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We study random walks on complex networks with transition probabilities which depend on the current and
previously visited nodes. By using an absorbing Markov chain we derive an exact expression for the mean first
passage time between pairs of nodes, for a random walk with a memory of one step. We have analyzed one
particular model of random walk, where the transition probabilities depend on the number of paths to the second
neighbors. The numerical experiments on paradigmatic complex networks verify the validity of the theoretical
expressions, and also indicate that the flattening of the stationary occupation probability accompanies a nearly
optimal random search.
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I. INTRODUCTION

The pursuit for appropriate models of the nontrivial in-
terconnections between the units of real systems has led to
the emergence of complex network theory as one of the
most fruitful fields in modern science. Instead of being reg-
ular, or purely random [1], the graph of connections between
the items rather frequently possesses characteristics like the
small-world property [2] and power-law degree distribution
[3]. These topological features have strong implications on
the dynamics which might be present in the system. A list of
such dynamical processes on complex networks of interacting
units can include synchronization [4], consensus formation
[5], disease spreading [6], and so on.

The random walk is one of the most pervasive concepts
in natural sciences which is applied in studies of diverse
phenomena ranging from simple animal strategies for food lo-
cation [7,8] to complex human interactions resulting in stock
price variations [9], or evolution of research interests [10]. A
recent paper [11] contains a nice review of the topic and a long
list of references. A large portion of dynamical processes on
complex networks like the PageRank algorithm [12], various
types of searching [13,14], or community detection [15] is
based on or related to the random walk. A random search-
ing process in a complex network is formulated as follows:
starting from an arbitrary node, or source i, sequentially hop
from a node to one randomly chosen neighbor until reaching
some previously defined target node j. The performance of
a searching procedure is measured in terms of the number
of steps needed to get from i to j and the related quantity
is known as first passage time. Due to the stochastic nature
of picking the nodes in the sequence, sometimes one can be
very lucky and rather quickly find the target, while in most
of the trials the number of steps would be larger than the
number of nodes in the network for a typical source-target
pair. Therefore, a more informative quantity is the average
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number needed to complete the task—the mean first passage
time (MFPT)—obtained by averaging across all possible real-
izations of the random choices.

On the other side, there are efficient deterministic search-
ing algorithms which rely on information about the underlying
graph structure. In such approaches, when one has knowledge
of the full structure of the graph, the shortest paths are used,
and then one needs the smallest number of steps to reach
the target. However, for very large systems, like the World
Wide Web, or in dynamical environments like mobile sen-
sor networks, keeping and updating all necessary topological
information might be a serious issue. Then one could turn to-
wards strategies based on local information only. The classical
uniform random walk (URW) needs the smallest amount of
information—only the number of neighbors (the degree ki)
of each node i. Within this approach, the probabilities for
choosing among the neighbors of some node i are taken to
be identical and equal to the inverse of its degree p = 1/ki.
However, this procedure greatly increases the time to com-
pletion of the task, which is another type of inconvenience.
The searching can be improved when the local information
extends the node degrees. For example, it was shown that,
for a certain type of small-world networks, a random target
can be found rather quickly by using local information only
[16,17]. Knowledge of the identities of the direct or maybe
more distant neighbors also enhances the searching [18].

There are various alternatives for modification of the URW
aimed at speeding up its searching capabilities. Some of these
works provided enhancements while others also presented
connections with related problems in other fields. For exam-
ple, as a counterpart of path integrals, the maximal entropy
random walk was introduced as a modification of URWs
which assigns equal probabilities to all paths with equal length
starting from a certain node [19]. In another approach, the
Lévy random walk, which allows for jumps toward more
distant nodes besides the (first) neighbors, was proven to de-
crease the expected time needed to visit all nodes in a network
[20]. The combination of the local diffusion and knowledge
of the topology has recently been applied to study the routing
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of neural signals [21]. Biasing of the random walk has been
shown to be useful in sampling of complex networks as well
[22]. Another important achievement was the demonstration
that biasing of the URW, by preferring the less connected
neighbors, can improve random searching in complex net-
works [23]. In the same contribution, it was uncovered that
inverse-degree-based biasing of the random walk also leads to
uniform stationary occupation probability. In a related work,
it was obtained that the improvement is greatest when the
probability to jump to a neighbor is inversely proportional to
its degree [24].

In this work we explore the potential for searching im-
provement by considering memory-based random walks on
complex networks since it relies on information that extends
the immediate neighborhood. First, we develop a theoretical
framework for analytical calculation of the MFPT between
any pair of nodes when the random walk has a memory of
one step. Then we apply it for determination of MFPT for one
particular searching algorithm which aims to provide nearly
equal chances of visiting second neighbors. We numerically
show that searching enhancement is also accompanied with
flattening of the stationary distribution of the visiting fre-
quency as is the case of the inverse-degree-based biasing of
the random walk. The co-occurrence of the improved search-
ing and nearly uniform stationary distribution is found even
for the memory-based and inverse-degree-based random walk
on directed complex networks as well.

The remainder of the text is organized as follows. In Sec. II
we present general theoretical framework for studying random
search with random walk with memory. Then in Sec. III we
introduce an algorithm for random search with memory of
one step. The results from the numerical experiments and their
analysis are provided in Sec. IV. The paper finishes with the
conclusions.

II. MEAN FIRST PASSAGE TIME OF RANDOM WALK
WITH MEMORY ON COMPLEX NETWORKS

Consider a connected complex network with N nodes and
connections encoded in the adjacency matrix A. For simplic-
ity, we study a discrete-time walk, where the next node in the
sequence is chosen randomly, with time-invariant transitions,
or jump probability, which depend only on the current node
and the node visited immediately before it. This represents
a random walk with a memory of one step, which can be
straightforwardly generalized to cases with longer memory.
To be more specific, assume that the random walker at a
certain time step has moved from node r to its neighbor s. For
one-step memory, the probability of proceeding towards some
neighbor t from s is given as p(t |s, r) which means that it
depends only on the current node s and the previously visited
one r, but not on those preceding r.1 This kind of random walk
can be suitably studied with a related Markov chain with states
conveniently denoted with rs, which are pairs of consecutively
visited nodes r and s. The transition probabilities from state
rs to st in this chain are thus prs,st = p(t |s, r), which can be

1For directed networks, the neighbor t must be chosen from among
those toward which s points.

compactly organized in the respective transition-probability
matrix P.

When the transition-probability matrix P of the related
Markov chain is determined, such a random walk will be
completely defined once the starting step is specified. One par-
ticular initialization of the walk which starts from some node
i is to choose randomly one of its neighbors and then continue
with the memory-based algorithm specified with the matrix P.
Finding some target j in the network corresponds to reaching
any of the states denoted with s j in the Markov chain, where s
is any neighbor of the node j.2 Then, the MFPT from node i to
j could be related to the mean time to absorption (MTA) of the
random walk initialized at any state ir in an absorbing Markov
chain corresponding to the node j as target. In this absorbing
chain, all states s j are absorbing, while the remaining ones rt ,
where t �= j, and r �= j are transient states.3 Before deriving
the relationship between MTA and MFPT, we first present
some well-known results about the MTA in absorbing Markov
chains, which can be found, for example, in Ref. [25]. For this
purpose, one should first determine the transition matrix of
the absorbing Markov chain, which depends on the target j,
and is thus conveniently denoted with P( j). The construction
of P( j) relies on two observations. By the first one the random
walk stops at any absorbing state, which implies that the prob-
ability of leaving any such state is zero. From the second, the
transition probabilities between the transient states and from
the transient to the absorbing states in the absorbing chain are
the same as the respective ones in the original chain. The tran-
sition matrix of the absorbing Markov chains is conveniently
represented in the canonical form, which for a memory-based
random walk targeting the node j reads

P( j) =
∣∣∣∣

Q( j) R( j)

0 I

∣∣∣∣. (1)

In the last equation, Q( j) is a matrix consisting of transition
probabilities between the transient states, the submatrix R( j)

corresponds to the probabilities of the transitions from the
transient to the absorbing states, while the appropriately sized
zero matrix 0 and identity matrix I mean that the random
walker does not continue further from any of the absorbing
states. The MTA in an absorbing Markov chain determined
by the target node j from all possible starting states ir is the
respective element of the column vector

μ( j) = Y( j)c, (2)

where c is a column vector with all elements equal to one,
while Y( j) is the fundamental matrix of the absorbing Markov
chain [25], which is calculated with

Y( j) = (I − Q( j) )
−1. (3)

2For a directed network, nodes s are only those which point to j.
3One should note that, in the Markov chain that models the random

walk with memory, there can be states denoted js. They can be
included in the absorbing chain only if one needs to calculate the
mean recurrence time, or the average time needed for the walker
starting from j to return at j again. When the starting node differs
from the target, such states are omitted in order to reduce the size of
the matrices involved.
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The MTA vector μ( j) contains sufficient information for cal-
culation of the MFPTs from all starting nodes to the given
target j, as shown below.

Since in a random walk on complex networks at a single
time step, exactly one hop is made, each random first passage
time equals the number of steps needed for reaching the target
for the first time, which is the length of the respective random
walk. Thus, by definition, the MFPT between the starting node
i and the target j is the weighted sum of the lengths l of all
walks Wi, j , which visit j only at the last step:

mi, j =
∑

Wi, j

l (Wi, j )p(Wi, j ), (4)

where p(Wi, j ) is the probability of occurrence of the walk
Wi, j . Let us first consider the case when the target is not a
neighbor of the source. Then, the sum in the last expression
can be organized by summing over all walks with memory
that visit the neighbor s of i at the first step, and then summing
over the whole neighborhood Ni of i:

mi, j =
∑

s∈Ni

pi,s

∑

Ws, j

[1 + l (Ws, j )]p(Ws, j ), (5)

where pi,s denotes the probability to hop from i to s in the
first step. Since every random walk in an absorbing Markov
chain is absorbed with probability one [25], the measure of
the memory-based random walks in the complex network that
miss the target j indefinitely is zero. This implies that the
normalization condition of the probabilities of the memory-
based walks that pass through each neighbor s of the initial
node i and reach the target j, is given as

∑

Ws, j

p(Ws, j ) = 1, (6)

where the summation is made for each neighbor s separately.
One can also note that the MFTP from the neighbor s of the
starting node i to the target j by pursuing the memory-based
random walk equals the MTA from the starting state is in
the absorbing Markov chain determined with the same target.
This MTA is the respective term μ( j),is of the MTA vector μ( j)

and is given with the following sum

μ( j),is =
∑

Ws, j

l (Ws, j )p(Ws, j ). (7)

When the neighbor in the first step is chosen uniformly, one
has pi,s = 1/ki. Then, by using Eqs. (6) and (7) in Eq. (5), one
can express the MFPT from the node i to j through the MTAs
obtained by the Markov model for the memory-based random
walk as

mi, j = 1 + 1

ki

∑

s∈Ni

μ( j),is. (8)

When the target j is a neighbor of i, it can be either reached
through the direct one-step route with probability pi, j = 1/ki,
or through longer walks for which one can apply the same
reasoning as above. We note that, in considering the walks
through the other neighbors of the initial node i, in the sum
running over the neighborhood of i, the target j should be
omitted. Then, by using the normalization condition (6), one

can obtain that
∑

s ∈ Ni s �= j

pi,s

∑

Ws, j

[1 + l (Ws, j )]p(Ws, j )

= ki − 1

ki
+ 1

ki

∑

s ∈ Ni s �= j

μ( j),is. (9)

By adding the contribution of the direct walk to the last ex-
pression one will obtain similar result as (8):

mi, j = 1 + 1

ki

∑

s ∈ Ni s �= j

μ( j),is. (10)

If the trivial value μ( j),i j = 0 is used, one can see that the
same expression (8) can be used for any target, regardless of
whether it is neighbor of the starting node.

The analysis above can be applied to the simpler case
as well—the random walk without memory. The Markov
transition matrix in this situation consists of the transition
probabilities between the nodes. Then, with each target node
is associated only one absorbing state—the target itself. How-
ever, it is more convenient to have one fundamental matrix
P for the whole network, instead of using a different one for
each node separately. Without going into details, which can be
found, for example, in Ref. [25], we just state that the MFPT
from the starting node i to the target j is given by

mi, j = z j, j − zi, j

w j
, (11)

where zi, j are the elements of the respective fundamental
matrix Z, while w j is the stationary occupation probability
of node j. The fundamental matrix Z is obtained from

Z = (I − P + W)−1, (12)

where the matrix W consists of rows identical to the stationary
probability distribution w of P. We use the expression (11) to
calculate the MFPT between nodes in the memoryless random
walk with which our model is compared. The reader interested
in a more detailed and intuitive derivation of the same ex-
pression (11) with the generating functions formalism, but for
lattices only, can refer to Ref. [7], while for complex networks
based on the Laplace transform, deeper explanation can be
found in Refs. [23,26].

One should note that the MFPT is a property of the network
parametrized by two nodes—the starting one i and the final
j and is thus sensitive to the choice of this pair. A related
property of one node only is obtained by averaging all MFPTs
starting from all other nodes and targeting it

gi = 1

N − 1

N∑

j = 1 j �= i

m j,i. (13)

In the literature it was called global mean first passage time—
GMFPT [27]. This property can be also seen as a kind of
centrality measure of nodes in a complex network. By going
one step further, one can average across GMFPTs for all nodes
and get a property of the whole network which was introduced
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as the Graph MFPT (GrMFPT) [24]:

G = 1

N

N∑

i=1

gi. (14)

We use this variable for comparison of the searching by dif-
ferent random walks in complex networks.

III. SEARCHING ALGORITHM BASED ON RANDOM
WALK WITH MEMORY OF ONE STEP

The results for the MFPT obtained in the previous section
are general and hold for every random walk with jumping
probabilities depending on the current and previously visited
node. They are given in a form that does not provide much
intuition about which navigation rules provide a better search
for the target. Even from the expression for the MFPT of the
memoryless walk, one is not sure how the transition proba-
bilities should be defined in order to obtain a faster search.
We stress that an interesting contribution was the finding that,
if the probability to jump to a neighbor is the inverse of that
neighbor’s degree, then the search in an undirected network
is faster compared with the URW, and in that scenario the
stationary occupation probability approaches the uniform one
w j ≈ 1/N [23]. This suggests that searching improvement
could be expected from biasing, which increases the prob-
ability for visiting poorly connected nodes, as the inverse
degree algorithm does. As shown in the Appendix, under
certain circumstances, inverse-degree biasing can result in a
nearly constant distribution of visiting frequencies even for
memoryless random walks on directed networks as well. This
flattening of the invariant density happens in well-connected
networks, in which each node has many neighbors. As we will
see below, our numerical simulations indicated that inverse-
degree biasing does not improve searching for networks with
small average degree. In that case, the distribution of visiting
frequency deviates more significantly from the uniform one as
well. Thus, navigation rules which favor jumps towards less
connected nodes and result in a nearly uniform distribution of
visiting frequency could be candidates for a good searching
algorithm.

Memory-based algorithms are obviously more complex
than their memoryless counterparts and their implementation
could be justified if they provide improved searching. Guided
by the reasoning above, one can pursue a strategy which
should result in decreased differences between the probabili-
ties for reaching the second neighbors, which hopefully would
bring uniform stationary occupation probability and faster
searching. One intuitive way to make such navigation rules
is as follows: Assume that, at the previous step, the walker
was at node r, from where it jumped to the node s, and in the
next step it would visit some node t from the set of neighbors
of s. Denote by brt the number of all two-hop walks from
node r to t . The matrix B with elements brt is the square
of the adjacency matrix A, B = A2. Then, the probability to
visit node t after being at nodes r and s in the previous two
steps corresponds to the transition probability from state rs to
st in the related Markov chain. In analogy to inverse-degree
biasing, one could favor visiting the less accessible second

neighbors by choosing the following jumping probability:

prs,st =
1

brt∑
u∈Ns

1
bru

, (15)

where the sum in the denominator is used for normalization of
the probabilities and it runs in the neighborhood of the node
s, Ns. This formula assigns a larger weight to nodes t which
have less alternative paths to be reached from node r, i.e.,
those with smaller brt . In this way, the probability to visit a
node of that kind from r in two steps will be increased and
become closer to that of nodes which are accessible from r
in two steps through more alternative ways. We note that, for
undirected networks, every node is a second neighbor to itself,
and there is a chance to return to the same node r. However,
brr = kr and the probability prs,sr is the lowest within all
prs,st , hence, immediate returning is disfavored. In this way,
the appearance of short loops is suppressed.

The related Markov model of a random walk with memory
could be successfully applied for an analytical calculation of
the stationary occupation probability as well, which could
be used to check whether its flattening is accompanied by
a searching improvement. To find the stationary occupation
probability, one should first calculate the invariant distribution
of the states of the related Markov chain v, which is obtained
from the stationarity condition vP = v of the full transition
matrix P of the Markov chain. Its terms are the stationary
probabilities of states vrs that correspond to all pairs of neigh-
bors rs. Then, the stationary distribution of frequency of visits
of the node s, by a random walk with memory of one step,
would be either of the sums

∑
r vrs or

∑
t vst running within

the neighborhood of node s.

IV. NUMERICAL RESULTS

In this section we provide the results obtained by us-
ing analytical expressions and numerical simulations with
memory-based random walks and compare them with the
uniform and inverse-degree-biased random walk. The search
effectiveness was studied by calculating the GrMFPT of each
considered network. The stationary occupation probability
was also calculated to check whether its flattening accompa-
nies efficient searching. First, we conduct a thorough analysis
using generic network models, such as random, scale-free,
and small-world networks. Then, we apply the approaches on
two real networks: the Internet at autonomous systems level
(undirected), and a reduced set of Wikipedia pages (directed).

The calculations of theoretical expressions involve inverse
matrix operations, and the latter presents the major constraint
in our analysis. For the random walk with memory, the num-
ber of states in the related Markov chain equals the number of
links, which limits the size of networks that we could study.
Therefore, we opted to perform the analyses of the MFPT and
the invariant density for networks with N = 100 nodes. We
varied the average node degree by changing the native model
parameters to see how the connectivity affects the search. For
both the analytical and the numerical results, we averaged
over ten network instances for every parameter setting for
each network type. Moreover, in the numerical simulations we
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performed 100 repetitions of the search among all node pairs,
for each scenario.

We studied purely random graphs, scale-free and small-
world networks as the most typical kinds of networks. For
generating such graphs we used algorithms from the Net-
workX library in PYTHON, which allow construction of the
three graph types with given parameter values [28]. The ran-
dom graphs are complex networks created according to the
Erdős-Rényi model where every pair of nodes i and j is
connected with some predefined probability p, which appears
as parameter of the graph together with the number of nodes
N [1]. If the probability p is large enough then the obtained
graph would very likely be connected—there will be a path
between each pair of nodes. The small-world networks were
built following the Watts-Strogatz model [2]. It starts with
a regular ring lattice network with N nodes each connected
with n neighbors, and then randomly rewires the links with
some probability p. The scale-free networks were generated
using the Barabási-Albert model, which sequentially builds
the network by adding nodes one by one [3]. The network
builds upon a seed of m0 nodes without edges, and every
newly added node forms m links with the existing network.4

Preferential attachment is employed as the probability to con-
nect to existing nodes is taken to be proportional to its degree.

In Fig. 1(a) we compare the obtained GrMFPTs for the
URW, inverse-degree-biased random walk, and the memory-
based random walk over scale-free networks. The horizontal
axis represents the average degree 〈k〉, which is approximately
2m, where m ∈ [2, 10]. The seed network is composed of
m0 = m nodes without edges. First, one can observe that the
numerical (N) and the theoretical (T) results are very close,
which confirms the correctness of the analytical expressions.
The memory-based random walk always outperforms the uni-
form one. The inverse-degree-biased random walk is also
better than the URW, when the average node degree is not very
small. One can notice that all curves decrease asymptotically
towards the value corresponding to the number of nodes N .
As we will see from the other numerical results, N seems to
be the minimal possible value for the GrMFPT. Thus, as an
optimal random search could be considered the one for which
GrMFPT equals the number of nodes, G = N . Although for
networks with very large average degree the GrMFPT seems
to approach to N for different kinds of random walk, the
effectiveness of a biasing procedure becomes apparent for less
connected networks.

We note that there is deterministic strategy that is twice as
fast and which holds for graphs that have a Hamiltonian cycle.
It is a walk passing though all nodes and visiting each node
only once. We emphasize here that determination whether a
graph has a Hamiltonian cycle is not a trivial task and was
proven to be an NP-complete problem [29]. In that case the
MFPT from the source to the target will equal the number
of nodes in between them along the cycle, and for uniformly
chosen starting and target nodes, one can easily show that
GrMFPT will be N/2.

4The parameters m0 and m here are denoted as the authors Barabási
and Albert originally did and are different from the elements of the
MFPT matrix mi, j .

(a)

(b)

(c)

FIG. 1. GrMFPT in (a) BA, (b) ER, and (c) WS networks of
N = 100 nodes with different average node degree 〈k〉 for the three
cases: uniform (red line and circles), inverse degree (blue line and
squares) and one-step memory (green line and triangles). The lines
are theoretical values (T) and the markers numerical estimates (N).

The two biasing procedures bring search improvement for
the purely random Erdős-Rényi graphs also, as shown in
Fig. 1(b). We generated ten network instances with N = 100
nodes for different average node degree 〈k〉 by varying the
link existence probability p ∈ [0.04, 0.2]. As can be seen,
the inverse-degree biasing gives lower GrMFPT than the
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URW, except for 〈k〉 = 4 where they are about the same,
while the one-step memory outperforms them both. Again
the numerical results are in accordance with the theoretical
results.

In Fig. 1(c) we show how the biasing affects the random
walk in Watts-Strogatz networks, where the rewiring probabil-
ity is p = 0.2. Unlike for the other network types under study,
the inverse-degree biasing does not improve the GrMFPT.
This is probably due to the smaller degree variability in this
kind of network. On the other hand, the one-step memory
approach still reduces the GrMFPT, as was the case for the
other network types. The theoretical expressions are once
again confirmed by the numerical simulations.

We also made numerical experiments to see whether a
mechanism behind the search improvement is nearly uniform
stationary occupation probability. The extent of flattening of
the stationary occupation probability was studied with the
Kullback-Leibler (KL) divergence [30]. KL divergence esti-
mates the deviation of one distribution from another. In the
case when one has two discrete distributions P(i) and Q(i), it
is defined as

DKL(P||Q) =
∑

i

P(i) log
P(i)

Q(i)
. (16)

One can notice from the definition that this is an asymmetric
quantity, DKL(P||Q) �= DKL(Q||P) and, within the definition
provided above, P has the role of the prior, or the distribution
with which we compare. In our case it is the constant P(i) =
1/N . This divergence vanishes when the two distributions
coincide. In Fig. 2(a) is shown the KL divergence between
the constant density and those for the uniform, inverse degree,
and one-step memory random walks in BA networks. As can
be noticed, both biasing procedures result in invariant density
that is closer to the flat one than the uniform approach does.
Also, the larger the average degree is, the approximation of
the invariant density with the uniform one is more correct, as
the theoretical analysis in the Appendix suggests. However,
even though for networks with smaller average degree the
biasing makes the distribution closer to the uniform, searching
is slower than for the URW. This clearly indicates that the
leveling of the visiting frequencies is not always sufficient for
optimizing the search.

Similarly, Fig. 2(b) shows the KL divergence between the
uniform density and the distribution of the visiting frequency
for the URW and the two other random walks in ER net-
works. Once again, the biasing yields a density that is closer
to the constant one than the URW, which is probably the
reason for the lower GrMFPT obtained in Fig. 1(b). On the
other hand, in WS networks [see Fig. 2(c)] the inverse-degree
biasing gives a density which is closer to a constant than
the URW, while the one-step memory approach does not,
even though it proved fastest in such scenarios as is evinced
in Fig. 1(c).

We also numerically compared the searching performance
of the three kinds of random walks in directed networks. In
Fig. 3(a) are shown the respective GrMFPTs. We can see that
the one-step memory provides better results than the URW,
but the inverse indegree approach outperforms them both sig-
nificantly, which was not the case in the undirected networks.

(a)

(b)

(c)

FIG. 2. Kullback-Leibler divergence of the stationary occupation
probability of uniform (red), inverse degree (blue), and one-step
memory (green) random walks from the uniform density in (a) BA,
(b) ER, and (c) WS networks with N = 100 nodes for different
average node degrees.

Biasing based on inverse outdegree performs slower than the
URW (results are not shown), as expected.

The flattening of the invariant density is an ingredient
which helps in search improvement in directed networks as
well. We have numerically verified that, as expected, for well-
connected networks when biasing of random walk is based
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(a)

(b)

FIG. 3. Random walks in directed ER networks with different
average degree 〈k〉: (a) Comparison of the GrMFPT for uniform
(red circles), inverse indegree (blue squares), and one-stop memory
(green triangles). (b) Kullback-Leibler divergence of the invariant
density from a uniform density for three approaches: uniform (red
circles), inverse-indegree biased (blue squares) and one-step memory
(green triangles).

on inverse of indegrees, the invariant density is closer to the
constant than that of a URW. In Fig. 3(b) are shown the KL
divergence of the URW on directed ER networks with the two
biasing alternatives: one based on inverse of indegrees, and
another on the one-step memory. The results are in concor-
dance with the theoretical analysis.

We have finally tried the searching performance of the
three approaches in two real-world networks. The first net-
work is a snapshot of the Internet topology at autonomous
systems level obtained from BGP logs on January 2, 2000,
which is an undirected graph consisting of 6474 nodes and

TABLE I. GrMFPT for two real networks with uniform, inverse
degree and one step-memory random walks.

Network Uniform Inverse degree One-step memory

Internet (AS) 1.93 × 104 1.78 × 105 1.80 × 104

Wikipedia (extr.) 3.01 × 107 1.09 × 104 8.15 × 105

13 233 links [31]. Its average node degree is 〈k〉 ≈ 4. The
second network is an extracted set of Wikipedia pages [32,33].
The graph is directed and consists of 4592 nodes and 119 882
links, from which we take the largest strongly connected
component that has 4051 nodes and 119 000 links. The av-
erage indegree and outdegree of the largest component are
〈kin〉 = 〈kout〉 ≈ 29. These networks are larger and it is much
more difficult to calculate the GrMFTP theoretically, so in
Table I we provide only the results obtained by numerical
simulations. The results for the Internet network are obtained
by averaging over 106 randomly selected source-target pairs
out of 6474 × 6473 possible couples. For the extract of the
Wikipedia network the averaging is performed with 1.5 × 105

pairs, out of 4051 × 4050 possible, because the simulations
take much longer due to the larger number of steps required
to reach the targets. One can note that, for the undirected
case, the inverse-degree biasing worsens the search of the
URW because the majority of nodes are not well connected
as the theory asks, while it shows great reduction of the
MFPT for the directed network. The memory-based strategy
performs well in both scenarios. These results confirm our
previous findings for paradigmatic network models that the
inverse indegree biasing is better for directed networks, while
the memory-based approach outperforms the others for undi-
rected ones.

V. CONCLUSIONS

In this work we studied random walks on complex net-
works with transition probabilities that depend on the nodes
visited in the recent past. We have shown that such walks
can be analyzed with the appropriate Markov chain, and for
the case of memory of one step we derived an exact expres-
sion for the MFPT between pairs of nodes. One particular
navigation algorithm was proposed that avoids the hubs by
accounting for the two-hop-paths between the nodes. The
searching ability of this algorithm was compared with that
of the URW, and of another hubs-avoiding biased random
walk with jumping probabilities inversely proportional to the
node degrees. The proposed one-step memory approach has
shown better searching performance than the URW and the
inverse-degree-biased random walk for undirected networks,
particularly when the majority of nodes have a small degree.
We have furthermore demonstrated that the inverse-degree
biasing based on indegree leads to improved random search
in directed networks, which is even better than the memory-
based one. The introduced technique with absorbing Markov
chain could be also applied in theoretical analysis of other
scenarios. One example is random searching of targets when
each node knows the identity of its neighbors. In this case the
absorbing states would be all neighbors of the target.

The numerical experiments on generic network models be-
sides verifying the correctness of the theoretical expressions,
have shown that when the nodes have enough neighbors,
the GrMFPT approaches the number of nodes from above,
for the three kinds of random walks considered. However,
the usefulness of the biasing alternatives is that they allow
nearly optimal performance to be achieved for less connected
networks than the URW does. Also, both biasing approaches
show better flattening towards the constant of the stationary
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occupation probability than the URW. The inverse-degree
biasing results in stationary occupation probability that is
always closer to the uniform than the two other kinds of
random walk. This is not sufficient for best searching because
it was obtained that the memory-based random walk performs
better on undirected networks. However, the obtained results
suggest that leveling of the stationary occupation probability
can at least serve as an indicator for a possibly good searching
algorithm, particularly when the respective KL divergence has
very small value.
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APPENDIX: CONDITIONS FOR NEARLY UNIFORM
DISTRIBUTION OF THE VISITING FREQUENCY

The analysis in this section will be performed for a ran-
dom walk on directed complex networks, although the same
reasoning applies for undirected networks as well with minor
modifications. Consider a random walk on a directed network,
with the transition probability toward certain node j to be
inversely proportional to its indegree kin

j . Due to the normal-
ization, the jumping probability from node i to its neighbor j
would then be

pi j = 1/kin
j∑

l∈N out
i

1/kin
l

, (A1)

where N out
i denotes the set of neighbors of the node i toward

which it points to. Define node-centric, local average of the
reciprocal of indegrees of the neighbors as

〈1/k〉in
i = 1

kout
i

∑

l∈N out
i

1/kin
l , (A2)

where the subscript i in the average denotes that it is calcu-
lated only over the set N out

i . Then the normalization sum in
Eq. (A1) can be expressed through the local average as

∑

l∈N out
i

1/kin
l = kout

i 〈1/k〉in
i . (A3)

Now, consider well-connected uncorrelated networks. Such
networks are those where the degree of any node is inde-
pendent of the degrees of its neighbors and where, for the
majority of the nodes, kin

i � 1 and kout
i � 1 hold. Then the

local average can be approximated with the network average

of the reciprocal of indegrees:

〈1/k〉in
i ≈ 〈1/k〉in = 1

N

N∑

j=1

1/kin
j . (A4)

In such a case the normalization sum appearing in the denom-
inator in Eq. (A1) can be conveniently expressed through the
network average as

∑

l∈N out
i

1/kin
l ≈ kout

i 〈1/k〉in. (A5)

The stationary distribution of the visiting frequency satisfies
the following set of self-consistent equations:

w j =
∑

i∈N j

pi, jwi, (A6)

for each node j. This means that the following holds:

w j =
∑

i∈N in
j

1/kin
j

kout
i 〈1/k〉in

wi = 1/kin
j

〈1/k〉in

∑

i∈N in
j

wi

kout
i

. (A7)

If one assumes that the invariant density is constant, wi =
1/N , then from Eq. (A7) one would have

1

N
≈ 1/kin

j

N〈1/k〉in

∑

i∈N in
j

1

kout
i

. (A8)

Now, for networks where the direction of the links is inde-
pendent of the degree of nodes, the averages of reciprocals of
indegrees and outdegrees would be nearly the same

〈1/k〉in ≈ 〈1/k〉out. (A9)

For networks where most of the nodes have many incoming
and outgoing links, one can make the following approxima-
tion:

∑

i∈N in
j

1

kout
i

≈ kin
j 〈1/k〉out ≈ kin

j 〈1/k〉in. (A10)

Plugging the last approximation into the stationary density
equation (A8), one will see that it is an identity.

We should mention that, although network averages of the
reciprocals of in- and outdegrees are nearly equal, the biasing
inverse of the outdegrees does not result in a stationary distri-
bution approaching a uniform one. The reason for that is the
fact that the sum of inverse of degrees [Eq. (A10)] is always
proportional to the indegree of the node j because it accounts
for neighbors pointing to node j. Repeating the analysis above
by using biasing with the inverse of outdegrees, one can ver-
ify that the stationary density condition like Eq. (A8) is not
satisfied.
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