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Enhanced diffusion and the eigenvalue band structure
of Brownian motion in tilted periodic potentials
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We consider enhanced diffusion for Brownian motion on a tilted periodic potential. Expressing the effective
diffusion in terms of the eigenvalue band structure, we establish a connection between band gaps in the
eigenspectrum and enhanced diffusion. We explain this connection for a simple cosine potential with a linear
force and then generalize to more complicated potentials including one-dimensional potentials with multiple
frequency components and nonseparable multidimensional potentials. We find that potentials with multiple band
gaps in the eigenspectrum can lead to multiple maxima or broadening of the force-diffusion curve. These features
are likely to be observable in experiments.
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I. INTRODUCTION

Brownian motion in periodic potentials arises in a range
of physical systems, including rotatory dipoles [1], folding
proteins [2–5], biological molecular motors [6–9], ion chan-
nels [10–12], and transport and catalysis in porous media
[13–16]. Of particular interest is the nonequilibrium steady
state that arises in Brownian motion on a tilted periodic po-
tential [17–19]. In seminal work, a one-dimensional tilted
periodic potential was predicted to give rise to enhanced
effective diffusion at a critical force [20,21], and this was
later experimentally observed [22,23]. In this paper we use a
Fourier-space approach to numerically calculate the diffusion
for Brownian motion on a range of tilted periodic potentials.
We connect the diffusion with features of the eigenvalue band
structure to interpret the enhanced diffusion and show how
the band structure can lead to enhanced diffusion at multiple
critical forces.

Overdamped Brownian motion on a time-independent mul-
tidimensional free-energy potential V (r) can be described by
the Smoluchowski equation

∂P(r, t )

∂t
= LP(r, t ), (1)

L = ∇ · M{[∇V (r)] + �∇}, (2)

where P(r, t ) is the probability density at position r and time t ,
and L is the evolution operator with thermal energy � = kBT ,
Boltzmann constant kB, temperature T , and inverse friction
coefficients given by the diagonal matrix M defined by Mll =
1/γll . For tilted periodic potentials of the form

V (r) = V0(r) − f · r, (3)

*Corresponding author: N.Jared.LopezAlamilla@gmail.com
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where V0(r) = V0(r + L) has periodicity L and f is an
external thermodynamic force, the system will reach a
nonequilibrium steady state [7,9]. The steady state is charac-
terized by an effective drift velocity v = limt→∞〈r(t )〉/t and
diffusion tensor D defined by

Dlm ≡ lim
t→∞

〈rm(t )rl (t )〉 − 〈rm(t )〉〈rl (t )〉
2t

. (4)

There is no general relation between the potential and the
diffusion matrix, but a closed form solution is known for a
one-dimensional tilted periodic potential. This solution has
resulted in the prediction of enhanced effective diffusion at the
critical force where the potential becomes monotonic [20,21].
Numerical methods have been used to calculate the diffusion
matrix for a variety of potentials [24–27]. In a particular case,
an enhancement in diffusion was shown to occur at more than
one value of force [24]. However, that result was observed for
a discontinuous potential and provided limited insight into the
phenomenon. Studies on piecewise potentials have also shown
other features, including the presence of a local minimum of
diffusion [27]. Enhanced diffusion has also been generalized
to the case of entropic barriers and systems with weak disorder
[28–31].

Brownian motion in a periodic (or tilted periodic) poten-
tial is subject to Bloch’s theorem and has an eigenspectrum
[32], similar to an electron in a periodic potential [33]. The
evolution operator L satisfies the eigenequation [32,34,35]

Lφα,k(r) = −λα,kφα,k(r), (5)

where k is the wave vector defined on the Brillouin zone
and α ∈ N is the band index. The eigenfunctions φα,k (r) =
exp(ik · r)uα,k (r) take the Bloch form where uα,k(r + L) =
uα,k(r) has the periodicity of the periodic potential V0(r), and
the eigenvalues λα,k are in general complex for f �= 0. The
periodic part of the potential can give rise to band gaps in
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the eigenspectrum that allow for well-separated dynamical
timescales of the system. The diffusion matrix can be ex-
pressed in terms of the curvature of the lowest eigenvalue band
at k = 0 as [36]

Dlm = 1

2

∂2 Re{λ0,k}
∂kl∂km

∣∣∣∣
k=0

, (6)

connecting the diffusion with the eigenvalue band structure.
In this paper, we develop the connection between the dif-

fusion and the eigenspectrum to explain enhanced diffusion.
We numerically solve the eigenequation (5) to examine the
band structure, diffusion, and the relationship between them.
Starting with a simple tilted cosine potential, we show how en-
hanced diffusion at the critical force relates to the vanishing of
the band gap in the eigenspectrum. We then explore a range of
potentials that give rise to more complicated band structures.
We show how features of those band structures manifest in
the diffusion, such as enhanced diffusion at multiple critical
forces. Our results generalize those for the cosine potential
and provide an explanation of enhanced diffusion in terms of
the global timescales of the system.

The paper is organized as follows. Section II revisits the
diffusion and band structure for a one-dimensional tilted co-
sine potential. In Sec. III, we connect the diffusion with the
eigenvalue spectrum and characterize the different regions in
the force-diffusion curve. In Secs. IV and V, we analyze the
diffusion tensor for potentials of increasing complexity that
give rise to multiple dynamical timescales and enhanced dif-
fusion at multiple critical forces. In Appendix C, we compare
the force-dependent diffusion for different potentials with
previous experimental results. Finally, Sec. VI concludes this
paper.

II. DIFFUSION AND BAND STRUCTURE FOR A TILTED
COSINE POTENTIAL

The evolution operator for a simple one-dimensional titled
cosine potential is

L = 1

γ

∂

∂x

[∂V1c(x)

∂x
+ �

∂

∂x

]
, (7)

where

V1c(x) = A0 cos(2πx/L) − f x, (8)

and we assume f > 0 for simplicity. The force-diffusion
curve can be calculated in one dimension using a closed-
form solution [20,21], and features a giant resonance, or
enhancement, that can be many times the free diffusion �/γ .
Alternatively, the diffusion curve can be calculated numeri-
cally from the eigenvalues band structure via Eq. (6). The
enhancement is shown in Fig. 1, and becomes more pro-
nounced with increasing amplitude A0/� of the periodic
potential. The diffusion maximum occurs when the tilted pe-
riodic potential V1c(x) becomes monotonic and has no barriers
[20,21], i.e., at the critical force fcrit = 2πA0/L.

The eigenspectrum for the tilted cosine potential is defined
by the one-dimensional version of Eq. (5). The band struc-
ture of eigenvalues can be calculated numerically [37] and
in general is complex for f �= 0. The real part relates to the
diffusion according to Eq. (6), while the imaginary part relates

FIG. 1. Force-diffusion curve for the one-dimensional tilted
cosine potential (8), calculated via (solid) eigenvalues (6), (dash-
dotted) tight-binding approximation (10) and (dashed) quadratic
approximation (13). Parameters are (red, green) A0 = 30� and (blue,
orange) A0 = 4�. The vertical (gray dash-dotted) lines are the criti-
cal forces fcrit = 2πA0/L.

to the steady-state drift v [37]. For this paper, we focus on
the real part of the eigenvalue, which is even in k and can be
interpreted as the decay rate of the corresponding eigenstate.
The real part of the eigenvalue is shown in an extended zone
scheme in Fig. 2, for several values of the tilting force f . The
real part of the eigenvalues has a gap between the α = 0 and
α = 1 bands, at the boundary of the Brilluoin zone k = ±π/L
[33,38]. For A0 	 �, the gap decreases with increasing force

FIG. 2. Band structure of the one-dimensional tilted cosine po-
tential V1c with A0 = 6�. The lowest two bands are shown as a
function of k for force values (blue solid) f L/2π = 3�, (dashed)
f L/2π = 4�, (red dash-dotted) f L/2π = 4.9�, (purple dotted)
f L/2π = 6�, and (green dash-dotted) f L/2π = 7�. The solid
(gray) curve is the band structure for free diffusion, i.e., A0 = 0 and
f = 0.
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FIG. 3. Eigenvalues for (red solid) α = 1 and (blue dashed) α =
0 bands as functions of force for the one-dimensional tilted cosine
potential V1c with A0 = 6�.

and vanishes when the barrier height falls below �, as shown
in Fig. 3.

In this paper, we use a Fourier-based method to calcu-
late the eigenvalue band structure [37,39], and the diffusion
is calculated from the eigenvalues using Eq. (6) [40]. The
Fourier-based method applies generally to multidimensional
systems and is summarized in Appendix A.

III. CONNECTING DIFFUSION AND BAND STRUCTURE

Enhanced diffusion is fundamentally connected to the
eigenvalue spectrum via Eq. (6). Although diffusion is a prop-
erty of the long-time steady state, it is affected by global
features in the eigenvalue spectrum that govern dynamical
timescales in the system. To demonstrate this, we consider in
turn three regions in the force-diffusion curve (see Fig. 1). In
all cases, we assume A0 > � so there is enhanced diffusion.
Region (i) is the small force regime well below the critical
force, region (ii) is the large force regime above the critical
force, and region (iii) is the intermediate regime in the vicinity
of the critical force.

Region (i) is the small force regime ( f L 
 2πA0) where
the force is well below the critical force and the potential has
deep wells that localize the system [35]. This regime can be
identified as the tight-binding regime, or Kramers regime. The
eigenvalue spectrum has a gap between the α = 0 and α = 1
bands, enabling a separation of timescales between the upper
bands (α > 0) associated with intrawell dynamics and the
lowest band associated with slower between-wells dynamics.
The long-time evolution of the lowest band is governed by a
master equation describing discrete thermal hopping between
wells. The eigenvalues of the lowest band can be approxi-
mated in this limit by

λ0,k ≈ κ−(1 − eikL ) + κ+(1 − e−ikL ), (9)

where κ± are the backwards (−) and forwards (+) hopping
rates to neighboring wells. In this regime, the diffusion can be

determined from Eq. (6) to be [38]

D � L2

2
(κ− + κ+). (10)

In the deep-well regime, the hopping rates are well approx-
imated by Kramers rate that depends on the barrier heights

V± to neighboring wells:

κ± = 2πA0

γ L2
exp

(
−
V±

�

)
. (11)

For f L 
 A0, we have 
V± ≈ 2A0 ∓ f L/2. This shows that
for f = 0 the barriers can lead to a suppression of the diffu-
sion well below the free diffusion. The rate of diffusion then
increases exponentially with f . The tight-binding approxima-
tion provides a good description below the critical force, as
shown by the dash-dotted curves in Fig. 1.

Region (ii) is the large force regime ( f L > 2πA0) where
the force is larger than the critical force and the long-time
dynamics can be described by near-free diffusion. In this case,
the real part of the eigenvalue spectrum is well approximated
by a quadratic function of k and there is no band gap or
separation of timescales. The eigenvalue in the lowest band
can be written

Re{λ0,k} ≈ Re{λ0,π/L}
(Lk

π

)2

, (12)

where Re{λ0,π/L} is the eigenvalue at the boundary of the
Brillouin zone k = π/L. The diffusion then becomes, from
Eq. (6),

D � Re{λ0,π/L} L2

π2
, (13)

showing that the diffusion, governed by the behavior around
k = 0, is connected to the band structure at k = π/L. With
increasing force, Re{λ0,π/L} and the diffusion decrease, and
the diffusion asymptotically approaches the free diffusion as
f → ∞. Equation (13) provides a good description above the
critical force, as shown by the dashed curves in Fig. 1. Non
degenerate perturbation theory for small A0, as described in
Appendix B, shows that the diffusion declines as 1/ f 2 for
large f .

Region (iii) is between regions (i) and (ii), in the vicinity of
the critical force, i.e., f L ∼ 2πA0. In this region, the system
makes a transition from the tight-binding regime to the near-
free diffusion regime and the diffusion reaches its maximum
value. Close to this point, the band gap in the eigenspectrum
vanishes and the timescales of within-well and between-
well dynamics converge. Numerical calculations show that
the band gap vanishes at f L ≈ 2π (A0 − �) = fcritL − 2π�.
Physically, this corresponds to the force where the forward
barrier height is � (the average energy of thermal fluctuations)
and the potential no longer represents a barrier to localize the
Brownian system. Figure 4 shows the force-diffusion curve
and the relative band gap


λ1 = Re{λ1,π/L} − Re{λ0,π/L}
Re{λ1,π/L} , (14)

for different barrier heights A0. Well separated timescales
implies the relative band gap 
λ1 ≈ 1, whereas a convergence
in timescales implies 
λ1 → 0. Although the vanishing of the
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FIG. 4. Force-diffusion curve for the tilted cosine potential V1c

with (purple) A0 = 40�, (yellow) A0 = 24�, (orange) A0 = 12�,
and (blue) A0 = 6�. The vertical (gray) lines indicate the critical
forces fcrit and the (dashed) band gap 
λ1 is shown on the right-hand
vertical axis.

band gap occurs in the vicinity of the diffusion maximum,
these two phenomena do not precisely coincide because the
diffusion relates to the curvature of the eigenvalues at k = 0
while the band gap vanishes at the Brillouin zone boundary
k = π/2.

IV. MULTIPLE BAND GAPS AND DIFFUSION MAXIMA
IN ONE DIMENSION

The connection between the disappearance of the band gap
in the eigenvalue spectrum and the enhancement in diffusion
at the critical force suggests that multiple diffusion maxima
could be possible for more complicated potentials with multi-
ple band gaps. In particular, periodic potentials with multiple
nonzero Fourier components will in general yield a feature-
rich eigenvalue spectrum, including the possibility of multiple
band gaps with different force-dependent behavior.

A. Bichromatic periodic potential

In this section we examine the tilted bichromatic periodic
potential

V2c(x) = A1 cos(2πν1x/L) + A2 cos(2πν2x/L) − f x. (15)

For A1, A2 > � and ν1 
 ν2, the bichromatic potential gives
rise to two different types of band gaps in the system, as shown
in Fig. 5. The slow potential with amplitude A1 gives rise
to band gaps at k = ±πν1/L, while the fast potential with
amplitude A2 gives rise to band gaps at k = ±πν2/L. The
band gaps enable a separation of timescales and three different
characteristic dynamics [39]. The upper bands are associated
with short-time dynamics within wells of the fast potential,
the states up to k = πν2/L are associated with intermediate-
time dynamics between wells of the fast potential, and the
long-time evolution of the lowest band up to k = πν1/L is
associated with hopping between wells of the slow potential.

FIG. 5. Band structure Re{λα,k} of potential V2c with A1 = 4�,
A2 = 1.2�, ν1 = 1, ν2 = 8, and tilting force (blue solid) f L/2π =
1.5�, (red dotted) f L/2π = 2.5�, (orange dash-dotted) f L/2π =
3.5�, and (purple dashed) f L/2π = 5.54�. The inset highlights the
band gap arising from the slow potential with frequency ν1 at k =
π/L.

The global features of the band structure affect the long-time
steady state and the effective diffusion.

Figure 6 shows the force-diffusion curves for the bichro-
matic potential V2c, along with the relative band gaps


λn = Re{λνn,πνn/L} − Re{λνn−1,πνn/L}
Re{λνn,πνn/L} , (16)

arising from the slow n = 1 and fast n = 2 potential com-
ponents with frequencies νn. Two diffusion maxima exist

(b)(a)

(d)(c)

FIG. 6. Force-diffusion curve for the bichromatic potential V2c

with A1 = 4� and (a) A2 = 4�, (b) A2 = 1.5�, (c) A2 = 1.2�, and
(d) A2 = 0.8�. The frequencies are ν1 = 1 and ν2 = 8. The vertical
lines indicate the critical forces f n

crit and the band gaps (dash-dotted)

λ1 and (dashed) 
λ2 are shown on the right-hand vertical axis.
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(a)

(b)

FIG. 7. Force-diffusion curve for (solid) full V2c potential,
(dashed) slow frequency component only and (dash-dotted) fast fre-
quency component only. Parameters are A1 = 4�, ν1 = 1, ν2 = 8,
and (a) A2 = 1.5� and (b) A2 = 1.2�.

around the critical forces f n
crit = 2πAnνn/L and coincide ap-

proximately with the vanishing of the two band gaps. For
small forces, both band gaps exist and the system is in a
tight-binding regime with diffusion increasing with f . For
large forces, there are no band gaps and the dynamics is
approximately near-free diffusion with diffusion decreasing
with f . In between, the system undergoes two transitions.
The first transition near the critical force f 1

crit corresponds
to the convergence of the short and intermediate timescales.
The second transition occurs near the critical force f 2

crit and
corresponds to the convergence of the intermediate and long
timescales.

For certain potential amplitudes, the two diffusion max-
ima can have similar enhancement, as shown in Fig. 6(c).
However, in general, the existence of two band gaps in the
eigenspectrum does not necessitate two diffusion maxima. As
shown in Fig. 7, the enhancements in the combined force-
diffusion curve are not the independent sum of the individual
curves for each frequency component. In many cases one
frequency component dominates the other and only one diffu-
sion maximum is observed, e.g., Figs. 6(a) and 6(d). Instead,
inflection points can occur due to the nondominant frequency
component, as shown in the inset of Fig. 6(a).

B. Trichromatic potential

Figure 8 shows the force-diffusion curve for the trichro-
matic potential

V3c(x) =
3∑

i=1

Ai cos(2πνix/L) − f x, (17)

with the relative band gaps defined by Eq. (16). In general,
this potential has three band gaps enabling four dynamical
timescales. Again, the successive vanishing of each band
gap as f increases can give rise to inflection points in the
force-diffusion curve. The inflection points are highlighted

(a)

(b)

FIG. 8. (a) (solid) Log-log force-diffusion curve and (b) its
derivative for potential V3c(x) with A1 = 4.726�, A2 = 2.4�, A3 =
1.75�, ν1 = 1, ν2 = 8, and ν3 = 24. In (a) the band gaps (orange
dashed) 
λ1, (yellow dash-dotted) 
λ2, and (purple dotted) 
λ3 are
shown on the right-hand vertical axis.

in Fig. 8(b), showing the derivative of the force-diffusion
curve ∂D( f )/∂ f . Each critical force corresponds to a pair of
local maxima and minima of ∂D( f )/∂ f , and ∂D( f )/∂ f = 0
corresponds to the maximum of D( f ).

In general, in one dimension, we expect to observe a broad-
ening of enhanced diffusion if the periodic potential possesses
multiple frequency components. If the critical forces for the
frequency components are well separated, multiple local max-
ima can be observed in the force-diffusion curve. The larger
the number of frequency components in the potential, the less
prominent the nondominant contributions appear to be. The
effect of these components can manifest as a “shoulder” or as
inflection points in the effective diffusion, as shown for the
trichromatic case.

In real systems, for example biological molecular motors
[22,23], it is likely that the periodic potential will have mul-
tiple frequency components. Therefore, we expect multiple
maxima or inflection points to be experimentally observable
in force-diffusion curves. Appendix C contains a preliminary
theoretical fit to published data for the motor F1-ATPase [23].

V. TWO-DIMENSIONAL POTENTIALS

In this section we consider the two-dimensional case,
where multiple maxima and broadened enhancement are also
possible in the force-diffusion curve. We examine the nonsep-
arable tilted periodic potential

Vcc(x, y) = Axy cos
(2π (x − y)

L

)
+ Bxy cos

(2π (x + y)

L

)

− fxx − fyy, (18)

where again we assume Axy, Bxy � �. Potentials such as (18)
can describe mechanochemical energy coupling in biological
molecular motors [7]. Single-molecule experiments are able
to measure the diffusion of the mechanical degree of freedom
of these systems as a function of applied mechanical force
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FIG. 9. Equilibrium potential Vcc with Axy = 6�, Bxy = −2�,
and f = 0.

[22,23,41]. To align with these experiments, we denote the
mechanical and chemical degrees of freedom by x and y,
respectively, and explore the component Dxx of the diffusion
matrix as a function of mechanical force fx. The chemical
force fy is held fixed and we assume γxx = γyy = γ .

The two-dimensional nonseparable potential Vcc of
Eq. (18) is shown for f = 0 in Fig. 9. In the untilted case, the
potential has energy barriers along both the x and y degrees of
freedom, and taking |Axy| > |Bxy| creates diagonal channels in
the landscape. For the parameters used in Fig. 9, the energy
barriers between channels are of the order of 12� and the
energy barriers along channels have a height of approximately
4.5�.

Figure 10 shows an example of the band structure for po-
tential (18) for two different values of the mechanical force fx.
The band structure has a band gap 
λ(kB ) at the boundary of
the Brillouin zone, and the gap varies around the boundary and
with the force f . In Fig. 10(a) there is a gap at all values of kB,
while in Fig. 10(b) the gap has vanished at k = (π/L, π/L)
and k = (0, π/L). The closing of the gap at particular val-
ues of k indicates the convergence of different dynamical
timescales associated with hopping in different directions in
the x-y plane.

A force-diffusion curve for Dxx as a function of fx is shown
in Fig. 11. The relative band gap 
λ1(kB ) is also shown for
two choices of kB at the boundary of the Brillouin zone with
kx = π/L. We find that the vanishing of the band gap at these
particular places around the boundary affects the curvature
of the eigenvalue at k = 0, leading to two maxima in the
diffusion. Due to the additional degree of freedom in the
two-dimensional case, the two maxima are quite distinct in
the force-diffusion curve.

The emergence of the secondary diffusion maximum in
Fig. 11 can be understood in terms of the probability current
J across the two-dimensional potential, as shown in Fig. 12.
The probability current is defined as

LP(r, t ) = −∇ · J(r, t ). (19)

For small forces fx shown in Fig. 12(a), most of the probabil-
ity current is confined to the diagonal channels that couple the

(a)

(b)

FIG. 10. Band structure Re{λα,k} of potential Vcc with Axy =
2.4�, Bxy = −0.8�, fyL/2π = 0.8�, and (a) fxL/2π = 0.08� and
(b) fxL/2π = 1.4�.

chemical and mechanical degrees of freedom. The effective
energy barriers along the channel result in a separation of
timescales between barrier hopping and nonbarrier hopping
dynamics along the channel, giving rise to a band gap. When
the tilt is large enough that the system can overcome the barri-
ers along the channel, these different timescales converge and
the band gap 
λ1(π/L, π/L) vanishes. This global change in
the eigenspectrum affects the diffusion and gives rise to a local
maximum in the force-diffusion curve. The maximum occurs
at approximately fcritL/2π ≈ 4.5�, corresponding to the bar-
rier height 4.5� along the channel at equilibrium, as shown
in Fig. 11. Figure 12(b) shows that with even greater force the
probability current has started to leak and is hopping across
adjacent channels in the x direction. Finally, in Fig. 12(c), all
the probability current is flowing across adjacent channels. In
this case, the force is large enough that the system is no longer
confined within the channels of the potential. The vanishing
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FIG. 11. (solid) Diffusion tensor component Dxx as a function
of fx for potential Vcc with Axy = 6�, Bxy = −2�, and fyL/2π =
0.7�. The right-hand vertical axis shows 
λ1(kB ) at (dash-dotted)
kB = (π/L, π/L) and (dashed) kB = (π/L, 0).

of the band gap 
λ1(π/L, 0) coincides with the second local
maximum shown in Fig. 11. This occurs at approximately
fcritL/2π ≈ 12�, corresponding to the barrier height 12� of
the channels at equilibrium. In summary, the system for small
forces is localized to hopping along a diagonal path, grad-
ually becoming delocalized within the channel as the force
increases, and finally for large forces becoming completely
delocalized and reaching the near-free diffusion regime.

Two-dimensional potentials can describe mechanochemi-
cal energy coupling in biological molecular motors, so these
systems are promising to experimentally observe the behavior
described in this section. In particular, the two-peaked force-
diffusion curve shown in Fig. 11 occurs for potentials with a
well-defined channel coupling the chemical and mechanical
degrees of freedom. A coupled channel is a known feature of
strongly coupled molecular motors such as F1-ATPase [42].
A preliminary fit of a two-dimensional potential to the exper-
imental data of Ref. [23] is given in Appendix C.

VI. CONCLUSION

We have examined the force-diffusion curves for Brownian
motion on a variety of periodic potentials with linear forces.
As expected from previous studies, the steady-state diffusion
can be enhanced to many times the free diffusion at critical
values of the force. We have sought to explain the enhanced
diffusion in terms of the eigenvalue band structure for the
system. In particular, band gaps in the eigenspectrum enable
a separation in timescales of the global dynamics that affects
the curvature of the lowest band at the origin (k = 0) and the
steady-state diffusion.

We find that enhanced diffusion arises for deep periodic
potentials due to the transition between localized dynamics
in the tight-binding regime for small forces and nonlocal-
ized near-free diffusion for large forces. Near the transition,
the timescales of intrawell and interwell dynamics converge,
the band gap vanishes, the potential barriers vanish, and the

(a)

(b)

(c)

FIG. 12. (red arrows) Probability current on top of the con-
tour plot of the periodic potential with Axy = 6�, Bxy = −2�,
fyL/2π = 0.7�, and color bars indicating potential depth. The
applied forces are (a) fxL/2π = 0.48� before the first diffusion
maximum, (b) fxL/2π = 10.35� before the second diffusion maxi-
mum, and (c) fxL/2π = 15.92� beyond both diffusion maxima.
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diffusion reaches a maximum. Therefore, a connection is
established between the vanishing of band gaps in the eigen-
spectrum and enhanced diffusion.

Generalizing this result, we have shown that potentials with
multiple frequency components can lead to multiple diffu-
sion maxima. Different frequency components give rise to
different band gaps in the eigenspectrum enabling timescale
separations in the system dynamics. Diffusion maxima can
occur as these timescales converge. In cases where multiple
diffusion maxima are not distinctly observable, particularly
as the number of frequency components increases, inflection
points or a broadening of the force-diffusion curve can instead
be seen.

Multiple diffusion maxima can also occur in systems with
higher dimensionality. We considered a nonseparable two-
dimensional potential where the system was constrained in
two orthogonal directions. The force-dependent vanishing of
the band gap at different places around the Brillouin zone
boundary reflected the different timescales for hopping in
each direction and led to a force-diffusion curve with two local
maxima.

Real systems are likely to be described by potentials with
more than one Fourier component and/or multiple degrees of
freedom, and therefore have the possibility to display many
of the features described in this paper. Preliminary analysis
suggests that this is well within the accessible regimes of
current experiments.

APPENDIX A: DETERMINING THE EIGENVALUE BAND
STRUCTURE AND DIFFUSION

In this section we outline a Fourier-based method for calcu-
lating the eigenspectrum for multidimensional tilted periodic
potentials. In general the eigensystem is given by Eq. (5).
Analogous to the solid state system, we take advantage of
the periodicity of the potential V0(r) and the states uα,k(r) to
expand both as Fourier series:

V0(r) =
∑

m

V 0
meimG·r, (A1a)

uα,k(r) =
∑

n

uα,k,neinG·r, (A1b)

where G = 2π/L and V 0
m and uα,k,n are the Fourier coeffi-

cients of V0(r) and uα,k(r), respectively. Substituting these
expressions into Eq. (5) yields the matrix equation

[kBT (k +nG)2 +i f ·(k +nG)]uα,k,n

+
∑

m

V 0
mmG[k+nG]uα,k,n =γ λα,kuα,k,n. (A2)

Solving Eq. (A2) numerically enables us to determine λα,k

as a function of the continuous variable k [43,44]. The steady-
state drift is related to the imaginary part of the eigenvalues
by

vl = − ∂ Im{λα,k}
∂kl

∣∣∣
k=0

, (A3)

and the diffusion matrix D is related to the real part of the
eigenvalues via Eq. (6). This is the general formalism used in

FIG. 13. Force-diffusion curve for (symbols) F1-ATPase as de-
termined experimentally [23], and the fitting models (solid) V1c with
A0 = 10.016�, R2 = 0.8207; (purple-dashed) V2c with A1 = 0.66�,
A2 = 10.85�, ν1 = 1, ν2 = 3, R2 = 0.8840; and (green-dash-dotted)
Vcc with Axy =9.26�, Bxy =−2.35�, fyL/2π =5.47�, R2 =0.833.

this paper to explore the relationship between the eigenvalue
band structure and the diffusion as a function of force for a
range of one- and two-dimensional potentials.

APPENDIX B: LARGE-FORCE PERTURBATION
TREATMENT

For the one-dimensional tilted cosine potential described
by Eqs. (7) and (8), when A0 
 f L,� we can treat the cosine
potential as a small perturbation to Brownian motion on a
linear force potential. Perturbation theory is carried out in the
normal way by expanding the eigenstates and eigenvalues as
a series in powers of ε = A0/� and equating like terms. For
f �= 0, we can use nondegenerate perturbation theory and to
second order in ε the eigenvalues are

γ λα,k ≈ �k′2 + ik′ f

+ LA2
0

8π�

[
k′(k′ + 2π/L)

2π/L + i f /� + 2k′ +
k′(k′ − 2π/L)

2π/L − i f /� − 2k′

]

(B1)

where k′(α) = k + πα/L if α is even and k′(α) = k − π (α +
1)/L if α is odd. To this level of perturbation, using Eq. (6)
we find

γ D/� ≈ 1 +
(

πA0

L f

)2

,
f L

2π�
	 1. (B2)

APPENDIX C: COMPARISON WITH EXPERIMENTS

Real periodic potentials of biological molecular motors are
unlikely to have a single Fourier component or be described
by a single degree of freedom. Therefore, the force-diffusion
curves presented in this paper, that show multiple maxima or
broadened enhancement, are likely to be observable in single-
molecule experiments [22,23]. In fact, previous observations
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of the diffusion of F1-ATPase subject to an external torque
[23] appear to contain some of these features.

In Fig. 13, we show the results of a preliminary comparison
of the experimental data from Ref. [23] with force-diffusion
curves for the model potentials V2c and Vcc. The potential
parameters have been adjusted to capture certain features of

the data where this deviates from the single cosine theoretical
prediction. For the chosen parameters, the R2 values show
these models provide a similar level of fit to the experimental
data as the single cosine potential. A number of key param-
eters were not reported in the experiment, precluding a more
comprehensive analysis.
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