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Autonomy promotes the evolution of cooperation in prisoner’s dilemma
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Population structure has been widely reported to foster cooperation in spatially structured populations, where
individuals interact with all of their network neighbors defined by the spatial structure in each generation.
However, most results rely on the assumption that individuals strictly interact with all of their neighbors
during evolution. In reality, human beings, with sophisticated psychology, are willing to interact with some
of their neighbors from time to time. Thus, individuals may not play games with all neighbors due to their
psychological factors. Here we investigate how the autonomy, one of the basic psychological needs, affects the
fate of cooperators in various social networks. By constructing a dynamical effective network, we find that the
introduction of autonomy favors cooperative behavior. Further systematical studies by eliminating heterogeneity
and the dynamic characteristics of the network reveal that autonomy plays a pivotal role in the evolution of
cooperation. Moreover, we find that a moderate effective network degree, defined by the product of the original
network degree and the level of autonomy, maximizes the cooperation on networks connecting individuals with
fixed neighbors. Our results offer a possible way for organizations to improve individuals’ cooperation and shed
light on the importance of individuals’ psychology on the evolution of cooperation.
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I. INTRODUCTION

Cooperation between individuals underpins the emergence
of organizations and the success of diverse systems rang-
ing from multicellular organisms to human society [1–3]. To
understand the evolution of cooperation among selfish indi-
viduals in the context of Darwinian evolution, researchers
have long been resorting to the powerful framework of evo-
lutionary game theory [1,4–8]. Apart from the prominent
metaphor illustrating the behavior of cooperators and defec-
tors, it is important to capture who interacts with whom in a
given population. In large populations, individuals normally
do not interact evenly with everybody else. In recent years,
the underlying spatial structures or social networks captur-
ing heterogeneous interactions in structured populations have
attracted more and more attention [9–14]. Indeed, with the
discovery of the characteristic fingerprint of many realistic
interactions, several results are reported pertaining to var-
ious structures of complex networks [15,16], where nodes
represent individuals and links indicate who interacts with
whom [9,14]. In an underlying typical evolutionary process
on structured populations, individuals interact with all of their
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neighbors over the spatial structure [9,10,14,15,17]. By doing
so, clusters of cooperators over networks could emerge, and
thus network reciprocity is regarded as an important rule to
facilitate the evolution of cooperation [13,18].

In our general social interactions, the individual psychol-
ogy greatly affects who and when to interact. Autonomy, one
of the fundamental psychological needs in human beings,
is widely studied in the field of organization management
and social psychology [19,20]. Autonomy describes one
feels volitional and reflectively self-endorsed in actions [21].
Specifically, in social networks, a low level of autonomy cor-
responds to fewer interactions, which indicates an individual
interacts with fewer neighbors among her connections. Com-
monly, as long as an individual has neighbors in the social
network, she has to interact with every neighbor in each round
of interactions [22], even if the individual prefers just inter-
acting with some of her neighbors or keeping silent in some
rounds. This setting, although important, cannot reflect the
scenario where individuals are capable of making an informed
and uncoerced decision in interactions. In this study, we intro-
duce the autonomy to the traditional setting where individuals
have the self-determination to select neighbors to play.

We systematically investigate how autonomy affects the
evolution of cooperation in structured populations. Specifi-
cally, in each generation, every individual is able to interact
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FIG. 1. Illustration on the evolutionary process with autonomy. (a) The underlying regular ring graph where each node has four neighbors
(network degree k = 4) (b) Evolutionary process from the view of individual i (blue). All neighbors of i are marked and connected with light
green. Based on the level of autonomy (α), individual i randomly chooses �kiα� neighbors in each round to interact, where �·� indicates the
round operation. For example, two neighbors (dark green) are selected by i when α = 0.5, named effective neighbors. Since the effective
neighbors are chosen randomly, they could be different over different rounds, which induces the dynamical effective network where the cor-
responding effective links are marked in dark green as well. All nodes in the underlying network follow the same protocol as we have shown
for node i. (c) Evolutionary process from the view of network. Over the evolutionary process, three different connections emerge. The gray
ones represent the connected two neighbors that do not play any game in this round. The one-way arrow points to the coplayer selected by the
focal. The two-way arrows represent two individuals playing the game twice, once as the focal and once as the coplay.

with some of their neighbors arbitrarily that are selected ac-
cording to the individual’s autonomy. We find that autonomy
generally favors cooperators in sparse homogeneous and het-
erogeneous networks, while this effect shrinks as the network
becomes dense. As autonomy brings the heterogeneity in in-
teractions even on homogeneous networks, we further fix the
actual interaction network and find that the associated middle
level of network degree maximizes the stable frequency of
cooperation. Our results open an avenue to explore the effect
of individual autonomy on the evolution of cooperation.

II. MODELING FRAMEWORK

We consider the canonical prisoner’s dilemma in various
structured populations, represented by regular ring graphs,
random networks [23], and scale-free networks [24]. For an
individual i (network node) with ki neighbors (network de-
gree) on the underlying network [Fig. 1(a)], she interacts
with a certain number of her neighbors according to the level
of autonomy. Generally, α is the i’s level of autonomy, and
specifically i randomly selects �αki� effective neighbors over
all the ki neighbors to play games in each round, where �·�
denotes the round operation [Fig. 1(b)]. When α = 1, every
individual interacts with all of their neighbors in each round;
thus our framework degenerates to the classical evolutionary
dynamics in structured populations [9,10,15]. Note that, when
0 < α < 1, in different rounds the individual i may select
a different, yet fixed amount of (�αki�), effective neighbors
[see Fig. 1(b) for the evolutionary process]. This is different

from the probability-based effective neighbor selection [25]
and constant partner selection regime [26], where the number
of effective neighbors is either variant under binomial distri-
bution or irrelevant to the number of i’s neighbors.

For a typical prisoner’s dilemma, each player has two
strategies: cooperation and defection. In each round of
the interaction, both players first choose their strategies
independently and simultaneously. Each player receives R if
both select cooperation and P if both select defection. When
a player with the strategy defection meets a neighbor with the
strategy cooperation, the player receives T while the neighbor
receives S. These can be succinctly encoded in a payoff matrix

( C D
C R S
D T P

)
. (1)

After accumulating payoffs from all effective interactions
with effective neighbors in each round, all individuals get the
chance to update their strategies. Following the classical rule
of imitation dynamics [15], an individual i updates its strategy
by comparing its payoff Pi with the payoff Pj of a randomly
selected effective neighbor j. When Pj > Pi, i imitates the
strategy of j with the probability (Pj − Pi )/(Dk>α), where k>

denotes the larger number between ki and k j , D = T − S, and
Dk>α is used to normalize the imitation probability [9,15,27].
Otherwise (i.e., Pj � Pi), i keeps her strategy.

Following the general practice in numerical simulations,
we simplify the prisoner’s dilemma with a single parameter
T = b ∈ (1, 2], and set other parameters as R = 1 and
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FIG. 2. Frequency of cooperation, fc, as a function of the temptation to defect, b, on different networks with different levels of autonomy,
α, and network degrees, k. The effective networks are dynamic and the payoffs are accumulated.

P = S = 0 [9,15,27]. Here b denotes the temptation to defect.
Simulations are conducted for a population of N = 900 indi-
viduals. Initially, individuals are randomly distributed over the
network and each has the same probability to act as cooper-
ator or defector. For every single simulation, the equilibrium
frequency of cooperation, fc, is evaluated by averaging the
last 2000 rounds after the full evolution of 20 000 rounds.
For each set of parameters, we average frequencies over 100
independent simulations to obtain the corresponding fc.

III. RESULTS

A. Autonomy promotes the evolution of cooperation
on dynamic effective networks

We first explore how autonomy affects the evolution of co-
operation on three different networks (i.e., regular ring graphs,
random networks, and scale-free networks). Despite that the
underlying network is invariant, our modeling framework
further generates a dynamical interaction network, consist-
ing of all individuals as well as their effective neighbors.
By investing these dynamic effective networks with various
degrees and accumulated payoffs, we find the cooperation
is inhibited by the degree of the network (α = 1 in each
column in Fig. 2), and strongly related to the network struc-
tures. Indeed, the increase of the number of neighbors drives
these systems towards the canonical mean-field behavior
where cooperators become extinct (different rows in Fig. 2)
[6]. Over the respective parameters (the b values), cooper-
ation dominates more in a scale-free network than the rest
of the networks (each row in Fig. 2) where the weakly
connected cliques and specific network structures play an
important role (Appendix A) [22,28]. All these are consistent

with previous results [15]. Surprisingly, we find the level of
autonomy (α) generally promotes the cooperation regardless
of the network degree and the type of networks (Fig. 2). This
might be related to the fact that the cliques in the networks
shrink in both size and numbers under low level of autonomy
(Appendix A), or because the lower the level of autonomy, the
more the network reciprocity is broken. Therefore, the higher
the level of autonomy, the more cooperation is promoted.

Several tests are further conducted to verify our simula-
tions and findings. We first check the absorbing state in the
evolutionary process by running 5×106 iterations with 100
individuals on all three networks (Appendix B). Results show
the benefit of a high level of autonomy and verify the effec-
tiveness of our simulation set (Appendix B). We further test
the evolution under the strict prisoner’s dilemma by consider-
ing R = b − c, S = −c, T = b, and P = 0. Again, simulations
on three networks show consistent results (Appendix B). Fi-
nally, we capture the strategy imitation dynamics by Fermi
function controlled by intensity of selection, β. Evolution
on three networks with β = 0.1, 1, and 10 also show the
consistent results (Appendix B).

Since a lower α leads to a smaller number of effec-
tive neighbors, the accumulated payoffs vary dramatically at
different autonomy levels [29]. To further explore the effect
of such heterogeneity in payoff, we further normalize the
payoff by the number of effective neighbors. Specifically, for
a focal individual i playing game with N effective neighbors
and acquiring payoff Pi j after playing the game with neighbor
j, we now consider the updating of the strategy based on the
normalized payoff

∑N
j=0 Pi j/N . Although here the impact of

network structures has been reduced and the advantage of low
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FIG. 3. Frequency of cooperation as a function of the temptation to defect, b, with different levels of autonomy. The effective networks are
dynamic and the payoffs are normalized.

degrees are weaker (especially in random networks and scale-
free networks), we confirm the promotion of cooperation by
autonomy level is still primary (Fig. 3). This is also related
to the network reciprocity mediated by the level of autonomy.
Overall, all show that the single factor of autonomy robustly
enhances cooperation over the dynamic effective networks.

B. Autonomy affects the evolution of cooperation
on the static effective network

Having shown that the dynamic effective networks pro-
mote cooperation, to eliminate the effect of network dynam-
ics, we next seek to carry out simulations on static effective
networks. Here, a static effective network is implemented
by initializing the effective neighbors according to the level
of autonomy and keeping the specific effective neighbors
throughout the evolution. Namely, the networks in all rounds
in Fig. 1(b) are the same as the one induced by the first round.
We find, as the degree of the network (k) increases, a high
level of autonomy plays a role of the first facilitator, then
inhibitor for the evolution of cooperation (Fig. 4). Generally,
when the degree of the network is small (k � 8), the autonomy
promotes cooperation. However, when k is over a threshold,
autonomy impedes cooperation. The threshold depends on
the type of network—a threshold around 8 for regular ring
graphs and random networks and a threshold around 16 for
scale-free networks. Near the threshold of the network degree,
the frequency of cooperation is similar at all levels of the
autonomy [a phenomenon similar to Fig. 4(f)]. This could
be understood from the network fragmentation caused by the
level of autonomy. For networks with low degrees, the effec-
tive network is fragmented into small pieces, thus breaking

networking reciprocity and inhibiting cooperations for build-
ing stable clusters. However, when the underlying network
has larger degrees, although the network is a bit fragmented,
the effective network remains reciprocal. Therefore, as the
degree of the underlying network grows, the lower the level
of autonomy the more cooperation is promoted.

To eliminate both network dynamics and heterogeneity of
the payoffs, we conduct simulations on a static network with
normalized payoffs (Appendix C). Similarly, a threshold of
the network degree which makes the role of autonomy switch
from facilitator to inhibitor still exists but is smaller than
that in the case with accumulated payoffs. All these verify
that it is the autonomy that promotes cooperation on dynamic
networks, which are closest to real social networks. Moreover,
a comparison of evaluations on dynamic and static networks
shows that static networks promote cooperation compared
with their dynamic networks. This is due to the character
of network dynamics breaking the reciprocity. Namely, the
probability of an individual to play with the same neighbors
in different rounds is very small.

C. The synergistic effect of the network degree
and the autonomy

After realizing that the network degree k and autonomy α

coaffect the fate of cooperators on static networks, we further
explore the importance of autonomy. Specifically, we analyze
how cooperators are affected by autonomy when the effective
network degree αk is constant. In this setting, we still find
the promotion of cooperation from autonomy regardless of
the way we calculate the payoffs and the characteristic of the
network dynamics (Appendix D).
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FIG. 4. Frequency of cooperation, fc, as a function of the temptation to defect, b, on different networks with different levels of autonomy,
α, and network degrees, k. The effective networks are static and the payoffs are accumulated.

To further understand the mechanism of how the effec-
tive network degree αk affects the cooperation, we show the
cooperation as a function of αk at b = 1.05 for regular ring
graphs and b = 1.2 for another two networks. Interestingly,
we find that the moderate effective network degree, max-
imally, promotes cooperation (Fig. 5), which is consistent
with previous studies [15,22,28]. A further analysis of the
heterogeneity of the networks with different effective net-
works shows that this is due to the fact that an intermediate
heterogeneity benefits the cooperation [30] (Fig. 6).

IV. CONCLUSION AND DISCUSSION

We have studied how autonomy, a basic need for humans,
promotes cooperation on different networks with various net-
work degrees. We find, on dynamic effective networks, the
autonomy promotes cooperation regardless of the network

degree. Further studies with normalized payoffs and evolution
on static networks verify that it is the autonomy that promotes
the cooperation instead of the heterogeneity or the other char-
acteristics of the network dynamics. This is consistent with
experimental studies in the field of management and psychol-
ogy, where higher autonomy allows for more positive social
relations [32], benefits in interpersonal honesty and openness
[33], and promotes group cohesiveness and efficiency [34].

When autonomy is introduced, the actual interaction net-
work is dynamical. Individuals with the same autonomy do
have the authority to interact with different neighbors that
are selected from the underlying network at different time
steps. However, we wish to emphasize that here the dynamical
network is different from other important work pertaining
to coevolution where network structure and strategy evolve
together in an evolutionary process [7,35–37]. In our case,

io
n

FIG. 5. Frequency of cooperation, fc, as a function of the product of network degree, k, and the level of autonomy, α. The temptation to
defect, b, is 1.05 for regular ring graph and 1.2 for scale-free network and random network. The effective networks are static and the payoffs
are accumulated.
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FIG. 6. Network heterogeneity (ξ ) as a function of effective
network degree (αk). Here ξ could be evaluated by 〈α2k2〉−〈αk〉2

〈αk〉2 ap-
proximately according to the definition of network heterogeneity
[31], and 〈·〉 denotes average operation, α ∈ [0.1, 1] with an interval
of 0.05. Considering 〈α2k2〉−〈αk〉2

〈αk〉2 = 〈k2〉−〈k〉2

〈k〉2 , we know that ξ is around
〈k2〉−〈k〉2

〈k〉2 for different α as we have shown in the inner panel for
k = 16. For the main panel, the network degree k ranges from 4 to
32 with an interval of 4.

the underlying network does not evolve intrinsically, and in-
dividuals neither build new links nor terminate existing links.
Specifically, we treat the timescale of the change of links as
larger than that associated with game dynamics.

We find that the level of cooperation under the dynamical
network resulting from the autonomy is lower than that on
static networks. On the face of it, one might conclude that the
dynamical network is detrimental for cooperators. Neverthe-
less, further attention should be cast on the network switching
frequency according to autonomy during each round. When
we allow each static interaction network to last several gen-
erations, it is clear that the dynamical network could actually
benefit cooperators, which is consistent with the results ob-
tained from human behavioral experiments [38]. Indeed, by
switching to another static interaction network after hundreds
of rounds on the previous one, cooperation can prevail on
dynamical networks. This echoes the recent finding that tem-
poral networks generically enhance cooperation relative to
their static counterparts [27]. Note that the network evolution
is also exogenous to game dynamics for temporal networks.

In terms of the autonomy for each individual, here we
randomly select some of their neighbors. A natural extension
is to study empirical factors governing individuals to select

neighbors to interact with under pairwise or multiperson
games [39,40] or, in different rounds on social networks.
Such factors, for example, could be the reputation of their
neighbors [41], group reputation [37], or personal expectation
for success [36]. For strategy updating, here players tend to
imitate neighbors they have selected randomly for interaction.
It is worth investigating the scenarios where players might
learn from the best of all their neighbors [9] or other teaching
activities [42].

Furthermore, beyond the extension on studying the evo-
lutionary dynamics, the dynamical characteristics coming
with the players’ autonomy give the possibility to design
the empirical interaction patterns of both nodes and links.
Indeed, starting from homogeneous network settings, it is
reported that by engaging with others, the universal power-law
distribution of individuals’ interevent intervals (the so-called
bursty behavior [43]) can emerge [44]. Recently, several im-
portant models have been proposed to elucidate the origin
of the bursty behavior of both nodes and links [43,45,46].
By virtue of the empirical evolutionary dynamics where the
network evolution is triggered by individuals’ behavior in pur-
suing higher payoffs, one can accordingly study the possibility
of generating a given interaction pattern like burstiness from
the perspective of game dynamics.
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APPENDIX A

Clique number and number of maximum cliques of differ-
ent networks (Fig. 7).

FIG. 7. Clique number and number of maximum cliques in three networks as a function of the level of autonomy. We set the average
network degree as 8. Each point is averaged over simulations of 100 individuals and 30 initialized networks and 100 iterations over each
network.
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APPENDIX B

Robustness tests (Figs. 8–11).

FIG. 8. An example to show the frequency of cooperation, fc,
reaches the absorbing state over long time evolution.
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FIG. 9. Frequency of cooperation, fc, as a function of the temptation to defect, b, on three different networks with different levels of
autonomy, and α over long time evolution (5×106 iterations). The effective network is dynamic and payoff is accumulated. Simulations are
conducted with 100 individuals. We did 100 repetitions for each α and b. Therefore the average of fc is within [0, 1].

FIG. 10. Frequency of cooperation, fc, as a function of the temptation to defect, b, on three networks with different levels of autonomy, α,
and c = 0.1 in strict prisoner’s dilemma ([b − c, −c; b, 0]). The effective network is dynamic and payoff is accumulated.
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FIG. 11. Frequency of cooperation, fc, as a function of the temptation to defect, b, on three different networks with different levels of
autonomy, α, and selection strength, β. The effective network is dynamic and payoff is accumulated.
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FIG. 12. Frequency of cooperation, fc, as a function of the temptation to defect, b, on different networks with different levels of autonomy,
α. The effective network is static and the payoff is normalized.

APPENDIX C

Results on static networks with normalized payoffs
(Fig. 12).

APPENDIX D

Results on fixed effective network degree (Figs. 13–16).
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FIG. 13. Frequency of cooperation, fc, on static effective networks as a function of b when the product of autonomy, α, and network
degree, k, is fixed. The payoff is accumulated and the effective network is static.
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FIG. 14. Frequency of cooperation, fc, on static effective networks as a function of b when the product of autonomy, α, and network
degree, k, is fixed. The payoff is normalized and the effective network is static.
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FIG. 15. Frequency of cooperation, fc, on static effective networks as a function of b when the product of autonomy, α, and network
degree, k, is fixed. The payoff is accumulated and the effective network is dynamic.
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FIG. 16. Frequency of cooperation, fc, on static effective networks as a function of b when the product of autonomy, α, and network
degree, k, is fixed. The payoff is normalized and the effective network is dynamic.
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