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Motivated by the importance of individual differences in risk perception and behavior change in people’s
responses to infectious disease outbreaks (particularly the ongoing COVID-19 pandemic), we propose a het-
erogeneous disease-behavior-information transmission model, in which people’s risk of getting infected is
influenced by information diffusion, behavior change, and disease transmission. We use both a mean-field
approximation and Monte Carlo simulations to analyze the dynamics of the model. Information diffusion
influences behavior change by allowing people to be aware of the disease and adopt self-protection and
subsequently affects disease transmission by changing the actual infection rate. Results show that (a) awareness
plays a central role in epidemic prevention, (b) a reasonable fraction of overreacting nodes are needed in
epidemic prevention (c) the basic reproduction number R0 has different effects on epidemic outbreak for cases
with and without asymptomatic infection, and (d) social influence on behavior change can remarkably decrease
the epidemic outbreak size. This research indicates that the media and opinion leaders should not understate
the transmissibility and severity of diseases to ensure that people become aware of the disease and adopt
self-protection to protect themselves and the whole population.

DOI: 10.1103/PhysRevE.102.042314

I. INTRODUCTION

People’s responses to infectious diseases could greatly af-
fect the transmission patterns of diseases, and information
about the transmissibility and severity of the disease conveyed
through the media and opinion leaders plays a central role in
raising awareness and influencing people’s decision-making
on whether or not to adopt self-protection, i.e., taking rec-
ommended practices to reduce the risk of infection, such
as wearing a mask and washing hands with sanitizer in the
COVID-19 context [1–7]. Here opinion leaders refer to indi-
viduals whose opinions are widely accepted by other people
[8,9].

Many studies [10–16] used mathematical models to inves-
tigate how disease awareness affects the outbreaks of diseases.
Most approaches [17,18] explored this problem by modify-
ing the parameters in standard epidemic models. Funk et al.
[19] first incorporated the effect of awareness into classic
epidemic models and found that the spread of awareness could
substantially reduce the epidemic outbreak size. Gross et al.
[20] studied epidemic dynamics on an adaptive network in
which susceptible nodes avoid contact with infected nodes
by rewiring their connections. Wu et al. [21] modeled the
effect of three forms of awareness: global awareness, local
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awareness, and contact awareness. They showed that only
global awareness cannot decrease the likelihood of an epi-
demic outbreak. Chen [22] examined how the amount of
information affects behavior change and showed that increas-
ing the amount of information that people possess may lower
the likelihood of disease eradication.

Multiplex (also named multilayer) networks [23,24] have
been developed to model the dynamic interactions between
the spread of information and infection. The spreading of
information and infection is represented by multiple net-
work layers. For example, Granell et al. [25] proposed
the susceptible-infected-susceptible unaware-aware-unaware
model that can capture the critical point of the disease out-
break determined by the topological structure of the virtual
information diffusion network. It can be extended to many
model variants, such as the multiple-information model [26]
that incorporates more than one type of information; the lo-
cal awareness controlled contagion spreading model [27], in
which the awareness transition is further influenced by the
extent of the awareness of all neighbors; and the susceptible-
infected-recovered (SIR) unaware-aware model [28] that also
considers the recovered state. In addition to information diffu-
sion and disease transmission, the transmission of protective
behavior has been simulated [29].

Recent studies examined the effect of the media on
infectious disease epidemics [30–37]. Liu et al. [32] pro-
posed a mechanism to illustrate the effect of the media by
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incorporating the reported numbers of infectious and hospi-
talized individuals into classic epidemic models. Wang and
Xiao [33] used a threshold model where the media can exhibit
its effect only when the number of reports reaches a certain
value. Dubey et al. [34] and Cramer et al. [35] discussed the
optimal amount of information that not only can suppress the
transmission of the disease but also prevents “media fatigue.”
Song and Xiao [36,37] further considered the delay of media
effects on people’s responses.

To summarize, existing studies indicate that the interplay
between awareness and social network structure could greatly
influence the transmission of infectious diseases. However,
few studies have considered individual differences in peo-
ple’s responses to messages conveyed through the media and
opinion leaders during epidemics. People’s responses are in-
fluenced not only by the transmissibility and severity of the
disease, but also by their personal risk perception [38–40].
Here risk perception refers to the subjective judgment about
the risk of the disease. Similar to smart nodes in informa-
tion diffusion [41,42], individuals who are more fearful of
being infected actively engage in self-protection and infor-
mation sharing. We label these people as overreacting as
compared with underreacting people who have a relatively
low risk perception. This classification can also be applied
to the novel coronavirus (COVID-19) epidemic, in which a
clear disparity in risk perception causes the diverse reactions
of individuals regarding control measures [43–46]. Lessons
from the COVID-19 outbreak in many countries imply that
people responding properly to the disease is more important
than simple awareness.

Motivated by the importance of individual differences in
risk perception and behavior change in people’s responses
to infectious disease outbreaks (particularly the ongoing
COVID-19 pandemic), we propose a heterogeneous disease-
behavior-information transmission model, which consists of
information diffusion, behavior change, and disease trans-
mission. This model aims to describe how different types of
nodes (overreacting versus underreacting) influence the preva-
lence of protective behavior and the epidemic outbreak. The
contribution of this study is threefold. First, this is a quantita-
tive study that examines the incorporation of risk perception
and disease-behavior-information transmission on a multi-
layer network. Second, we consider individual differences in
the responses to disease-related information originating from
variations in the distribution of risk perception among people.
Third, we study analytically and numerically the effect of such
differences on the epidemic.

The rest of the paper is organized as follows. First, we
describe the model details in Sec. II. Then we adopt the mean-
field method [47] to formulate the problem mathematically in
Sec. III. Next we perform extensive experiments with Poisson
degree distribution-based networks and explore the effects of
different parameters on the epidemic outbreak in Sec. IV. We
conclude the paper with a summary and discussion of future
work in Sec. V.

II. MODEL

We propose a three-layer network model, namely, the
heterogeneous disease-behavior-information (HDBI) trans-

FIG. 1. Structure of the three-layer network framework. The bot-
tom, middle, and top layers represent information diffusion, behavior
change, and disease transmission, respectively.

mission model, to incorporate information diffusion, behavior
change, and disease transmission. Here nodes may become
aware of the risk of getting infected and then change their
behavior by adopting self-protection, which will further affect
the disease transmission. We first introduce the details as
shown in Fig. 1. All layers in the model contain the same set
of nodes.

On the bottom layer, namely, the information diffusion
layer, edges represent the social contacts through which nodes
can share the disease-related information. The sources of the
information are the media and opinion leaders. Nodes are
divided into three classes on this layer: ignorants, spread-
ers, and stiflers, denoted by IG, SP, and SF , respectively.
Ignorants are those who are unaware of the disease-related
information and can become spreaders (with a probability α)
or stiflers (with a probability 1 − α) if at least one neighbor is
a spreader. Spreaders and stiflers are those who are aware of
the disease. We assume that the states of spreaders and stiflers
do not change for simplification. Once a spreader, the node
will keep spreading the information to all its neighbors in
each period. Stiflers, on the other hand, do not further spread
the information. We present the scheme mentioned above in
Fig. 2(c).

Each piece of information has an alarming level y, which
represents the transmissibility and severity of the disease con-
veyed through the media and opinion leaders. Each node on
the network has a personal risk perception, a constant pa-
rameter xi for node i. By comparing the values of y and xi,
we classify nodes into two sets: {i | y � xi}, overreacting, and
{i | y < xi}, underreacting. Overreacting nodes have a higher
probability to spread the information as

α =
{
αo, y � xi

αu, y < xi,
(1)

where 0 � αu < αo � 1.
On the middle layer, namely, the behavior change layer,

edges represent the social contacts through which a node can
observe other nodes’ states of behavior change. Nodes on
this layer have two states: adopted self-protection A and not
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FIG. 2. Illustration of the transitions between states on (a) the
disease transmission layer, (b) the behavior change layer, and (c)
the information diffusion layer. The ignorants are unaware of the
disease and the spreaders and stiflers have become aware of the
disease. Here α and p correspond, respectively, to αo and po for
overreacting nodes and αu and pu for underreacting nodes.

adopted self-protection N . Ignorants on the information diffu-
sion layer are always in the N state on the behavior change
layer because they are unaware of the risk. Spreaders and
stiflers have a tendency p to change the behavior by adopting
self-protection and overreacting nodes have higher behavior
change tendency than underreacting nodes as

p =
{

po, y � xi

pu, y < xi,
(2)

where 0 � pu < po � 1.
The probability of a node to change behavior is dependent

on not only p, but also the behavior of its neighbors. The
behavior change result can be determined in two steps. First,
we use the tendency p to determine if the node changes the
behavior independent of the social influence. If the node does
not change the behavior, then the model further checks its
neighbors’ states. If more than half of the nodes in its ego
network (the node and all its neighbors) have changed behav-
ior, then the node will be influenced to change as well. Letting
k denote the degree of a node and z denote the number of its
neighbors who have already changed behavior, we use ϕ to
summarize all neighbors’ states as

ϕ =
{

1, z > k − z + 1

0, z � k − z + 1.
(3)

The smallest integer value of z satisfying ϕ = 1 is � k+2
2 �; thus

the overall behavior change probability is

P = p + (1 − p)W, (4)

where W = P(ϕ = 1) = P(z � � k+2
2 �). We present the

scheme mentioned above in Fig. 2(b).
The top layer, the disease transmission layer, is modeled

by the generalized susceptible-exposed-infectious-recovered
(SEIR) model. Edges represent the physical contacts through
which diseases may be transmitted. The susceptible, exposed,
infectious, and recovered nodes are denoted by S, E , I , and R,
respectively. A susceptible node can be infected by either an
infectious node with an infection rate βI or an exposed node
with an infection rate βE . In the classic SEIR model, exposed
nodes are infected but do not develop symptoms or become in-
fectious. Here we allow the transmission from exposed nodes
to model the widely reported asymptomatically infected cases
in the COVID-19 pandemic and other similar disease out-
breaks [48–50]. If we set βE = 0, then this layer is identical to
the classic SEIR model. For simplicity and consistency with
previous work [51,52], the HDBI model ignores the transi-
tion from asymptomatically infected to recovered. However,
the model is flexible in incorporating various asymptomatic
scenarios.

The infection rate β (including βI and βE ) is a constant
value only related to the disease. The actual infection rate
could vary because of different self-protection outcomes.
Considering an edge connecting two nodes, we use n ∈
{0, 1, 2} to denote the number of nodes who have adopted
self-protection. The actual transition rate is ηnβ, where η is the
ineffectiveness of self-protection behavior. Here η ∈ [0, 1]; η

is 0 if the self-protection behavior is fully protective and 1 if
the self-protection behavior is entirely useless. An exposed
node has a transition rate σ to become infectious, so the
incubation period is 1/σ . An infectious node has a transition
rate γ to become recovered and immune to the same disease.
All possible state transitions are shown in Fig. 2(a).

III. THEORETICAL ANALYSIS

We adopt the mean-field approximation approach to an-
alyze the dynamics of the HDBI model. This technique
assumes independence among the random variables and helps
us study the complex stochastic model with a simpler model
[47,53,54]. For simplicity, we consider a three-layer network
with the same topological structure. We consider a network
of N nodes with a Poisson degree distribution P(k), where k
denotes the degree of a node.

On the information diffusion layer, ρIG(t ), ρSP(t ), and
ρSF(t ) denote the fraction of ignorants, spreaders, and stiflers
at time t , respectively. Thus, ρIG(t ) + ρSP(t ) + ρSF(t ) = 1.
An ignorant remains unaware only if none of its neighbors are
spreaders. Hence, the probability that an IG node with degree
k not being informed by any neighbor is [1 − ρSP(t )]k . Thus,
the transition rate for a randomly selected IG node being
informed by neighbors is

h(t ) = 1 −
kmax∑
k=0

P(k)[1 − ρSP(t )]k, (5)

where kmax denotes the maximum degree of the network.
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Assuming a standard normal distribution of the risk percep-
tion xi, we can calculate the fraction of overreacting nodes by
evaluating the corresponding cumulative distribution function
at the alarming level y, denoted by a. Thus, those who are
aware of the disease will become spreaders with a proba-
bility aαo + (1 − a)αu or become stiflers with a probability
a(1 − αo) + (1 − a)(1 − αu).

On the behavior change layer, letting ρA(t ) denote the
fraction of nodes having adopted self-protection at time t , then
the probability for a node with degree k to choose to protect
itself because of the social influence from neighbors is

Wk =
{

0 k = 0, 1∑k
b=�(k+2)/2�

(k
b

)
[ρA(t )]b[1 − ρA(t )]k−b otherwise,

which is equal to the probability that at least � k+2
2 � neighbors

have adopted self-protection; thus the probability of changing
behavior due to the social influence from neighbors for a
randomly selected node is W = ∑kmax

k=0 P(k)Wk . Therefore, the
probability of changing behavior is po + (1 − po)W for over-
reacting nodes and pu + (1 − pu)W for underreacting nodes
[according to Eq. (4)]. In addition, ignorants will never adopt
self-protection; thus the fraction of nodes who might adopt be-
havior change at time t + 1 is ρSP(t + 1) + ρSF(t + 1). So we
can get the fraction of nodes having adopted self-protection at
time t + 1 as follows:

ρA(t + 1) = [ρSP(t + 1) + ρSF(t + 1)]{apo + (1 − a)pu

+ [a(1 − po) + (1 − a)(1 − pu)]W }, (6)

Therefore,

ρN (t + 1) = 1 − ρA(t + 1), (7)

which is the fraction of nodes having not adopted self-
protection at time t + 1.

On the disease transmission layer, the fraction of nodes in
one of the four health states at time t is denoted by ρS (t ),
ρE (t ), ρI (t ), and ρR(t ); ρS (t ) + ρE (t ) + ρI (t ) + ρR(t ) = 1.
For a single edge between a susceptible node and an infected
one, the probability that both have adopted self-protection
is [ρA(t )]2 and the corresponding actual transition rate is
η2β. The probability that both nodes have not adopted
self-protection is [1 − ρA(t )]2 and the corresponding actual
transition rate is η0β. The probability that only one of them
has adopted self-protection is 1 − [ρA(t )]2 − [1 − ρA(t )]2 and
the corresponding actual transition rate is η1β. Thus, the ac-
tual infection rate l (β ) is

l (β ) = [ρA(t )]2η2β + [1 − ρA(t )]2η0β + {1 − [ρA(t )]2

− [1 − ρA(t )]2}η1β = β[1 + (η − 1)ρA(t )]2. (8)

For a node of state I , the infection propagates to its S
neighbors with probability lI = l (βI ). For an exposed node
who is asymptomatically infected, the corresponding proba-
bility lE = l (βE ). For a node of degree k with bE neighbors
in states E and bI neighbors in state I , the probability of be-
ing infected is qbE ,bI = 1 − (1 − lE )bE (1 − lI )bI , where (1 −
lE )bE (1 − lI )bI is the probability that the node is not infected
by any infected neighbors. Thus, the transition probability for

FIG. 3. (a) Comparison of the Monte Carlo simulation and
the mean-field approximation results of the relationship between
the fraction of susceptible nodes at the stationary state ρS (∞) and
the fraction of overreacting nodes a and (b) the relationship between
the fraction of spreaders at the stationary state ρSP(∞) and a. The
parameters are βI = 0.5, βE = 0, σ = 0.8, γ = 0.5, η = 0.1, αo =
po = 0.99, and αu = pu = 0.01.

a susceptible node being infected at time t is

c(t ) =
kmax∑
k=0

P(k)
k∑

bE =0

k−bE∑
bI =0

rk,bE ,bI qbE ,bI , (9)

where

rk,bE ,bI =
(

k

bE

)(
k − bE

bI

)
{[ρE (t )]bE [ρI (t )]bI

× [1 − ρE (t ) − ρI (t )]k−bE −bI } (10)

represents the probability of a node with degree k having bE

neighbors in state E and bI neighbors in state I at time t .
Then we can obtain the following equations to describe the
dynamics on the disease transmission layer and the informa-
tion diffusion layer in Fig. 1:

ρS (t + 1) − ρS (t ) = −c(t )ρS (t ),

ρE (t + 1) − ρE (t ) = −σρE (t ) + c(t )ρS (t ),

ρI (t + 1) − ρI (t ) = −γ ρI (t ) + σρE (t ),

ρR(t + 1) − ρR(t ) = γ ρI (t ),

ρIG(t + 1) − ρIG(t ) = −h(t )ρIG(t ),

ρSP(t + 1) − ρSP(t ) = h(t )ρIG(t )[aαo + (1 − a)αu],

ρSF(t + 1) − ρSF(t ) = h(t )ρIG(t )[a(1 − αo)

+ (1 − a)(1 − αu)]. (11)

The dynamics on the behavior change layer are described
by Eqs. (6) and (7). Information diffusion influences the
behavior change by determining the fraction of individuals
who are being aware of the disease and adopting self-
protection accordingly [from Eq. (6)]. Disease transmission is

042314-4



EFFECT OF HETEROGENEOUS RISK PERCEPTION ON … PHYSICAL REVIEW E 102, 042314 (2020)

FIG. 4. Full a-βI phase diagrams of the fraction of susceptible nodes at the stationary state ρS (∞) for different values of σ and γ without
asymptomatically infected cases, where η = 0.1, αo = po = 0.99, and αu = pu = 0.01. The values of σ and γ are set as follows: (a) σ = 0.8
and γ = 0.2, (b) σ = 0.2 and γ = 0.2, and (c) σ = 0.2 and γ = 0.8.

subsequently affected by changing the actual infection rate
based on the outcome of behavior change [from Eq. (8)].

IV. RESULTS

We perform extensive Monte Carlo simulations to validate
the mean-field approximation results obtained by Eqs. (11).
For simplicity, we assume that αo = po = 0.99 and αu =
pu = 0.01, indicating an extremely high probability to inform
others and to change behavior for overreacting nodes and a
much lower probability for underreacting nodes.

We present the comparison between the Monte Carlo sim-
ulation and the mean-field approximation results in Fig. 3 for
a three-layer network of 2000 nodes with a mean degree of 15.
We adopt the synchronous updating method [55] in the Monte
Carlo simulations to mimic the discrete-time transmission
processes in our model. All nodes are selected to update their
states simultaneously in each time step. The time step is set
as 1. At the beginning of each simulation, we randomly select
a node to be the initially infected node and another to be the
first spreader. The updating process stops when there is no
infected node in the network. Each point in Fig. 3 is obtained
by averaging 50 Monte Carlo simulations. As illustrated in
Fig. 3, we observe a high R2 of 0.990 for Fig. 3(a) [the fraction
of susceptible nodes at the stationary state ρS (∞)], and 0.994
for Fig. 3(b) [the fraction of spreaders at the stationary state
ρSP(∞)]. This finding validates that Eqs. (11) can effectively

capture the dynamics of the model. Here the stationary state
refers to the state at t → ∞. Moreover, the fraction of over-
reacting nodes a has a linear effect on ρSP(∞) but a sigmoid
effect on ρS (∞).

We examine the degree to which the overreacting nodes
influence the disease dynamics under different situations. An-
alytical solutions for Eqs. (11) are difficult to obtain. Thus, full
phase diagrams are used to illustrate the results. We adopt the
same three-layer network mentioned in the aforementioned
Monte Carlo simulations.

First, we focus on the diseases without asymptomatically
infected cases (i.e., βE = 0). The fraction of susceptible nodes
at the stationary state ρS (∞) is shown in Fig. 4, concerning
the infection rate βI and the fraction of overreacting nodes
a. When βE = 0, the disease transmission layer is essentially
an SEIR model. Given fixed values of a, the infection rate
βI has a reverse-sigmoid effect on ρS (∞), which is similar
to the SIR and SEIR models [56,57]. Similar to Fig. 3, a
has a sigmoid effect on ρS (∞) as shown in Fig. 4. We find
that ρS (∞) generally has three phases: When a is small,
ρS (∞) is close to 0, and when a is large, ρS (∞) is close
to 1. A threshold triggers the rapid increase in ρS (∞). The
exact value of the threshold cannot be analytically obtained.
This indicates that by increasing the fraction of overreacting
nodes through highlighting the transmissibility and severity
of the disease, we can largely prevent the disease outbreak.
As long as the fraction of overreacting nodes reaches the

FIG. 5. Full a-βI phase diagrams of the fraction of susceptible nodes at the stationary state ρS (∞) for different values of βE , where η = 0.1,
αo = po = 0.99, αu = pu = 0.01, σ = 0.2, and γ = 0.2. The value of βE is set as follows: (a) βE = 0.2βI , (b) βE = 0.4βI , and (c) βE = 0.8βI .
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FIG. 6. Full a-βI phase diagrams of the fraction of susceptible nodes at the stationary state ρS (∞) for different values of σ and γ with
asymptomatically infected cases, where βE = 0.5βI , η = 0.1, αo = po = 0.99, and αu = pu = 0.01. The values of σ and γ are set as follows:
(a) σ = 0.8 and γ = 0.2, (b) σ = 0.2 and γ = 0.2, and (c) σ = 0.2 and γ = 0.8.

threshold, further highlighting this fraction is not necessary.
This finding shows that the disease outbreak is preventable
when the media and opinion leaders are playing effective roles
of the whistleblower.

More specifically, when βI is extremely small, all possible
values of a yield the fully prevented scenario (blue). As βI

increases, the range of a rapidly increases and yields the full
outbreak scenario (red). When βI keeps increasing, the range
of a yielding a full outbreak scenario gradually increases.
We define the critical value of βI as the value leading to the
basic reproduction number R0 = βI/γ = 1, below which the
epidemic is under control. As shown in Fig. 7(a), where a is
fixed, the higher the recovery rate γ , the larger the critical
value of βI . Given the same βI , we can observe an increase
in ρS (∞) with a longer incubation period 1/σ or a smaller
R0 (larger γ ) [see Fig. 7(a)]. It might be because a longer
incubation period can provide more time for the awareness
to be transmitted among people and a smaller R0 means a less
transmissible disease. Thus, a smaller fraction of overreacting
nodes is needed to prevent the full outbreak.

Second, we consider the diseases with asymptomatically
infected cases. Given that not all exposed individuals are
asymptomatically infected and the asymptomatically infected

cases are often not more infectious than symptomatically in-
fected cases [48–50,58], we define the asymptomatic infection
rate as βE = μβI , where μ ∈ (0, 1). We report the fraction of
susceptible nodes at the stationary state ρS (∞) in Fig. 5 where
μ ∈ {0.2, 0.4, 0.8}. The values of other parameters are the
same as those in Fig. 4(b), where the asymptomatic infection
is not considered. We find that when asymptomatic infections
exist, the range of a yielding the full outbreak scenario is
larger and the effect becomes more significant with a larger
value of μ. In the extreme case when μ → 1, the disease
transmission layer essentially becomes an SIR model with
longer infectious period than the original SEIR model. These
results indicate that asymptomatic infections make it harder,
sometimes even impossible, to control the epidemic by only
increasing the value of a [Fig. 5(c)].

Furthermore, we explore the effects of overreacting nodes
with various parameter settings on the disease transmission
layer (representing different diseases) in Fig. 6. Compared
with the cases where βE = 0, the existence of asymptomatic
infections reduces the critical values of βI and the values
of ρS (∞), indicating that epidemic control is more difficult
(see Fig. 7). With the existence of asymptomatically infected
cases, R0 = βI/γ + βE/σ [59]. We find that not only the

FIG. 7. Fraction of susceptible nodes at the stationary state ρS (∞) with respect to βI for different values of σ and γ , where a = 0.4,
η = 0.1, αo = po = 0.99, and αu = pu = 0.01. The value of βE is set as follows: (a) βE = 0 and (b) βE = 0.5βI .
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FIG. 8. Full αo-po phase diagrams of the fraction of susceptible nodes at the stationary state ρS (∞) for different values of a, where βI = 0.5,
βE = 0, σ = γ = 0.2, and η = 0.1. The value of a is set as follows: (a) a = 0.1, (b) a = 0.5, and (c) a = 0.8.

higher recovery rate γ but also the shorter incubation period
1/σ can increase the critical value of βI . A smaller R0 does not
always lead to a larger ρS (∞) in such cases. As illustrated in
Fig. 7(b), given the same βI , when γ increases to 0.8 from
0.2, R0 drops to 1.5 from 3. Thus, ρS (∞) increases for a
less transmissible disease. However, when σ increases to 0.8
(shorter incubation period), R0 decreases to 2.25 from 3 (less
transmissible). Counterintuitively, ρS (∞) decreases to 0.05
from 0.096. That is because a larger σ not only leads to a
smaller R0 but also indicates a shorter incubation time for the
awareness to spread out; therefore, fewer people are aware and
protected.

Third, we further clarify the effect of overreacting nodes on
epidemic control for different values of α and p in Fig. 8 (for
grayscale versions of Figs. 4–6 and 8, see the Supplemental
Material [60]). For simplicity, we assume αu = 1

2αo and pu =
1
2 po. Fewer nodes will be infected when α and p increase.
When the value of a increases, the epidemic is easier to control
(a larger blue region in the figure). A small transitioning space
occurs between controlled (blue) and outbreak (red) scenarios,
indicating that the epidemic either can be well contained or
will likely infect the majority of people in the population.

Finally, we examine the fraction of susceptible nodes at
the stationary state ρS (∞) in two scenarios: with and without
social influence on behavior change. Here the scenario with-
out social influence is modeled by setting W = 0 regardless
of the behavior of the node’s neighbors. We consider two
diseases with different parameter settings in Fig. 9. With
the social influence on behavior change, we can achieve the
fully controlled result [ρS (∞) → 1] with a lower value of a
for both diseases, indicating that we can effectively utilize
the social influence among people to enhance the disease
prevention.

To further clarify such a significant effect on ρS (∞), we
focus on one specific disease setting mentioned in Fig. 9 and
analyze the fraction of nodes in states S and A [ρS (t ) and
ρA(t )] and the probability of changing behavior due to the
social influence from neighbors (W ) over time in Fig. 10.
Here we consider two scenarios, where a = 0.2 and 0.4, re-
spectively. We observe that W increases rapidly over time and
reaches an equilibrium state for both cases. Larger a leads to
a higher value of W at the equilibrium state. Assuming that
the information diffusion layer reaches the equilibrium state
at time tI and W reaches the equilibrium state at time tW and

setting T = max{tI , tW }, we obtain

ρA(T ) = [ρSP(T ) + ρSF(T )]{apo + (1 − a)pu

+ [a(1 − po) + (1 − a)(1 − pu)]W }
= [ρSP(T ) + ρSF(T )][apo + (1 − a)pu]

+ [ρSP(T ) + ρSF(T )][a(1 − po)

+ (1 − a)(1 − pu)]W (12)

from Eq. (6), indicating that the fraction of people who have
adopted self-protection, ρA(T ), can be increased with the help
of social influence. In addition,

ρIG(T ) = ρIG(T )[1 − h(T )], (13)

which indicates that ρIG(T ) = 0 or h(T ) = 0; h(T ) = 0 only
if ρSP(T ) = 0 according to Eq. (5). We can derive that if
k[aαo + (1 − a)αu] > 1, where k is the mean degree of the
network, then information can always spread out [ρSP(T ) >

0] [41]. In such cases, h(T ) �= 0, and thus ρIG(T ) = 0, indi-
cating that ρSP(T ) + ρSF(T ) = 1. Therefore, Eq. (12) can be
simplified as

ρA(T ) = apo+(1 − a)pu+[a(1 − po) + (1 − a)(1 − pu)]W
(14)

if k[aαo + (1 − a)αu] > 1.

FIG. 9. Comparison of the fraction of susceptible nodes at the
stationary state ρS (∞) with respect to a for two diseases, where
η = 0.1, αo = po = 0.99, αu = pu = 0.01, βI = 0.5, and βE = 0.
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FIG. 10. Effect of social influence on the epidemic with different fractions of overreacting nodes. (a) and (c) Probability of changing
behavior due to the social influence from neighbors (W ) at time t . (b) and (d) Fraction of susceptible nodes ρS (t ) and fraction of nodes having
adopted self-protection ρA(t ) over time, with (a) and (b) a = 0.2 and (c) and (d) a = 0.4. The other parameters are βI = 0.5, βE = 0, σ = 0.2,
γ = 0.8, η = 0.1, αo = po = 0.99, and αu = pu = 0.01.

When a = 0.2, the value of W at t = T is small, indicating
that social influence has little effect on the behavior change. In
such cases, k[aαo + (1 − a)αu] = 3.09 > 1 and then ρA(T ) ≈
apo + (1 − a)pu = 0.206, which is small, indicating that the
epidemic cannot be well contained. However, when a = 0.4,
W reaches 1 rapidly and k[aαo + (1 − a)αu] = 6.03 > 1; then
ρA(T ) = 1. Thus, the actual infection rate l (β ) = βη2 is close
to 0 for small η according to Eq. (8). As a result, the transition
probability for a susceptible node being infected is c(T ) → 0
according to Eq. (9), indicating that the epidemic is approach-
ing the end. Since ρS (t ) is decreasing over time, the earlier
c(t ) becomes 0, the fewer people are infected. Therefore, the
fraction of susceptible nodes tends to remain high since t = T
with the existence of social influence, which happens earlier
than without social influence [Fig. 10(d)]. These results indi-
cate that social influence on behavior change can significantly
accelerate behavior change and lead to a smaller epidemic
outbreak.

V. CONCLUSION

In this study we have developed a heterogeneous disease-
behavior-information transmission model to characterize the
heterogeneous processes of information diffusion, behavior
change, and disease transmission on social networks. We
adopted the mean-field approximation approach to obtain ana-
lytical results and perform extensive Monte Carlo simulations

to examine the patterns of disease transmission in the presence
of information diffusion and behavior change among people.
We found that (a) disease awareness plays a central role in
preventing the disease outbreak, (b) a reasonable fraction of
overreacting nodes is needed to effectively control the epi-
demic, and (c) a smaller basic reproduction number R0 always
leads to a smaller epidemic outbreak without symptomatically
infected cases. This scenario would have different effects with
asymptomatically infected cases because a smaller R0 might
result from a shorter incubation time. As a result, people have
a shorter period to become aware and adopt self-protection.
We also found that (d) social influence on behavior change
can significantly decrease the outbreak size.

In practice, in the absence of vaccines and stringent control
measures, the epidemic can still be well contained when peo-
ple are aware of the disease and adopt proper self-protection.
The media and opinion leaders play a key role in people’s
disease awareness. If transmissibility and severity are under-
stated by them, then more people will remain underreacting
and thus will be infected eventually. However, if they state
unreasonably high transmissibility and severity of the disease,
the “crying wolf” effect could result in people losing confi-
dence in the public health system. Further research is needed
to identify the optimal degree of transmissibility and severity
stated by the media and opinion leaders. This research has
limitations. In the current model, we assume an unchanged
topological structure of the multiplex network, but uninfected
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nodes might break connections with infected nodes and form
new connections with other uninfected nodes to avoid being
infected during epidemics. Incorporating the adaptive network
schemes into the current model by introducing a rewiring
probability for uninfected nodes is left for future work. In
the COVID-19 context, many countries have seen protests
against the lockdown measures, indicating that stiflers could
even become another type of competing spreaders that influ-
ence ignorants to become stiflers. Modeling the competing

behaviors during epidemics is an interesting topic for further
exploration.

ACKNOWLEDGMENTS

This work was supported in part by the National Nat-
ural Science Foundation of China (Grants No. 72042018,
No. 71621002, and No. 71972164), the Ministry of Science
and Technology (Grant No. 2016QY02D0305), and Chinese
Academy of Sciences (Grant No. ZDRW-XH2017-3).

[1] WHO, Protect yourself and others, http://www.emro.who.int/
health-topics/corona-virus/protect-yourself-and-others.html
(WHO, Cairo, 2020).

[2] N. Ferguson, Nature (London) 446, 733 (2007).
[3] G. J. Rubin, R. Amlôt, L. Page, and S. Wessely, BMJ 339,

b2651 (2009).
[4] J. T. F. Lau, X. Yang, H. Tsui, and J. H. Kim, J. Epidemiol.

Commun. Health 57, 864 (2003).
[5] T. Philipson, J. Hum. Resour. 31, 611 (1996).
[6] K. Macintyre, L. Brown, and S. Sosler, AIDS Educ. Prev. 13,

160 (2001).
[7] S. Collinson and J. M. Heffernan, BMC Public Health 14, 376

(2014).
[8] J. J. Van Bavel, K. Baicker, P. S. Boggio, V. Capraro, A.

Cichocka, M. Cikara, M. J. Crockett, A. J. Crum, K. M.
Douglas, J. N. Druckman et al., Nat. Hum. Behav. 4, 460
(2020).

[9] L. Li, Q. Zhang, X. Wang, J. Zhang, T. Wang, T. Gao, W. Duan,
K. K. Tsoi, and F. Wang, IEEE Trans. Comput. Soc. Syst. 7, 556
(2020).

[10] N. Perra, B. Gonçalves, R. Pastor-Satorras, and A. Vespignani,
Sci. Rep. 2, 469 (2012).

[11] Z. Wang, H. Zhang, and Z. Wang, Chaos Soliton. Fractal. 61, 1
(2014).

[12] S. Ruan and W. Wang, J. Differ. Equations 188, 135 (2003).
[13] Z. Wang, M. A. Andrews, Z.-X. Wu, L. Wang, and C. T. Bauch,

Phys. Life Rev. 15, 1 (2015).
[14] K. A. Kabir, K. Kuga, and J. Tanimoto, Chaos Soliton. Fractal.

132, 109548 (2020).
[15] D. Han, Q. Shao, D. Li, and M. Sun, Appl. Math. Comput. 369,

124894 (2020).
[16] D. Guo, S. Trajanovski, R. van de Bovenkamp, H. Wang, and P.

Van Mieghem, Phys. Rev. E 88, 042802 (2013).
[17] E. P. Fenichel, C. Castillo-Chavez, M. G. Ceddia, G. Chowell,

P. A. G. Parra, G. J. Hickling, G. Holloway, R. Horan, B. Morin,
C. Perrings et al., Proc. Natl. Acad. Sci. USA 108, 6306 (2011).

[18] S. Collinson, K. Khan, and J. Heffernan, PLoS One 10,
e0141423 (2015).

[19] S. Funk, E. Gilad, C. Watkins, and V. A. Jansen, Proc. Natl.
Acad. Sci. USA 106, 6872 (2009).

[20] T. Gross, C. J. D. D’Lima, and B. Blasius, Phys. Rev. Lett. 96,
208701 (2006).

[21] Q. Wu, X. Fu, M. Small, and X.-J. Xu, Chaos 22, 013101
(2012).

[22] F. H. Chen, Math. Biosci. 217, 125 (2009).
[23] M. Kurant and P. Thiran, Phys. Rev. Lett. 96, 138701 (2006).

[24] M. Kivelä, A. Arenas, M. Barthelemy, J. P. Gleeson, Y. Moreno,
and M. A. Porter, J. Complex Netw. 2, 203 (2014).

[25] C. Granell, S. Gómez, and A. Arenas, Phys. Rev. Lett. 111,
128701 (2013).

[26] Y. Pan and Z. Yan, Physica A 491, 45 (2018).
[27] Q. Guo, X. Jiang, Y. Lei, M. Li, Y. Ma, and Z. Zheng, Phys.

Rev. E 91, 012822 (2015).
[28] K. A. Kabir, K. Kuga, and J. Tanimoto, Chaos Soliton. Fractal.

119, 118 (2019).
[29] L. Mao, Appl. Geogr. 50, 31 (2014).
[30] C. Granell, S. Gómez, and A. Arenas, Phys. Rev. E 90, 012808

(2014).
[31] N. Perra, D. Balcan, B. Gonçalves, and A. Vespignani, PLoS

ONE 6, e23084 (2011).
[32] R. Liu, J. Wu, and H. Zhu, Comput. Math. Methods Med. 8, 153

(2007).
[33] A. Wang and Y. Xiao, Nonlinear Anal.: Hybrid Syst. 11, 84

(2014).
[34] P. Dubey, B. Dubey, and U. Dubey, in BIOMAT 2015 : Pro-

ceedings of the International Symposium on Mathematical
and Computational Biology, Roorkee, 2015, edited by R. P.
Mondaini (World Scientific, Singapore, 2015).

[35] E. M. Cramer, H. Song, and A. M. Drent, Comput. Hum. Behav.
64, 739 (2016).

[36] P. Song and Y. Xiao, J. Math. Biol. 76, 1249 (2018).
[37] P. Song and Y. Xiao, Bull. Math. Biol. 81, 1582 (2019).
[38] L. Sjôberg, Risk Anal. 20, 1 (2000).
[39] A. A. Wahlberg and L. Sjoberg, J. Risk Res. 3, 31 (2000).
[40] R. S. B. Renner, M. Gamp, and H. T. Schupp, in International

Encyclopedia of the Social and Behavioral Sciences, 2nd ed.,
edited by J. D. Wright (Elsevier, Oxford, 2015), pp. 702–709.

[41] Z. Ruan, J. Wang, Q. Xuan, C. Fu, and G. Chen, Phys. Rev. E
98, 022308 (2018).

[42] Z. Ruan, M. Tang, and Z. Liu, Phys. Rev. E 86, 036117
(2012).

[43] N. Zhu, D. Zhang, W. Wang, X. Li, B. Yang, J. Song, X. Zhao,
B. Huang, W. Shi, R. Lu et al., New Engl. J. Med. 382, 727
(2020).

[44] C. Wang, P. W. Horby, F. G. Hayden, and G. F. Gao, Lancet
395, 470 (2020).

[45] G. J. Asmundson and S. Taylor, J. Anxiety Disord. 70, 102196
(2020).

[46] D. Kai, G.-P. Goldstein, A. Morgunov, V. Nangalia, and A.
Rotkirch, arXiv:2004.13553.

[47] F. D. Sahneh, C. Scoglio, and P. Van Mieghem, IEEE/ACM
Trans. Netw. 21, 1609 (2013).

042314-9

http://www.emro.who.int/health-topics/corona-virus/protect-yourself-and-others.html
https://doi.org/10.1038/446733a
https://doi.org/10.1136/bmj.b2651
https://doi.org/10.1136/jech.57.11.864
https://doi.org/10.2307/146268
https://doi.org/10.1521/aeap.13.2.160.19736
https://doi.org/10.1186/1471-2458-14-376
https://doi.org/10.1038/s41562-020-0884-z
https://doi.org/10.1109/TCSS.2020.2980007
https://doi.org/10.1038/srep00469
https://doi.org/10.1016/j.chaos.2014.01.004
https://doi.org/10.1016/S0022-0396(02)00089-X
https://doi.org/10.1016/j.plrev.2015.07.006
https://doi.org/10.1016/j.chaos.2019.109548
https://doi.org/10.1016/j.amc.2019.124894
https://doi.org/10.1103/PhysRevE.88.042802
https://doi.org/10.1073/pnas.1011250108
https://doi.org/10.1371/journal.pone.0141423
https://doi.org/10.1073/pnas.0810762106
https://doi.org/10.1103/PhysRevLett.96.208701
https://doi.org/10.1063/1.3673573
https://doi.org/10.1016/j.mbs.2008.11.005
https://doi.org/10.1103/PhysRevLett.96.138701
https://doi.org/10.1093/comnet/cnu016
https://doi.org/10.1103/PhysRevLett.111.128701
https://doi.org/10.1016/j.physa.2017.08.082
https://doi.org/10.1103/PhysRevE.91.012822
https://doi.org/10.1016/j.chaos.2018.12.017
https://doi.org/10.1016/j.apgeog.2014.02.005
https://doi.org/10.1103/PhysRevE.90.012808
https://doi.org/10.1371/journal.pone.0023084
https://doi.org/10.1080/17486700701425870
https://doi.org/10.1016/j.nahs.2013.06.005
https://doi.org/10.1016/j.chb.2016.07.049
https://doi.org/10.1007/s00285-017-1173-y
https://doi.org/10.1007/s11538-019-00586-0
https://doi.org/10.1111/0272-4332.00001
https://doi.org/10.1080/136698700376699
https://doi.org/10.1103/PhysRevE.98.022308
https://doi.org/10.1103/PhysRevE.86.036117
https://doi.org/10.1056/NEJMoa2001017
https://doi.org/10.1016/S0140-6736(20)30185-9
https://doi.org/10.1016/j.janxdis.2020.102196
http://arxiv.org/abs/arXiv:2004.13553
https://doi.org/10.1109/TNET.2013.2239658


YE, ZHANG, RUAN, CAO, XUAN, AND ZENG PHYSICAL REVIEW E 102, 042314 (2020)

[48] A. Wilder-Smith, M. D. Teleman, B. H. Heng, A. Earnest, A. E.
Ling, and Y. S. Leo, Emerg. Infect. Dis. 11, 1142 (2005).

[49] C. Rothe, M. Schunk, P. Sothmann, G. Bretzel, G. Froeschl, C.
Wallrauch, T. Zimmer, V. Thiel, C. Janke, W. Guggemos, M.
Seilmaier, C. Drosten, P. Vollmar, K. Zwirglmaier, S. Zange,
R. Wölfel, and M. Hoelscher, New Engl. J. Med. 382, 970
(2020).

[50] J. Papenburg, M. Baz, M.-È. Hamelin, C. Rhéaume, J.
Carbonneau, M. Ouakki, I. Rouleau, I. Hardy, D. Skowronski,
M. Roger et al., Clin. Infect. Dis. 51, 1033 (2010).

[51] C. Hou, J. Chen, Y. Zhou, L. Hua, J. Yuan, S. He, Y. Guo, S.
Zhang, Q. Jia, C. Zhao et al., J. Med. Virol. 92, 841 (2020,
special issue on new coronavirus (2019-nCoV or SARS-CoV-2)
and the outbreak of the respiratory illness (COVID-19): Part-IV,
edited by G. Luo and S.-J. Gao.

[52] J. T. Wu, K. Leung, and G. M. Leung, Lancet 395, 689 (2020).

[53] A.-L. Barabási, R. Albert, and H. Jeong, Physica A 272, 173
(1999).

[54] C. Li, R. van de Bovenkamp, and P. Van Mieghem, Phys. Rev.
E 86, 026116 (2012).

[55] P. G. Fennell, S. Melnik, and J. P. Gleeson, Phys. Rev. E 94,
052125 (2016).

[56] L. J. Allen and A. M. Burgin, Math. Biosci. 163, 1
(2000).

[57] H. W. Hethcote, SIAM Rev. 42, 599 (2000).
[58] S. Lee, T. Kim, E. Lee, C. Lee, H. Kim, H. Rhee, S. Y. Park,

H.-J. Son, S. Yu, J. W. Park et al., JAMA Intern. Med. (2020),
doi:10.1001/jamainternmed.2020.3862.

[59] G. Oliveira, arXiv:2004.14780.
[60] See Supplemental Material at http://link.aps.org/supplemental/

10.1103/PhysRevE.102.042314 for grayscale versions of
Figs. 4–6 and 8.

042314-10

https://doi.org/10.3201/eid1107.041165
https://doi.org/10.1056/NEJMc2001468
https://doi.org/10.1086/656582
https://doi.org/10.1002/jmv.25827
https://doi.org/10.1016/S0140-6736(20)30260-9
https://doi.org/10.1016/S0378-4371(99)00291-5
https://doi.org/10.1103/PhysRevE.86.026116
https://doi.org/10.1103/PhysRevE.94.052125
https://doi.org/10.1016/S0025-5564(99)00047-4
https://doi.org/10.1137/S0036144500371907
https://doi.org/10.1001/jamainternmed.2020.3862
http://arxiv.org/abs/arXiv:2004.14780
http://link.aps.org/supplemental/10.1103/PhysRevE.102.042314

