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Stochastic epigenetic dynamics of gene switching
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Epigenetic modifications of histones crucially affect eukaryotic gene activity, while the epigenetic histone
state is largely determined by the binding of specific factors such as the transcription factors (TFs) to DNA.
Here, the way in which the TFs and the histone state are dynamically correlated is not obvious when the
TF synthesis is regulated by the histone state. This type of feedback regulatory relation is ubiquitous in gene
networks to determine cell fate in differentiation and other cell transformations. To gain insights into such
dynamical feedback regulations, we theoretically analyze a model of epigenetic gene switching by extending
the Doi-Peliti operator formalism of reaction kinetics to the problem of coupled molecular processes. Spin-1 and
spin-1/2 coherent-state representations are introduced to describe stochastic reactions of histones and binding or
unbinding of TFs in a unified way, which provides a concise view of the effects of timescale difference among
these molecular processes; even in the case that binding or unbinding of TFs to or from DNA is adiabatically
fast, the slow nonadiabatic histone dynamics gives rise to a distinct circular flow of the probability flux around
basins in the landscape of the gene state distribution, which leads to hysteresis in gene switching. In contrast
to the general belief that the change in the amount of TF precedes the histone state change, flux drives histones
to be modified prior to the change in the amount of TF in self-regulating circuits. Flux-landscape analyses shed
light on the nonlinear nonadiabatic mechanism of epigenetic cell fate decision making.
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I. INTRODUCTION

Epigenetic pattern formation associated with chemical
modifications of histones provides long-term memory of gene
regulation, which plays a critical role in cell differentiation,
reprogramming, and oncogenesis [1,2]. The effects of epige-
netic modifications have been discussed theoretically [3–12];
however, their quantitative dynamics still remain elusive. Sta-
tistical mechanical analyses have suggested that histones in an
array of ≈102–103 interacting nucleosomes (i.e., particles of
histone-DNA complex) show collective changes in their mod-
ification pattern [13–15], and such collective modifications
have been indeed found in loops or domains of chromatin
[16–18]. It has been traditionally considered that concentra-
tion of transcription factors (TFs) largely determines the his-
tone state [19]; however, the relation between TFs and the
collective histone state is not obvious when both TFs and the
histone state are regulated with a network of feedback loops.
In particular, the mechanism of how histone modifications are
induced prior to the gene activation in developmental pro-
cesses remains a mystery [20–22]. Therefore, to get physical
insights into these dynamical regulatory systems, the relation
between TFs and the histone state needs to be tested by phys-
ical models.
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In physical modeling, particularly important is to repre-
sent the collective histone state as a dynamically fluctuating
variable to examine the effects of TF binding or unbinding
on the histone state dynamics. Here, we need to take account
the effects of timescale difference among various molecular
processes; when a certain molecular process is much faster
than the other processes, the fast process can be regarded as
being averaged as in quasiequilibrium in the adiabatic ap-
proximation, while the slowest process could be regarded as
stationary in the nonadiabatic limit. The effects of adiabaticity
and nonadiabaticity on the simple bacterial gene dynamics
have been intensively investigated from the statistical phys-
ical viewpoint with theoretical [5,23–30] and experimental
[31,32] methods, which revealed the large fluctuation of gene
activity in the middle-range regime between adiabatic and
nonadiabatic limits. However, the effects on the more complex
eukaryotic genes have remained challenging [3,4,12,33]. In
the present paper, we investigate the problem of adiabaticity
or nonadiabaticity in eukaryotic genes by explicitly taking
into account the degree of collective histone state transitions,
which are the mechanisms that are absent from bacterial genes
but play a central role in eukaryotic gene switching.

A straightforward way to analyze the physical models of
gene regulation is to simulate their kinetics with a Monte
Carlo type numerical method. However, such a calculation
does not necessarily provide a global understanding and phys-
ical picture directly. A clearer picture would be obtainable
when the stochastic kinetics is described with the chemical
Langevin equation, which emerges in the high molecular
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number or large volume limit as a continuous description
of stochastic chemical reactions. The Langevin dynamical
method leads to the combined description of probability flux
and landscape, where the landscape represents the distribution
of states generated via nonlinear interactions and the flux
reflects the nonequilibrium driving force of transitions among
states. Combined flux-landscape analyses have been useful to
obtain a global and physical perspective of various complex
systems [34–36]; however, in the present problem of gene
switching, continuous changes of molecular concentrations
are coupled with discrete processes of TF binding or unbind-
ing and transitions of histone states. Therefore, to describe
such coupled discrete and continuous dynamics, we need to
consider coupled multiple landscapes; Langevin dynamics are
the motions on individual landscapes and discrete molecular
state changes are transitions among landscapes [29,30]. In this
problem, even utilizing the flux-landscape method on individ-
ual landscapes, it is still difficult to obtain a global picture
when local stochastic transitions among multiple landscapes
are frequent. To overcome this difficulty, we here develop a
theoretical method by extending the Doi-Peliti operator for-
malism [37–39] of chemical reaction kinetics. By introducing
spin-1 and spin-1/2 coherent-state representations, the com-
bined discrete and continuous description is transformed to
a unified continuous description with expanded dimension.
Then, the coupled molecular processes are described as con-
tinuous dynamics on a single landscape in higher dimensional
space, which leads to a global picture and quantification
of gene switching dynamics. Using this extended Doi-Peliti
method, we show that nonadiabatic dynamics of histone state
transitions give rise to a nontrivial temporal correlation and
hysteresis in eukaryotic gene switching.

II. A PHYSICAL MODEL OF EUKARYOTIC
GENE SWITCHING

A. Self-regulating genes

Since the histones modified with the gene-repressing marks
and the histones having the gene-activating marks are not
directly transformed to each other but are transformed through
multiple steps of mark deletion and mark addition or replace-
ment with the synthesized unmarked histones, it is natural
to describe the individual histones with three states: gene-
repressing, unmarked, and gene-activating states [13,14].
Similarly, quantitative experimental data of transitions among
collective histone states, which emerge through cooperative
interactions among many nucleosomes, have been fitted by
the three-state transition models [40,41]. Therefore, in a sim-
ilar way to those previous models, we classify the collective
histone states around a promoter site of a modeled gene into
three states: the gene-activating state with histones marked as
H3K9ac or others (s = 1), the gene-repressing state marked
as H3K9me3 or others (s = −1), and the neutral state with
mixed or an absence of activating and repressing marks (s =
0). We write the transition rate from state s′ to s as rss′ . The
chromatin chain with s = 1 takes an open structure, which fa-
cilitates access of large-sized transcribing molecules to DNA
to enhance gene activity, whereas the s = −1 chromatin is

FIG. 1. Schematic of a self-regulating gene. Close-up views of
chromatin at around the promoter region are illustrated at the bottom,
where histones (brown) are actively marked (red) or repressively
marked (green). Histones in the chromatin are collectively marked
through their mutual interactions. When the activating mark is dom-
inant, chromatin has an open structure, which enhances the gene
transcription activity (s = 1), and when the repressive mark is dom-
inant, condensed chromatin suppresses the gene activity (s = −1).
When neither mark is dominant, the histone state is neutral (s = 0).
The transcription factor (TF) is a dimer of the product protein (blue
oval). The bound TF recruits histone modifiers (black), which trigger
the collective histone modification as was observed in engineered
cells [40,41,44] by perturbing the transition rates rss′ among the
histone states. The protein production rate gσ s depends both on the
TF binding status, σ , and on the histone state, s. See the text for the
definition of rates denoted by the arrows.

condensed, which prevents the access of necessary molecules
to suppress gene activity (Fig. 1).

We assume that the gene activity is regulated by both the
histone state and binding of a TF; the TF binds to DNA near
the promoter site (σ = 1) or unbinds from DNA (σ = −1)
with binding rate h and unbinding rate f . These rates are
insensitive to the chromatin packing density when the size
of the TF is as small as the pioneer TFs which can diffuse
into compact chromatin space [42,43]. Here, for simplicity,
we consider that the TF is a pioneer factor as Sox2 or Oct4
in mammalian cells [43] and its binding or unbinding rates
are not affected significantly by chromatin compactness or the
histone state. However, the bound TF should recruit histone
modifier enzymes, so that binding of a single TF nucleates
the histone state change, which is expanded and propagates
along the DNA sequence to induce collective histone state
change as observed in engineered [40,41,44] and model cells
[45,46]. Therefore, binding of the TF modifies rss′ as rss′ =
r0

ss′ + δσ1�rss′ , where δσ1 is a Kronecker delta. The rate of
collective change in many histones, rss′ , should be smaller in
general than the rate of single-molecule binding or unbinding,
h or f , which enables histones to retain the effect of TF
binding as memory; �rss′ > 0 for s > s′ when the TF is an
activator while �rss′ > 0 for s < s′ when the TF is a repressor.
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As a prototypical motif of gene circuits, we consider a
self-regulating gene as in Fig. 1; a dimer of the product pro-
tein is the TF acting on the gene itself. Here, by assuming
that dimerization is much faster than the other reactions, the
TF-binding rate should be h = h0 p2, where p = n/� is the
protein concentration, n is the protein copy number in the nu-
cleus, � is a typical copy number of the protein in the nucleus
when the transcription from the gene is active, and h0 is a
constant. The protein production rate depends on both σ and
s as gσ s. Here, g11 is the largest and g−1−1 is the smallest of
gσ s � 0 for an activator TF, whereas g−11 is largest and g1−1

is smallest for a repressor TF. With the approximation that
the protein degradation depends on the total copy number n,
the degradation rate is kn with a constant k. In this way, the
rates of the histone state transitions are affected by the binding
status of the TF, while the binding rate of the TF is regulated
by the amount of the TF, and the synthesis rate of the TF is
affected by the histone state. Therefore, the histone state is a
part of the feedback loop of the regulation. Because the rates
of the histone state transitions are smaller than the TF binding
or unbinding rates in general, the histone state constitutes a
relatively slowly varying part in the feedback loop.

Self-activating motifs discussed in the present paper are
ubiquitous in cells. In mouse embryonic stem cells (mESCs),
for example, the genes necessary for sustaining pluripotency
are activating each other. A Sox2-Oct4 heterodimer binds on
the gene loci of Sox2 and Oct4 and they activate themselves
[47,48]. The self-activator gene in the present paper can be
regarded as a simplified model of this Sox2-Oct4 system when
these two genes are described as strongly correlated loci.

B. Operator formalism of reaction kinetics

To describe the reactions in Fig. 1, we use the operator
formalism of Doi and Peliti (see [37–39]), which has been
applied to the problems of gene regulation without explicitly
considering the histone state s [29,33,49–51] and to the prob-
lem of the histone state without considering the TF-binding
status σ [15]. Now, taking into account those processes having
different timescales in a unified way, we consider the proba-
bility that the protein copy number is n at time t , Pσ s(n, t ). We
define a six-dimensional vector ψ(t ), the component of which
is ψ(t )σ s = ∑

n Pσ s(n, t )|n〉. The operators a and a† are in-
troduced as a†|n〉 = |n + 1〉, a|n〉 = n|n − 1〉, and [a, a†] = 1.
Then, by assuming that all the reactions are Markovian, the
master equation of the reactions is ∂

∂t ψ = −H ψ, with H
being a six-dimensional operator:

H = k(a†a − a)1 + G(1 − a†) + J ⊗ K, (1)

where 1 is a unit matrix, G is a diagonal matrix, Gσ s,σ ′s′ =
δσ s,σ ′s′�gσ s, and J and K are transition matrices for σ and s,
respectively:

J =
(− f h

f −h

)
,

K =
(−r01 r10 0

r01 −r10 − r−10 r0−1

0 r−10 −r0−1

)
, (2)

with h = h0(a†a)2.

We should note that H is non-Hermitian, reflecting the
nonequilibrium features of the processes in gene expression.
From Eq. (1), we can formally write the transition probability
matrix P(n f , τ |ni, 0) between the state n = ni at t = 0 and the
state n = n f at t = τ as

P(n f , τ |ni, 0) = 1

n f !
〈n f | exp

(
−

∫ τ

0
dtH

)
|ni〉. (3)

C. Continuous dynamics in the higher dimensions

The temporal development of ψ(t ) can be represented in a
path-integral form by using the coherent-state representation,
|z〉 = ea†z|0〉, with a complex variable z(t ). The transition
paths in the σ and s space can be represented by using the
spin-1/2 and spin-1 coherent states with spin angles θ (t ) and
α(t ) and their conjugate variables φ(t ) and β(t ):

σ(θ, φ) = eiφ/2

(
cos2 θ

2

)
σ1 + e−iφ/2

(
sin2 θ

2

)
σ−1,

s(α, β ) = eiβ

(
cos4 α

2

)
s1 + 2

(
cos2 α

2
sin2 α

2

)
s0

+ e−iβ

(
sin4 α

2

)
s−1, (4)

with σ i = (δi1, δi−1)T for TF binding or unbinding and si =
(δi1, δi0, δi−1)T for the histone degree of freedom. Consider-
ing the non-Hermiticity of H , we introduce the conjugate
vectors:

〈z | = 〈0 |eaz∗
,

σ̃ = e−iφ/2σT
1 + eiφ/2σT

−1,

s̃ = e−iβsT
1 + sT

0 + eiβsT
−1, (5)

where z = ψe−iχ , ψ = |z|, and z∗ = eiχ . With pairs of vectors
defined in Eqs. (4) and (5), we have the identity matrix 1 =
Iz ⊗ Iσ ⊗ Is as

Iz = 1

2π

∫ π

0
dψ

∫ π

−π

dχ |z〉〈z|e−ψ,

Iσ = 1

2π

∫ π

0
sin θdθ

∫ 2π

0
dφ(σ̃σ),

Is = 3

4π

∫ π

0
sin αdα

∫ 2π

0
dβ(s̃s). (6)

Using Eq. (6), Eq. (3) is represented in a path-integral form as

P(n f , τ |ni, 0)

= const
∫

DαDβDθDφDψDχ exp
(
−

∫
L dt

)
, (7)

where L is an effective “Lagrangian,” L = Lχψ + Lφθ +
Lβα , and

Lχψ = iχ
dψ

dt
+ �(1 − eiχ )

[
g−1(θ ) sin4 α

2

+ 2g0(θ ) sin2 α

2
cos2 α

2
+ g1(θ ) cos4 α

2

]
+ (1 − e−iχ )kψ,
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Lφθ = i
φ

2

d

dt
cos θ

+ h0�
−2ψ2(1 − eiφ ) sin2 θ

2
+ f (1 − e−iφ ) cos2 θ

2
,

Lβα = iβ
d

dt
cos α

+ (1 − eiβ )
[
r0−1(θ ) sin4 α

2
+ 2r10(θ ) sin2 α

2
cos2 α

2

]
+ (1 − e−iβ )

[
2r−10(θ ) sin2 α

2
cos2 α

2

+ r01(θ ) cos4 α

2

]
, (8)

with gs(θ ) = g1s cos2 θ
2 + g−1s sin2 θ

2 and rss′ (θ ) = r0
ss′ +

�rss′ cos2 θ
2 .

Then, by retaining up to the second-order terms of χ , φ,
and β in Eq. (7) (i.e., using the saddle-point approximation)
in a similar way to the method in [29], we obtain the Langevin
equations describing fluctuations in the protein concentration
p = ψ/�, the TF binding status ξ = cos θ , and the histone
state ζ = cos α:

d p

dt
= F+

p (θ, α) − kp + ηp,

dξ

dt
= 2h0 p2ξs − 2 f ξc + ηξ ,

dζ

dt
= F+

ζ (θ, α) − F−
ζ (θ, α) + ηζ , (9)

where

F+
p = ξc

[
g11ζ

2
c + 2g10ζcζs + g1−1ζ

2
s

]
+ ξs

[
g−11ζ

2
c + 2g−10ζcζs + g−1−1ζ

2
s

]
,

F+
ζ = 2(r10 + ξc�r10)ζcζs + (r0−1 + ξc�r0−1)ζ 2

s ,

F−
ζ = (r01 + ξc�r01)ζ 2

c + 2(r−10 + ξc�r−10)ζcζs, (10)

with ξc = cos2(θ/2), ξs = sin2(θ/2), ζc = cos2(α/2), and
ζs = sin2(α/2). In Eq. (9), ηp, ηξ , and ηζ are mutually in-
dependent Gaussian noises with 〈ηx〉 = 0, 〈ηx(t )ηx(t ′)〉 =
Bxδ(t − t ′) for x = p, ξ , or ζ as

Bp = [F+
p (θ, α) + kp]/�,

Bξ = 4h0 p2ξs + 4 f ξc,

Bζ = F+
ζ (θ, α) + F−

ζ (θ, α). (11)

We should note that p = n/� was an almost continuous vari-
able for a large �. Hence, the original coupled dynamics of
a nearly continuous variable p and the discrete variables, σ

and s, were transformed into the Brownian dynamics in the
three-dimensional (3D) space of the continuous variables p,
ξ , and ζ , with the TF bound (ξ = 1) or unbound (ξ = −1)
and the histone state activating (ζ = 1), neutral (ζ = 0), or
repressing (ζ = −1).

In the numerical calculations of Eq. (9), infrequent but
large noises may push p, ξ , and ζ outside the originally de-
fined range of values, p � 0, −1 � ξ � 1, and −1 � ζ � 1.
In order to reduce this out-of-range fluctuation, we add
soft-wall forces, wp, wξ , and wζ , to Eq. (9) in numerical

simulations as d p
dt = F+

p (θ, α) − kp + wp + ηp, dξ

dt =
2h0 p2ξs − 2 f ξc + wξ + ηξ , and dζ

dt = F+
ζ (θ, α) −

F−
ζ (θ, α) + wζ + ηζ with

wp =
{−c(p − 0.1)3 for p � 0.1

0 otherwise
,

wξ =
{−c(ξ + 0.9)3 for ξ � −0.9

−c(ξ − 0.9)3 for ξ � 0.9
0 otherwise

,

wζ =
{−c(ζ + 0.9)3 for ζ � −0.9

−c(ζ − 0.9)3 for ζ � 0.9
0 otherwise

, (12)

with a constant c > 0.

D. Adiabatic approximation of TF binding or unbinding

In a single-molecule tracking experiment of the TF in
mESCs, the observed timescale of binding or unbinding
was ≈1 min−1 [43], whereas the observed degradation rate
k of the TF was ≈0.1/h [52,53]. Though a single his-
tone can be replaced in ≈1 h, many histones collectively
change with the rate ≈1/d [40]. Therefore, the estimated ra-
tios are h/k ∼ f /k = O(102) and rss′/k = O(1) ∼ O(10−1).
With such large h and f , TF-binding or -unbinding reac-
tions can be treated as adiabatic: TF binding or unbinding
is regarded as in quasiequilibrium as 〈dξ/dt〉 = 0, leading
to ξs = 1/[(h0/ f )p2 + 1]. With this adiabatic approximation,
the 3D calculation in Eq. (9) for (p, ξ , ζ ) is reduced to the
two-dimensional (2D) calculation for (p, ζ ). On the other
hand, the rate of collective histone change is small; hence, the
histone dynamics remains nonadiabatic.

Validity of the adiabatic treatment of TF binding or un-
binding can be checked by comparing the simulated results
of the present model with the experimental data of Hath-
away et al. [40]. Hathaway et al. developed a technique
to forcibly bind a chromoshadow domain of HP1 (csHP1)
to a DNA site near the promoter of Oct4 in mESCs. The
bound csHP1 nucleated the repressively marked histones and
the histones around the promoter region were collectively
transformed to the repressive state in several days. In Fig.
2, this observation is compared with the calculated results
obtained by applying the adiabatic approximation of TF bind-
ing or unbinding to Eq. (9). We assumed that csHP1 binding
intensively suppresses the acetylation and other activating
modifications of histones, so as to reduce the corresponding
rss′/k from O(10−1) to O(10−2). The simulated results repro-
duce the relaxation of the collective histone state toward the
repressive state after csHP1 binding. Here, the experimental
histone state was quantified as ζ (t ) = Hactive(t )/Hactive(0) −
Hrepress(t )/Hrepress(day 5), where Hactive(t ) and Hrepress(t ) are
the observed fractions of histones marked as H3K27ac and
H3K9me3, respectively, in the ≈10-kb region around the
Oct4 gene. Oct4 was transcriptionally active for t < 0, but
its histone state was modified with the bound csHP1 for t � 0.
Figure 2 shows that the adiabatic approximation of TF binding
or unbinding reasonably describes the relaxation of the system
to the repressive state when the slow nonadiabatic histone
dynamics are suitably assumed.
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FIG. 2. Relaxation of a self-activating gene to the repressive
state. Equation (9) was numerically calculated by applying the
adiabatic approximation of TF binding or unbinding. The protein
concentration p(t ) (black line) and the histone state ζ (t ) (red line)
were derived by averaging 1000 simulated trajectories. See text
for the experimental estimation of ζ (t ) (green dots) from the data
of [40]. k was set to k = 2 d−1, and the other rates were de-
fined in units of k; for t < 0, r0

10 = r0
0−1 = 0.7, r0

01 = r0
−10 = 0.1,

and �r10 = �r0−1 = 1; for t � 0, r0
10 = r0

0−1 = r0
01 = 0.01, r0

−10 =
0.7, and �r10 = �r0−1 = 0.01. For both t < 0 and t � 0, �r01 =
�r−10 = 0, h0/ f = 200, g11 = 1, g−11 = g10 = 0.2, g−10 = g1−1 =
g−1−1 = 0, � = 100, and c = 20.

III. LANDSCAPES, CIRCULAR FLUXES,
AND TEMPORAL CORRELATION

Either with adiabatic or with nonadiabatic treatment of TF-
binding or -unbinding kinetics, the flux-landscape approach
[29,30,34,36] provides a concise view of Eq. (9). With the
adiabatic approximation, for example, the landscape, U (p, ζ ),
is obtained from the calculated stationary probability den-
sity distribution as U (p, ζ ) = − ln P(p, ζ ). The probability
flux J is obtained as a 2D vector field in the adiabatic
TF-binding or -unbinding case from the Fokker-Planck equa-
tion corresponding to Eq. (9), ∂

∂t P(p, ζ , t ) = −∇ · J(p, ζ , t ),
where ∇ = (∂p, ∂ζ ) and J = (Jp, Jζ ) with Jp = [F+

p (θ, α) −
kp + wp]P − 1

2
∂
∂ p [BpP] and Jζ = [F+

ζ (θ, α) − F−
ζ (θ, α) +

wζ ]P − 1
2

∂
∂ζ

[Bζ P]. Of note, even in the stationary state, J can
be nonzero when ∇ · J = 0. This divergenceless circulating
flux is a hallmark of the breaking of the detailed balance
reflecting the biased thermal or chemical energy flow such as
nucleotide consumption in protein synthesis and heat dissipa-
tion [29,35,36].

Figure 3 shows the calculated U and J at the stationary
state in the case of adiabatic TF binding or unbinding. For

an activator TF, when the TF-binding affinity is small (small
h0/ f ) [Fig. 3(a)], U has a single basin at p ≈ 0 and ζ ≈
−1 ∼ 0 (off state). When the binding affinity is intermediate
(intermediate h0/ f ) [Fig. 3(b)], U has two coexisting basins
in the off state and at p ≈ 0.7 and ζ ≈ 1 (on state). When the
binding affinity is large (large h0/ f ) [Fig. 3(c)], a dominant
basin is found at the on state. Thus, the binding affinity of the
activator TF determines the distribution of stable states and
works as a switch of gene states. When the TF is a repressor,
we find a single basin at intermediate p and ζ for a wide range
of binding affinity [Fig. 3(d)].

In all the cases shown in Fig. 3, we find a flux J glob-
ally circulating around a basin or traversing between basins
though the deterministic part of Eq. (9) is nonoscillatory;
the oscillatory feature of the flow becomes evident through
the stochastic on-off switching fluctuations as a stochastic
resonance effect. When the epigenetic effect is absent, the flux
is diminished in the adiabatic limit [29,30]. However, here
with nonadiabatic epigenetic histone dynamics, the circular
flux is significant even in the limit of adiabatic TF binding or
unbinding because the timescales in p and ζ are near to each
other, so that the two processes are nonseparable. The evident
circulating flux suggests a temporal correlation between the
histone modification and the gene activity change. By follow-
ing the flux direction along the off-to-on (the on-to-off) path,
the histone state first tends to become activating (repressing),
followed by increase (decrease) in protein concentration.

This temporal correlation is confirmed by calculating the
normalized difference between the two-time cross correla-
tions:

A(t ) = [〈δζ (τ )δp(τ + t )〉
−〈δp(τ )δζ (τ + t )〉]/|〈δζ (τ )δp(τ )〉|, (13)

with δζ = ζ − 〈ζ 〉 and δp = p − 〈p〉, where 〈· · · 〉 is the aver-
age over τ and the calculated trajectories. We can write A(t ) ∝
〈det [q(τ ), q(τ + t )]〉 with a 2D vector q(τ ) = (ζ (τ ), p(τ )).
A positive value of A(t ) at t > 0 implies that the increase
(decrease) in ζ tends to increase (decrease) p at a later time t .
For activator [Fig. 4(a)] and repressor [Fig. 4(b)] TFs, A(t ) is
plotted for various values of r0

ss′/k = u, showing that A(t ) has
a positive-valued peak at tu = 1/u ∼ 0.5/u. We find that the
peak is evident even when the histone dynamics are as slow
as u < 1, which indicates that the prior change in the histone
state to the gene activity is not owing to the faster rate of re-
actions in histones but is due to the circular flux generated by
the nonadiabatic dynamics of histones. The delayed influence
of ζ on p should lead to the different on-to-off and off-to-on
paths, inducing hysteresis in the switching dynamics.

The hysteresis is shown by calculating the optimal paths
of transitions. An optimal path is obtained by first setting its
start and end points and then minimizing the effective action
in the path-integral formalism of kinetics connecting those
points [15,33,36,54–57]. Figures 4(c) and 4(d) show the paths
calculated by the simulated annealing of the action with the
algorithm of [36]. Thus obtained off-to-on and on-to-off paths
are indeed different from each other, both of which are consis-
tent in their route orientations with the circulating probability
flux. Because equilibrium kinetic paths should pass through
the same saddle point of the landscape in both directions
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FIG. 3. Landscape U (p, ζ ) and probability flux J(p, ζ ) calculated on the 2D plane of the protein concentration p and the histone state
ζ in the adiabatic approximation of TF binding or unbinding. U is shown with contours and J is shown with yellow arrows. (a–c) Self-
activating and (d) self-repressing genes. (a) h0/ f = 2, (b) h0/ f = 20, (c) h0/ f = 200, and (d) h0/ f = 2. The rate parameters are scaled
in units of k by setting k = 1; g11 = 1, g−11 = g10 = 0.2, g−10 = g1−1 = g−1−1 = 0, �r10 = �r0−1 = 1, �r01 = �r−10 = 0 for (a)–(c) and
g−11 = 1, g11 = g−10 = 0.2, g10 = g1−1 = g−1−1 = 0, �r10 = �r0−1 = 0, and �r01 = �r−10 = 1 for (d). For (a)–(d), � = 100, c = 20, and
r0

10 = r0
0−1 = r0

01 = r0
−10 = 1.

without showing the hysteresis, the calculated hysteresis is
a manifestation of the nonequilibrium feature, and the area
formed by the loop of paths gives a measure of the heat
dissipation [58].

When the TF binding or unbinding is slow, we need to
solve Eq. (9) nonadiabatically. Slow nonadiabatic binding and
unbinding were examined recently by tuning the binding rate
in bacterial cells experimentally [31,32]. Figure 5(a) shows
the landscape and flux in such a nonadiabatic binding or
unbinding case with the intermediate binding affinity of the
activator TF. We find two basins for the on and off states and
a distinct circular flux between them. The qualitative feature
is the same as in the adiabatic TF-binding or -unbinding case;
however, here, we find the correlated binding or unbinding
behavior with the histone state change, which should generate
hysteresis in the 3D space. This hysteresis can be found in the
calculated optimal paths in the 3D space [Fig. 5(b)].

IV. DISCUSSION

The present flux-landscape analyses provided a view that
the nonadiabatic circular flux generates nontrivial temporal
correlation, hysteresis, and dissipation in eukaryotic gene
switching. These analyses provide a clue to resolving the
“chicken-and-egg” argument on the causality between the hi-
stone state and TF binding. Landscape analyses showed that

the stability of each histone state is determined by the binding
affinity of the TF, which is in accord with the general belief
that the specific TF binding is the cause and the histone state
change is the result [19]. However, unexpectedly, the histone
state tends to change in self-regulating gene circuits prior to
the change in the amount of the TF, which induces hysteresis
in the switching dynamics; the histone state fluctuation can
be a trigger for switching the feedback loop. This temporal
correlation should be tested experimentally by analyzing A(t )
in single-cell observations. This type of experiments should
be possible when the amount of the product TF is measured
by a coexpressing fluorescent protein and the live-cell histone
state is monitored simultaneously by the technique of fluo-
rescently labeled specific antigen binding [21,59]. The flux
structure and timescales should be also tested experimentally
by examining the irreversibility in temporal correlations [60].

A possible test of the present model is to quantitatively
monitor the response of somatic cells to the incorporation of
exogenous genes such as Yamanaka factors, which include
Sox2 and Oct4 [61]. By introducing Yamanaka factors, dif-
ferentiated somatic cells can turn into pluripotent cells. This
reprogramming of cells may start from the binding of exoge-
nous pioneer factors, Sox2 and Oct4, to the loci of endogenous
genes, Sox2 and Oct4. By writing the concentration of exoge-
nous Sox2 and Oct4 proteins as pex, the total concentration
of a Sox2-Oct4 heterodimer TF should be approximately
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FIG. 4. Temporal correlation and optimal paths in self-regulating genes. (a, c) Self-activating and (b, d) self-repressing genes. (a, b) The
normalized difference between two-time cross correlations, A(t ), is plotted as a function of t in units of 1/k. (c, d) The optimal paths for
the on-to-off (green) and off-to-on (purple) directions are superposed on the flux J on the 2D plane of the protein concentration p and the
histone state ζ . Calculations were performed using the adiabatic approximation of TF binding or unbinding. The rates of the histone state
change are scaled by the parameter u as r0

10 = r0
0−1 = r0

01 = r0
−10 = u with �r10 = �r0−1 = u in (a, c) or �r01 = �r−10 = u in (b, d). In (a) and

(b), A(t ) is plotted with u = 1.5 (green), u = 1 (red), and u = 0.5 (black). In (c) and (d), u = 1. The other parameters of (a) and (c) are the
same as in Fig. 3(b) and those of (b) and (d) are the same as in Fig. 3(d).

proportional to (p + pex)2 in the present model; hence, the
TF binding rate should become h = h0(p + pex)2. Shown in
Fig. 6 are the landscapes and fluxes for the small [Fig. 6(a)]
and large [Fig. 6(b)] values of pex with the parameters of
Fig. 3(a), with which the landscape is dominated by the off
state when pex = 0. We find that the landscape is shifted
upon introduction of exogenous factors with pex > 0 to have

a basin in the on state, but the flux structure remains similar
to that in Fig. 3, implying the strong tendency of the histone
state change before the changes in the activity of endogenous
genes when the endogenous gene is modified from the off
state.

Finally, the flux-landscape method should be applicable
to problems of other epigenetic degrees of freedom. For

FIG. 5. Landscape, probability flux, and optimal paths of a self-activating gene calculated in the 3D space of the protein concentration p,
the TF binding status ξ , and the histone state ζ , in the nonadiabatic kinetics. (a) Flux J is superposed on the landscape U with 1 < U � 2
(light blue), −0.5 < U � 1 (red), and U � −0.5 (purple). We find a gene-off state at p ≈ 0, ξ ≈ −1, and ζ ≈ 0 ∼ −1 and a gene-on state at
p ≈ ξ ≈ ζ ≈ 1. (b) Flux and optimal paths of on-to-off (green) and off-to-on (purple) directions. The rate parameters are scaled in units of k
with h0 = 2 and f = 0.1. The other parameters are the same as in Fig. 3(b).
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FIG. 6. Landscape U (p, ζ ) and probability flux J(p, ζ ) with the exogenous TF contribution pex. (a) pex = 0.1 and (b) pex = 0.6.
Calculations were performed on the 2D plane of the protein concentration p and the histone state ζ in the adiabatic approximation of TF
binding or unbinding. The parameters are the same as in Fig. 3(a).

example, a Monte Carlo simulation of a gene network sug-
gested that formation or dissolution of a superenhancer of
Nanog induces a large fluctuation in mESCs [3]. It is intrigu-
ing to develop a method to explain the degree of freedom
of superenhancer formation or dissolution and the associ-
ated large-scale chromatin structural change by extending the
present scheme. Thus, the flux-landscape approach should
provide physical insights into various problems of nonadia-
batic stochastic switching.
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