In panel (a) a well-mixed population
is considered and in panel (b) the population resides on a first-nearest-neighbor square lattice with periodic boundaries. Cooperation, and a
common language evolve in a correlated fashion indicated by bursts where both take a high value, and periods when both drop. (c), (d) Color
plot of the time-dependent population consistency, a measure of how well individuals at different generations understand each other, in a
well-mixed population (c) and for a population on a lattice (d). While in a well-mixed population, population consistency of language remains
small, for a structured population, language reaches a high level of population consistency and historical similarity.

reach a high payoff by selectively cooperating with each
other. This in turn increases the cooperation level, m. Oc-
casionally, defectors are able to decode the language. This
increases the payoff of defectors and thus reduces m. In such
times, cooperators, being defected by defectors who under-
stand their language, attempt to change their language to keep
defectors away. This leads to a sharp decline in the value
of PC, which signals a period of language change in the
population, until cooperators are able to reestablish another
language immune from defectors. Fluctuation between these
two states of high and low cooperation and symbolic infor-
mation exchange level, is a fundamental characteristic of the
model.

The simulation on the lattice, presented in Fig. 1(b) shows
a similar phenomenology as in the case of a well-mixed popu-
lation. The main difference however, is that network structure
facilitates language formation and thus, cooperation. This can
be seen by noting that both m and PC take significantly larger
values on a network compared to a well-mixed population.
The reason is that, on a network with fixed interactions,
neighboring conditional cooperators who are willing to coop-
eratively form a common language, are able to do so without
defectors’ intrusion. We note that, even though network struc-
ture is known to facilitate cooperation with certain update
rules [15], under our update rule (random replacement of an
individual with the newly born offspring of the winner), coop-
eration does not emerge without a language. In this regard, our
analysis reveals a fundamentally new way in which network
structure promotes cooperation by facilitating coordination
between cooperators to build a common set of conventions
to communicate symbolic information.

In our model, cooperators are under constant pressure to
rearrange their language to keep it immune from defectors.
This provides an avenue for language change. An interesting
question is how language evolves in time and how languages
formed at different times are related. To investigate this,
we define the time-dependent population consistency
as PCt (t1, t2) = 1

2Nn

∑N
α, β=1

∑n
σ,r=1[Qα

t2 (r|σ )Pβ
t1 (σ |r) +

Qβ
t1 (r|σ )Pα

t2 (σ |r)]. This is a measure of how individuals living

in generations t1 and t2 understand each other. Generation time
is defined as the simulation time divided by the population
size N . We color plot PCt as a function of generation time
in Fig. 1(c), in the case of a well-mixed population, and
in Fig. 1(d) in the case that individuals reside on a fixed
network of interactions [this is based on the same simulation
presented in Figs. 1(a) and 1(b)]. As can be seen, language
constantly changes. At some times, a language emerges (this
corresponds to a bright color on the diagonal). However,
after a while, defectors manage to decode the language,
and consequently, the language collapses. In a well-mixed
population, usually, the newly emerged language has no
similarity with its predecessors. But in some instances [such
as the language emerged between generations 150 and 200
in Fig. 1(c)], a future language results from an old one by
small rearrangements. In contrast, this is most often the
case on a network, where cooperators are able to keep their
language immune by small changes. Consequently, the core
of the language is preserved over time and many generations
are able to significantly understand each other. Comparison
between well-mixed and networked populations suggest that,
a network structure is highly facilitating for a language to
reach a high level of population consistency and historical
similarity. An important question is how our results depend
on the parameter values. To address this question, in Fig. 2
we look at the parameter dependence of our results. Here,
time averages of m and PC, as a function of model parameters
for both population structures are plotted (squares indicate
simulation results for population on a lattice, and circles
indicate results for a well-mixed population). We begin by
investigating the dependence on lt in Fig. 2(a). As can be
seen, for a given strength of communication (l = 10) an
optimal lt exists: for smaller lt s individuals are too liberal
and defectors can easily deceive cooperators. For larger lt s,
cooperators are too chauvinist such that the formation of a
common language becomes increasingly difficult starting
from a random language (as the formation of a common
language necessitates individuals occasionally cooperate by
chance to be able to build a common language, the chances of
which decreases with increasing lt ).
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FIG. 2. Dependence on the model parameters. The time average cooperation level, 〈m〉t (blue), and the population consistency of the
language (red), 〈PC〉t , as a function of model parameters, for two different population structures. Cooperation evolves in a broad range of
parameter values. The level of cooperation (blue solid line) and population consistency of language (red dashed line), are much higher for
a structured population (squares) compared to a well-mixed population (circles). lt is the number of correct communications necessary for a
conditional cooperator to cooperate, l is the number of communications before a game, η the amount of noise in parental learning, and N the
population size. The network used here is a first-nearest-neighbor lattice with periodic boundaries. The simulations are performed for 105 time
steps and time averages and standard deviations (error bars) are calculated after discarding the first 104 time steps.

The dependence on the strength of communication l , is
investigated in Fig. 2(b). Here, lt is set to 1, and m and PC
as a function of l are plotted. As observed in the figure, even
one communication instance (l = 1) can be enough for the
emergence of cooperation. Furthermore, as l increases, indi-
viduals have more chances to coordinate and both 〈PC〉t and
〈m〉t increase. However, for larger l , the level of cooperation
decreases. The reason is that with fixed lt the probability that
a conditional cooperator cooperates with a defector increases
with increasing l . Such interactions favor defectors and thus,
the level of cooperation decreases. In addition, such interac-
tions cause cooperators to constantly change their language as
they are defected frequently. This in turn decreases PC.

Dependence on parental learning is investigated in
Fig. 2(c). In a well-mixed population, the level of cooperation
decreases with decreasing parental learning (i.e., by increas-
ing the noise η in parental learning). However, the situation is
different on a network: For a very small amount of noise in
parental learning, the level of cooperation slightly increases
by increasing the noise in parental learning. The reason is that,
a too small amount of noise in parental learning allows the
defectors to decode the language by learning from coopera-
tors’ offspring in their neighborhood. This cannot happen for
larger amount of noise in parental learning, as in this case,
offspring language bears less similarity with that of its parent
and cannot be exploited by defectors as a door to the language.

The dependence on the population size N , is investigated
in Fig. 2(d). For too small populations, the same individuals
interact too often which gives the defectors a high opportunity
to decode cooperator’s language. Consequently, the level of
cooperation is small for too small population sizes in both
cases of the well-mixed and the networked populations. In
large populations however, the situation is different for the two
population structures. In the networked population, language
can maintain cooperation even for very large sizes. In addi-
tion, PC increases with population size. The reason is that,
by increasing the population size, islands of cooperators can
form with no defector in the close vicinity. Such small com-

munities of cooperators provide safe places for cooperators to
coordinate their language and play an important role in the
formation and maintenance of cooperator’s language. On the
contrary, for a mixed population, for a too large population
size, it becomes increasingly difficult for the cooperators to
coordinate on a common language and consequently the level
of cooperation and PC drop.

Interestingly, the model shows there exists an optimal pop-
ulation size which facilitates the evolution of language and
maximizes the level of cooperation: For too small population
sizes, it is difficult to keep defectors away, and for two large
population sizes, it becomes difficult for conditional coop-
erators to coordinate on a common language in the face of
defectors. In the Appendix C we confirm that the existence of
an optimal population size holds for a broad range of param-
eter values. The optimal population size however, can slightly
depend on the parameter values. It seems tempting to see if
this result can bring any insight into the evolution of language
and cooperation in early human groups. It is argued that the
typical size of early human groups was of the order of 100
individuals [39]. For a rather broad range of parameter values
in our model, this size falls in the regime where a significant
level of cooperation and language consistency can evolve in
a well-mixed population. This can be argued to suggest that
a protolanguage could have been an effective mechanism to
promote cooperation in such group sizes, and thus, a strong
selection pressure for the evolution of language could have
been at work due to its role in promoting cooperation.

In the Appendices, we further investigate the dependence
of the model behavior on other parameters of the model
(Appendix B). In addition, we show that cooperation can
evolve in a structured population of unconditional cooper-
ators and defectors as well (Appendix E). In the case of
a well-mixed population of unconditional cooperators and
defectors, cooperation can evolve with a weak prisoner’s
dilemma (S = P) [40]. We also consider a birth-death update
rule, in which the offspring replaces one of the neighbors
of its parent (Appendix D). Without a language, competition
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between cooperators over scarce sites prevents cooperation to
evolve for such an update rule [15]. However, as shown in
the Appendix D, a high level of cooperation evolves when
individuals have access to a language to exchange symbolic
information.

IV. DISCUSSION

While it had been suggested that language may have played
an important role in the evolution of cooperation in human
groups [28], and furthermore, language’s positive role in the
evolution of cooperation may have contributed to the evolu-
tionary pressure to develop language [29,30], a mathematical
model that shows how this could happen was missing. Here,
we have tried to proved a simple mathematical model to cast
light on this subject. To this goal, we have regarded language
as a set of associations between a set of representations and
signals which individuals use to convey symbolic information.
This can be seen as a simplified model of language [41,42], or
a protolanguage at work at the early stages of the evolution of
human language [31–35]. More generally, a set of associations
between representations and signals, as considered here, can
be seen as a model of biological communication in many
species in which individuals communicate by signal exchange
[37,38]. In this regards, our model shows how cooperative
construction of a shared set of linguistic conventions to com-
municate symbolic information can provide an avenue for the
emergence of cooperation in different communicating species
with primitive cognitive abilities.

In our model, language is acquired by cooperative co-
ordination among cooperators. More precisely, a common
language is acquired by cooperators’ attempt to make their
language more similar to fellow cooperators and differentiate
their language from that of defectors. This, arguably, can
result from individuals’ willingness to identify and cooperate
with like-minded cooperators [43,44], and as our analysis
shows, leads to a situation where a cooperative act serves as a
token which is the key for the individual to enter the common
language. Defectors, not having the key, are banished from the
language and are unable to exploit cooperators. Cooperators’
attempt to build and protect a cooperative language with like-
minded cooperators, in the face of defectors’ attempt to find
the door to the language, provides an avenue for language
changes and leads to correlated fluctuations in the population
consistency of the language and the level of cooperation.
These fluctuations can be suppressed by a network structure,
which facilitates building a common language and promotes
cooperation. In this regards, our analysis reveals yet another
way in which assortativity resulted from a network structure
can facilitate the evolution of cooperation, by providing co-
operators the opportunity to build a common set of linguistic
conventions. However, in a well-mixed population, defectors
perform better in decoding the common language and ex-
ploiting cooperators. This decreases the level of population
consistency and cooperation and leads to fluctuations in which
different languages are formed, but before going to fixation
are decoded by defectors and go to extinction.

Our model provides insights into the evolution of lan-
guage as well. Computational models aiming at modeling the
evolution of language, have shown that how in a population

of agents in which communication is mutually beneficial,
language can evolve [31,32,41,42]. We have extended these
researches by showing a symbolic communication system can
evolve, even if communication endows no direct benefit. In
this regard, language can provide a collective identity, which
benefits the individuals who contribute to building it by costly
cooperation. This is done by providing a mean to avoid ex-
ploitation by those who do not contribute in forming the
shared language. In this way, language increases the overall
group fitness by promoting cooperation.
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APPENDIX A: OVERVIEW OF THE MODEL
AND SIMULATIONS

In this Appendix, we bring an overview of the model, and
explain the simulations.

We consider a population of N individuals, who are able
to communicate by production and comprehension of signals,
and play a prisoner’s dilemma (PD) game. Individuals collect
payoff according to the outcome of the prisoner’s dilemma
game and are subject to selection based on their payoff. In the
following, each part of the model is explained in turn.

1. The model of language

Individuals have access to a set of representations or mean-
ings r = {r1, .., rn} and are able to produce and comprehend
n signals � = {σ1, .., σn}, which they use to communicate
their representations. For this purpose, each individual α is
equipped with two communication channels. Production ma-
trix Pα (σ |r) gives the probability that signal σ is produced
for representation r. In the same way, comprehension ma-
trix Qα (r|σ ) gives the probability that representation r is
comprehended when receiving signal σ . Individuals can form
associations between signals and representations. Association
between signal σ and representation r is denoted by Aα (σ, r).
Individuals form their production and comprehension ma-
trices based on their associations, by setting Pα (σ |r) =

Aα (σ,r)∑
σ Aα (σ,r) and Qα (r|σ ) = Aα (σ,r)∑

r Aα (σ,r) . Individuals change their
associations based on the payoffs they receive in the prisoner’s
dilemma game as described below.

2. Dynamics of the games

When two individuals are paired to interact, they first try
to communicate, and then play a PD game. Their strategy
in the PD is determined based on the result of the commu-
nication. To communicate, one of the individuals, chosen at
random, becomes the speaker and the other one becomes the
hearer. The speaker produces a signal σ for a randomly chosen
representation using her production matrix, and the hearer
guesses a representation using her comprehension matrix.
Communication is done for l rounds, in each round over a
randomly chosen representation. After the l communication
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attempts, the individuals play a prisoner’s dilemma. Defectors
always defect. Conditional cooperators, however, cooperate if
lt out of l communication attempts is successful, and defect
otherwise. After the PD game, individuals receive payoff and
update their associations based on their payoff. Individuals
always coordinate with cooperators, i.e., an individual coor-
dinates if its payoff is larger than or equal to R. However, an
individual anticoordinates if she cooperates while the oppo-
nent defects. That is, when it receives the minimum payoff
S. When coordinating, the individual increases her associa-
tion between the subset of the realized signal-representations
which led to a correct communication, by an amount d . When
anticoordinating, the individual decreases her associations for
the subset of signal-representations which led to a correct
communication, by an amount d . If the association between a
signal and representation becomes negative, it is set to a small
number, 10−60. The association matrix is kept normalized in
each time step such that the sum of all its elements is equal
to 1, and the comprehension and production matrices are
calculated based on the association matrix in each time step.

3. The evolutionary model

Two different population structures are considered. In the
case of a well-mixed population, at each time step individ-
uals are paired at random to play the games. In the case of
a population residing on a network (a first-nearest-neighbor
square lattice with periodic boundaries), at each time step,
each individual plays the games with all its neighbors. Indi-
viduals gather payoff based on the PD game. In each time
step, an individual is selected with a probability proportional
to its payoff and produces an offspring. The offspring inherits
the strategy of its parent and replaces a randomly chosen
individual in the population. However, with probability ν a
mutation can occur in which case the offspring’s strategy is
set randomly to be either C (conditional cooperation) or D
(defection). The association matrix of the offspring is deter-
mined according to Ao = (1 − η)Ap + η[ 1

n2 ]. Here, [ 1
n2 ] is a

matrix all whose entries are 1
n2 , and Ap stands for parent’s

association matrix. η can be seen as the amount of noise in
parental learning, and 1 − η can be seen as a measure of the
amount of parental learning: with η = 0 the offspring learns
the language of its parent with certainty, and with η = 1, it
starts with a uniformly random language and has to start from
scratch to learn a language.

4. The simulations

The base parameter values used in the simulations are
N = 100, η = 0.1, l = 10, lt = 2, n = 50, d = 0.1, ν = 0.01,
and the base payoff values are S = 0, R = 1, P = 0.1, and
T = 1.5. Individuals start with random language and strate-
gies. Simulations are performed for t = 100 000 time steps.
For investigating the parameter dependence in Fig. 2, a time
average is taken after discarding the first t = 10 000 steps.
Error bars reported in the figures are the standard deviation of
the corresponding quantity calculated based on this sample.
In each simulation in this figure one of the parameters is
changed, keeping the rest constant and equal to the base value
(unless otherwise stated).

APPENDIX B: DEPENDENCE ON THE
MODEL PARAMETERS

We have investigated the dependence of the cooperation
level on the extent of communication l , the number of correct
communications necessary for a conditional cooperator to
cooperate lt , the amount of noise in parental learning η, and
the population size N , in the main text. Here, we investigate
the dependence of the cooperation level on other parameters
of the model.

The dependence on the mutation rate in strategies, ν, is
investigated in Fig. 3(a). Here, we see that by increasing ν the
level of cooperation and PC decrease. The reason is that with a
large mutation rate, a cooperator’s offspring turns defector too
often. Assuming noise in parental learning is small, which is
the case here (η = 0.1), such defectors have a high knowledge
of cooperators’ language, and thus, can significantly exploit
them.

The dependence on the number of representation, n, is
investigated in Fig. 3(b). With l = 10 and lt = 2, which is
used here, for too small n cooperation does not evolve. The
reason is that the probability that two individuals with random
languages have a correct communication increases with de-
creasing n. Consequently, with a small value of n, individuals
need to set a higher level of lt as a criteria to cooperate.
However, for large n this probability decreases and building
a common language becomes increasingly difficult starting
from a population with random languages. This is why PC
decreases for large n. In such cases, individuals need to set a
lower value of lt to be able to form a language.

The dependence on learning rate, d , is investigated in
Fig. 3(c). Here, we can see that the level of cooperation in-
creases with increasing the learning rate. However, for very
large learning rates PC decreases, as such a fast response can
lead to too large changes in the language of an individual in
response to an instance of communication.

Finally, the dependence on the payoffs of the game are
investigated in Fig. 3(d) for the temptation and Fig. 3(e) for the
punishment. While the level of cooperation slightly decreases
with increasing the temptation and the punishment, it remains
large in the whole range of the prisoner’s dilemma game.
This results from the fact that language offers a strong way
for the cooperators to selectively cooperate with their peer
cooperators.

APPENDIX C: EXISTENCE OF AN OPTIMAL
POPULATION SIZE FOR THE EVOLUTION

OF COOPERATION IN A MIXED POPULATION

In this section, we show that, in a mixed population, for
a broad range of the parameter values, an optimal population
size exists which optimizes the cooperation level. To do so,
we run simulations for different population sizes to derive the
time average cooperation level as a function of the population
size. The results are presented in Fig. 4. Here, using the
base parameter values, in each panel one of the parameters
is changed (as specified in the figure), and the time average
cooperation level is calculated. As can be seen, an optimal
population size exists for a broad range of parameter values.
While the optimal population size shows small sensitivity to
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FIG. 3. Dependence on the model parameters. The time average cooperation level, 〈m〉t (blue), and the population consistency of the
language (red), 〈PC〉t , as a function of the model parameters, for two different population structures. Cooperation evolves in a broad range
of parameter values. The level of cooperation (blue solid line) and population consistency of language (red dashed line), are much higher
for a structured population (squares) compared to a well mixed population (circles). ν is the mutation rate in strategies, n is the number of
representations (equal to the number of signals), d is the learning rate, T the temptation, and P the punishment. The network used here is a
first-nearest-neighbor square lattice with periodic boundaries. The simulations are performed for 105 time steps and time averages and standard
deviations (error bars) are calculated after discarding the first 104 time steps.

the language adjustment rate d , noise in parental learning η,
mutation rate in strategy ν, the number of representations
n, and the number of communications l , a larger depen-
dence on the number of correct communications needed for a
conditional cooperator to cooperate, lt , is observed. Increas-
ing lt while keeping l fixed, decreases the probability that

conditional cooperators cooperate. This gives an advantage
to conditional cooperators, as such stringent conditional co-
operators are exploited less frequently by defectors, and thus,
can effectively build a common language and dominate the
population even in larger population sizes. However, for
too large lt (for a fixed l), the probability that conditional
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FIG. 4. Existence of an optimal population size for the evolution of cooperation in a mixed population. The average cooperation level is
maximized in an intermediate population size for different parameter values. Here, the base parameter values are used. In each panel, one of
the parameters is changed as specified in the figure and the time average cooperation level is plotted as a function of population size. In panels
(a)–(c), the simulations is run for T = 4 ∗ 105 time steps, and in panels (d)–(h) it is run for 106 time steps. In all the cases, the average is taken
after discarding the first 104 time steps. Error bars show standard deviation calculated based on the same sample.
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FIG. 5. Dependence on model parameters in the model with birth-death update rule. The time average cooperation level, 〈m〉t (blue), and
the population consistency of the language (red), 〈PC〉t , as a function of model parameters, for a structured population. Cooperation and a
common language evolve and are maintained in a broad range of parameter values. lt is the number of correct communications necessary for
a conditional cooperator to cooperate, l is the number of coordination before a prisoner’s dilemma game, η is the amount of noise in parental
learning, N is the population size, ν is the mutation rate in the strategies, n is the number of representations (equal to the number of signals), d
is the learning rate, T the temptation, and P the punishment. The simulations are performed for 105 time steps and time averages and standard
deviations (error bars) are calculated after discarding the first 104 time steps.

cooperators successfully communicate and cooperate with
each other, significantly decreases. In such a context, condi-
tional cooperators most often defect, receive the same payoff
as defectors, and coexist with defectors almost in the same
frequency. However, although conditional cooperators are
maintained in the population in this regime, a common lan-
guage does not evolve, due to the lack of positive cooperative
interactions among conditional cooperators.

APPENDIX D: BIRTH-DEATH UPDATE RULE
ON A NETWORK

Here, we consider a population residing on a network (a
first-nearest-neighbor square lattice with periodic boundaries)
with a birth-death update rule. That is, at each time step that an
individual is selected for reproduction, its offspring replaces a
randomly chosen neighbor of the parent. While, it is known
that network structure can promote cooperation, the competi-
tion between cooperators over scarce sites reduces the benefits
arising from network reciprocity and precludes cooperation
with a birth death update rule [15]. However, as we show here,
the situation changes when individuals are able to engage in
linguistic communication, and cooperation evolves.

In Fig. 5, we investigate the level of cooperation with
respect to the model parameters, with a birth-death update
rule. As can be seen, a high level of cooperation evolves in
the population. The dependence of the cooperation level on
the model parameters is similar to the model with random
death update rule, and thus we do not elaborate on them

here. This shows that the details in the implementation of the
dynamics does not affect the overall behavior of the model.
Network structure facilitates the evolution of cooperation by
facilitating for the neighboring cooperators to collectively
build a common language. The language provides a way for
cooperators to channel cooperation to fellow cooperators and
avoid exploitation by defectors.

APPENDIX E: EVOLUTION OF UNCONDITIONAL
COOPERATION IN A STRUCTURED POPULATION

We consider a second model in which cooperators never
defect. Instead, they can decide not to play the prisoner’s
dilemma game if the communication is not successful. More
specifically, in this model, at each time step, individuals play
the games with their neighbors on the network. Each pair
plays l rounds of a coordination game in which one is speaker
and the other hearer. In each round of the coordination game,
the speaker produces a signal for a randomly chosen represen-
tation r, according to its production matrix P(σ |r). The hearer
guesses a representation rh for the received signal according
to its comprehension matrix Q(r|σ ). After the l rounds of
the coordination game, they have the possibility of playing
a prisoner’s dilemma game. Defectors always play the PD
game and defect. Cooperators however, play the PD only if the
fraction of correct communications is equal to, or larger than
lt . If deciding to play the PD, cooperators always cooperate.
It can be argued, intuitively, that the evolution of cooper-
ation with such unconditional cooperators is more difficult
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FIG. 6. Time dependence of the model for a population of unconditional cooperators on a first-nearest-neighbor square lattice. (a) The
population fraction of cooperators m (blue solid line) and the population consistency of the language PC (red dashed line). Cooperation, and a
common language evolve in a correlated fashion indicated by bursts where both take a high value, and periods when both drop. (b) Color plot
of the time depended population consistency, a measure of how well individuals at different generations understand each other. Cooperators
are under constant pressure to change their language to keep it incomprehensible for the defectors. Languages evolved in different times show
historical similarity. Which means the same language is preserved by small modifications to purge the defectors away.

compared to the model with conditional cooperators. The rea-
son is that, defectors, by playing with each other can receive
a payoff of P which is larger than the payoff of cooperators
when they decide not to play the game (which is set to 0).
However, as can be seen in Fig. 6(a) cooperation can evolve
in this model as well, when the individuals reside on a net-
work. As usual, the network is a first-nearest-neighbor square
lattice with periodic boundary condition, and the same param-
eter values used in the main text is used (N = 100, n = 50,
l = 10, lt = 2, η = 0.1, ν = 0.01 d = 0.1, S = 0, P = 0.1,
R = 1 and T = 1.5). Here, the fraction of cooperators in the
population as a function of time is plotted (solid blue line).
The population consistency of the language, defined as PC =

1
2Nn

∑N
α,β=1

∑n
σ,r=1(Qα (r|σ )Pβ (σ |r) + Qβ (r|σ )Pα (σ |r)), is

plotted too (red dashed line). As can be seen, cooperators
are able to form and protect a common language. Making
their strategy conditional on understanding, cooperators can
survive and exist in a large fraction. Defectors constantly
attempt to understand cooperators’ language. At some time
instances, they succeed and persuade cooperators to play the
PD game. As defectors receive larger payoff compared to co-
operators at such times, the fraction of cooperators decreases.
Cooperators in turn, being defected, rearrange their language
to keep it away from defectors. This in turn reduces the PC and
cooperator’s ability to understand each other. After a while,
cooperators manage to form a new language which is not
understandable for defectors. This dynamics is similar to the
model with conditional cooperators.

In Fig. 6(b), we look at the language changes over
time. To do so, we color plot the time-dependent
population consistency of the language, PCt (t1, t2) =

1
2Nn

∑N
α,β=1

∑n
σ,r=1[Qα

t2 (r|σ )Pβ
t1 (σ |r) + Qβ

t1 (r|σ )Pα
t2 (σ |r)], as

a function of generations (defined as simulation time divided
by the population size). As described in the main text,
PCt (t1, t2) is a measure of how well individuals living at
times t1 and t2 understand each other [this is symmetric under
the exchange of t1 and t2, and we have PCt (t1, t1) = PC(t1)].

In the beginning of the simulation, individuals have started
with a random language. Consequently, they are not able
to understand each other, neither they can understand
individuals at later times. This can be observed by noting
the dark color when either t1 or t2 is small. As time unfolds,
a common language starts to form. This happens around
generation 10 (where PCt takes a value denoted by green
color). However, the formation of the language is not a
gradual process and language is subject to constant changes.
This results from defectors’ attempts to understand the
common language, and cooperators’ attempts to keep their
language safe (incomprehensible to defectors) by modifying
it. Consequently, as can be seen in Fig. 6(b) there comes
periods where the population consistency of the language
drops. However, a characteristic of the languages evolved
in networked populations is historical similarity. That is,
a language evolved at a time is understandable for other
generations [this can be seen in Fig. 6(b) by noting that
PC(t1, t2) for a fixed t1 has several peaks (periods with bright
color) for different times t2]. This results from the fact that
when a language is partially disposed to defectors, cooperators
are able to make it incomprehensible for defectors again by
small modifications of the language. As seen in the main
text, this is a property of the language change in networked
populations. In contrast, in a well-mixed population the
historical similarity of languages evolved in different times is
significantly lower.

Finally, the parameter dependence of the model with un-
conditional cooperators is investigated in Fig. 7. Here, the
time averages of m and PC are plotted as a function of model
parameters. The overall parameter dependence of the model
with unconditional cooperators is similar to that with con-
ditional cooperators introduced in the main text. Below, we
explain the parameter dependence in detail. The dependence
on the number of correct communications necessary for a
cooperator to play the PD game lt , is investigated in Fig. 7(a).
As mentioned before, lt is a measure of how cooperators are
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FIG. 7. Dependence on the model parameters in the model with unconditional cooperators on a first-nearest-neighbor square lattice.
The time average cooperation level, 〈m〉t (blue), and the population consistency of the language (red), 〈PC〉t , as a function of model
parameters. Cooperation and a common language evolve and are maintained in a broad range of parameter values. lt is the number of correct
communications necessary for a cooperator to play the game, l is the number of coordination before a prisoner’s dilemma game, η is the
amount of noise in parental learning. N is the population size. ν is the mutation rate for the strategies, n number of representations (equal to
the number of signals), d is the learning rate, T the temptation, and P the punishment. The simulations are performed for 105 time steps and
time averages and standard deviations (error bars) are calculated after discarding the first 104 time steps.

stringent in playing the game. As here, the population starts
with a random language, if the individuals are too strict, then
the formation of a common language can be hindered. The
reason is that, starting from a random language, the formation
of a common language necessitates cooperators occasionally
play the game with enough frequency. A high value of lt ,
although can guard cooperators against being defected, hin-
ders the formation of a common language as well. This in
turn decreases the level of cooperation. A too small lt can be
harmful as well. As such cooperators who easily cooperate,
can play with defectors more often. This in turn, in addition
to increasing the fitness of defectors and decreasing m, causes
the cooperators who are defected change their language more
often, which decreases PC.

The dependence on the strength of communication is in-
vestigated in Fig. 7(b). Here, lt is set to 1 and 〈m〉t and
〈PC〉t as a function of l are plotted. As can be seen, even
one communication instance (l = 1) can be enough for the
emergence of cooperation. Furthermore, as l increases, in-
dividuals have more chances to coordinate and both PC
and m increase. However, for larger ls the level of coop-
eration slightly decreases. The reason is that, with a fixed
lt , the probability that a conditional cooperator cooperates
with a defector increases with increasing l . Such interac-
tions favor defectors and thus, m decreases. In addition, such
interactions cause cooperators to constantly change their lan-
guage as they are defected frequently. This in turn decreases
PC.

Dependence on the amount of noise in parental learning,
η, is investigated in Fig. 7(c). As can be seen, PC decreases
with increasing the amount of noise in parental learning.
This seems intuitive as with a higher amount of noise in
parental learning, offspring need to learn the language by
their own. Nevertheless, the level of cooperation remains very
high for all values of η. Interestingly, the level of coopera-
tion slightly increases with increasing the amount of noise
in parental learning. A similar phenomenon was observed
in the model with conditional defectors and might seem to
go against intuition, as one might expect increasing parental
learning helps cooperators to preserve their language over
time, and thus facilitates cooperation. The reason why increas-
ing parental learning can slightly reduce cooperation level is
that, a very large parental learning allows the defectors to learn
the language by learning from cooperators’ offspring in their
neighborhood. This cannot happen for smaller parental learn-
ing, as in this case offspring’s language bears less similarity
with that of its parent and cannot be exploited by defectors as
a door to the language.

The dependence on the population size N is investigated
in Fig. 7(d). As can be seen, the level of cooperation rapidly
increases for very small populations and shows very little
sensitivity to the population size, for large population sizes.
PC increases as well (much less rapidly) for small popula-
tions. For very small populations (N < 16) all the individuals
live in close vicinity of each other. This gives defectors a
good opportunity to learn the language of cooperators. As the
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population size increases, islands of cooperators are formed
that live a considerable distance from defectors. Such small
community of cooperators provide safe places for cooperators
to coordinate their language and plays an important role in the
formation and maintenance of cooperator’s language. This is
why PC increases with population size, in small population
sizes.

In Fig. 7(e), 〈m〉t and 〈PC〉t as a function of the muta-
tion rate ν are plotted. As can be seen, both 〈m〉t and 〈PC〉t

decrease with increasing mutation rate. The reason is easy
to see, as with a higher mutation rate, cooperator’s offspring
with a high knowledge of cooperator’s language turn defector
too often. Having a high knowledge of cooperator’s language,
they can exploit cooperators very well. Cooperators in turn,
being defected too often, constantly change their language to
keep it incomprehensible for defectors. This, in turn, leads to
a decrease in PC.

In Fig. 7(f) the dependence on the number of represen-
tation (equal to the number of signals) is investigated. As
can be seen, while the level of cooperation slightly increases,
〈PC〉t decrease with increasing n. The reason is that, with
fixed l and lt , by increasing n the probability of correct com-
munication decreases. Consequently, the number of mutual
cooperation, which is necessary for building a common lan-
guage, decreases. This reduces PC. Although detrimental for
building a common language, increasing n increases the level
of cooperation. As decreasing the number of games played by

the cooperators also decreases the opportunity of defectors to
exploit them.

Dependence on the learning rate d is investigated in
Fig. 7(g). The level of cooperation increases with increasing
d for small d , and shows little sensitivity for larger d . The
situation is different for PC. A very small d leads to slow
learning which lowers the ability of individuals to grow a
common language. A large d, however, leads to too strong
responses which is detrimental for coordination. A medium
response is optimal for the evolution of a common language.

Finally, the dependence on temptation T and punishment
P are investigated in Figs. 7(h) and 7(i). Cooperation remains
large for all values of T in the prisoner’s dilemma range and
slightly decreases with T . PC shows stronger sensitivity and
decreases with T as well. By increasing the punishment, a
sharp transition occurs to a regime where cooperation can-
not be maintained. The reason is that defectors play the PD
with each other and gather payoff P from such interactions,
even when they do not understand each other. In contrast,
cooperators refrain from the game in cases when they do not
understand their opponent, which leads to zero payoff which
is smaller than the payoff of mutual defection. When a pop-
ulation starts with random languages such that the number of
successful communication is low, cooperators refrain from too
many games. This leads to a situation where defectors receive
a higher payoff. Consequently, for large enough P defection
prevails in the population.
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