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Spontaneous symmetry breaking of active phase in coevolving nonlinear voter model
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50-370 Wrocław, Poland

2Center of Excellence for Complex Systems Research, Faculty of Physics, Warsaw University of Technology, ul. Koszykowa 75, 00-662
Warsaw, Poland

3ITMO University, 49 Kronverkskiy av., 197101 Saint Petersburg, Russia

(Received 21 May 2020; accepted 6 October 2020; published 29 October 2020)

We study an adaptive network model driven by a nonlinear voter dynamics. Each node in the network
represents a voter and can be in one of two states that correspond to different opinions shared by the voters.
A voter disagreeing with its neighbor’s opinion may either adopt it or rewire its link to another randomly chosen
voter with any opinion. The system is studied by means of the pair approximation in which a distinction between
the average degrees of nodes in different states is made. This approach allows us to identify two dynamically
active phases: a symmetric and an asymmetric one. The asymmetric active phase, in contrast to the symmetric
one, is characterized by different numbers of nodes in the opposite states that coexist in the network. The
pair approximation predicts the possibility of spontaneous symmetry breaking, which leads to a continuous
phase transition between the symmetric and the asymmetric active phases. In this case, the absorbing transition
occurs between the asymmetric active and the absorbing phases after the spontaneous symmetry breaking.
Discontinuous phase transitions and hysteresis loops between both active phases are also possible. Interestingly,
the asymmetric active phase is not displayed by the model where the rewiring occurs only to voters sharing the
same opinion, studied by other authors. Our results are backed up by Monte Carlo simulations.
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I. INTRODUCTION

A feedback loop between the network topology and dy-
namical processes that occur between nodes is common in
real-world networks [1–3]. The topology impacts the evo-
lution of node states, which in turn influence the way the
structure itself is modified. This feedback is a signature of
networks that are called adaptive or coevolutionary [2]. Adap-
tive networks are especially relevant for social systems, where
they can model phenomena such as the emergence of consen-
sus and polarization, opinion formation, group fragmentation,
or language diversity [4–7]. These coevolutionary models rely
on two basic mechanisms. One accounts for the changes in the
node states, whereas the other accounts for the link rewiring.
Both of them may be implemented in various ways. The voter
model, as a minimalist model of the opinion formation process
[8,9], provides the basis for the evolution of state variables
in many adaptive networks that represent social interactions
[5,10–30]. Other dynamics used in that context involve the
nonlinear voter model [31–35], the Deffuant model [6,36], the
Axelrod model [4,7,37], or the q-state Potts model [38]. Inter-
actions between nodes can also be defined by a Hamiltonian
that depends on the topological properties of a social network
[39].

When it comes to the link rewiring mechanisms, most
of them reflect the effect known in sociology as homophily,
which is the tendency of individuals to bond with others who
are similar to themselves [4,40]. Under this paradigm, nodes

may remove their links to disagreeing neighbors and form new
ones to randomly chosen nodes in the same states [10,12,14–
18,21,22,24–27,29–35]. Heterophily, as the opposite effect to
homophily, is modeled as a preference to connect to indi-
viduals with distinct traits [12]. Another approach is not to
distinguish between states at all so that links can be rewired to
any nodes of the network [5,6,17,19,23,29,30,34,36]. Addi-
tional modifications such as link removal [11,13,34], triadic
closure [7,23,28,32,37], or different preferential attachment
schemes [7,28,37] are considered as well in order to capture
some properties of real networks.

The competition between these two mechanisms, which
are responsible for the changes in the node states and the
network structure, in adaptive networks leads frequently to a
fragmentation transition, where the network splits into smaller
components. One of the simplest models that displays this
kind of behavior is a coevolving voter model [26]. Being
analytically tractable, it has played a fundamental role in
understanding the process of network fragmentation [14,26].
This work extends the study in this area via an analysis of one
of its nonlinear extensions.

In Ref. [17], two coevolving voter models that are different
only in the rewiring mechanisms were compared. In the model
with the rewire-to-same mechanism, new links can be estab-
lished only between nodes in the same states, as in Ref. [26],
whereas with the rewire-to-random mechanism, new links can
be established between all nodes regardless of their states,
as in Ref. [5]. This small difference in the dynamics led to
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different transition types exhibited by the models in finite
systems [17]. However, later on, more research attention was
directed toward the model with the rewire-to-same mecha-
nism, in which the role of nonlinear interactions between
voters has been studied on single-layer [31] and two-layer
[33] networks. The introduction of this kind of nonlinearity
into the model resulted in the appearance of new phases and
fragmentation transitions [31,33]. In this regard, the analy-
sis of the nonlinear version of the coevolving voter model
with the rewire-to-random mechanism seems to be interesting
not only for comparative but also cognitive reasons since it
may potentially reveal some other phenomena related to the
network fragmentation. In this work, we carry out such an
analysis.

The coevolving nonlinear voter model with the rewire-
to-random mechanism is studied by means of the pair
approximation in which we distinguish between the average
degrees of nodes in different states. In the analysis of adaptive
systems, it is important to make such a distinction. This is
because the feedback loop between the node states and the
network structure makes these average node degrees different
from each other in general [5,24,27]. Since this formalism
allows for more accurate model characterization, it may also
expose some additional properties of the system. In fact,
it has already contributed to the discovery of a nontrivial
conservation law in the coevolving voter model with the
rewire-to-same mechanism [24]. Nevertheless, when it comes
to the nonlinear extensions of coevolving voter models, none
of them has been studied within this approach so far.

In coevolving nonlinear voter models, the degree of non-
linearity is measured by the parameter q, which determines
the functional form of interaction probabilities between nodes
[31–34]. The same kind of nonlinearity has been consid-
ered in various nonlinear q-voter models on static structures
[41–45]; a more extensive review can be found in Ref. [9]. For
values 0 < q � 1, our calculations reveal qualitative differ-
ences between the coevolving nonlinear voter model with the
rewire-to-random mechanism, studied herein, and its rewire-
to-same counterpart, studied in Ref. [31]. Therefore, we focus
our analysis on this specific range of the parameter.

In the thermodynamic limit, the fragmentation transition in
the coevolving nonlinear voter model with the rewire-to-same
mechanism occurs between dynamically active and absorbing
phases [31]. The active phase is characterized by the presence
of active links that connect nodes in different states and drive
the dynamics. In this phase, the network remains connected;
however, its structure and the states of the nodes are constantly
changing. In the absorbing phase, there are no active links,
and the network splits into two components, each of which
is composed of nodes in the same state. In the model with
the rewire-to-same mechanism, the active phase is symmetric
in the sense that the stationary numbers of nodes in differ-
ent states are equal, so neither of the states is preferred in
the network. Interestingly, in the model with the rewire-to-
random mechanism, these numbers can also be different, so
we can identify the asymmetric active phase as well. The
asymmetric active phase is characterized by a predominance
of nodes in one state so that this state is preferred in the
network. For a specific range of the nonlinearity parameter,
i.e., for q∗ � q < 1, where q∗ = 1

6 (
√

13 + 1) ≈ 0.7676, the

pair approximation predicts spontaneous symmetry breaking
and a continuous phase transition between the symmetric and
the asymmetric active phases. We characterize the critical
properties of this transition. Discontinuous phase transitions
between both active phases are also possible, and they appear
for q < q∗.

In this work, we analyze a rich phase diagram displayed
by the coevolving nonlinear voter model with the rewire-
to-random mechanism on the pair approximation level. The
presence of the asymmetric active phase, identified by our
analysis, is confirmed by Monte Carlo simulations.

II. MODEL DESCRIPTION

We consider an undirected network comprised of N nodes,
which represents a social structure. Nodes stand for voters,
and each of them has an opinion that is expressed as a vari-
able j ∈ {1,−1}, or equivalently j ∈ {↑,↓} for simplicity of
notation. Links indicate the mutual influence of voters on each
other’s opinion. Randomly, one node is selected after another.
Let ρi denote the concentration of disagreeing neighbors with
the selected node i. Formally, ρi = ai/ki, where ai is the
number of active links attached to the node i, and ki is its
degree. In other words, ρi is the local concentration of active
links. With probability ρ

q
i , the interactions between the node

i and its neighbors cause a change in the system, whereas
with complementary probability 1 − ρ

q
i , nothing happens.

The nonlinearity parameter, q, is in the range q > 0. In case
of the change, two events are possible. With probability p, one
randomly picked active link of the node i is rewired to another
node picked at random from all the nodes in the network. Oth-
erwise, with probability 1 − p, the node i changes its opinion
to the opposite. Figure 1 schematically illustrates one update
of the above dynamics. One time step is understood as N such
updates.

The only difference between this model and the model
analyzed in Ref. [31] is that the model from the reference
adopts the rewire-to-same mechanism instead of the rewire-
to-random mechanism adopted herein. We show that this
difference is important since the rewire-to-random mecha-
nism makes possible the emergence of spontaneous symmetry
breaking and the emergence of the asymmetric active phase,
which is absent in the model with the second mechanism. The
linear versions of both models, which correspond to q = 1,
are compared in Refs. [17,29]. Both mechanisms are also
analyzed in the adaptive voter model with noise in Ref. [30].
However, these linear models implement a link-based updat-
ing scheme in contrast to the nonlinear models studied herein
and in Ref. [31], which implement a node-based updating
scheme.

III. PAIR APPROXIMATION RESULT DISCUSSION

The system is described by three state variables: the con-
centration of nodes with the opinion j = 1, the concentration
of active links, and the link magnetization, denoted by c, ρ,
and m, respectively. Additionally, let 〈k〉 denote the average
node degree calculated for the whole network, and 〈k j〉 is
the average node degree calculated only for the nodes in the
state j. Explicit definitions and differential equations that set
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FIG. 1. Schematic illustration of one update of the coevolving
nonlinear voter model with the rewire-to-random mechanics. Node
shapes symbolize opinions, while zigzag and straight lines refer
to active and inactive links, respectively. In this example, node i
is chosen randomly, so the interactions with its neighbors cause a
change in the system with probability ρ

q
i . In case of the change, the

node i breaks its one randomly chosen active link (a dotted zigzag in
the figure) and establishes a new link (a thick zigzag in the figure) to
a randomly chosen node with probability p, or it changes its opinion
to the opposite one with probability 1 − p.

the time evolution of the state variables can be found in the
Appendix together with details of the used approximation.
Herein, we focus just on the steady solutions of said equations
as they correspond to different phases, the discussion of which
is the core of this paper.

Throughout the work, we distinguish between three
phases—the absorbing phase, the symmetric active phase, and
the asymmetric active phase. The absorbing phase is charac-
terized by ρ = 0. In this case, the final values of c and m are
determined by the initial conditions. The absorbing phase is
dynamically inactive, i.e., there are no further changes in the
network structure nor in the voters’ opinions. On the other
hand, if ρ > 0, we have a phase that is dynamically active,
and the network together with the opinions are constantly
changing. In this phase, the steady values of c, ρ, and m fulfill
the following equations:

m =
q
√

c − q
√

1 − c
q
√

c + q
√

1 − c
, (1)

p = [m − 2c + 1]〈k〉
m〈k〉 + (2c − 1)[2c(1 − c) − 〈k〉] , (2)

and

2ρ
[ 〈k↑〉 − q

1 + m
+ 〈k↓〉 − q

1 − m

]
= 〈k↑〉 + 〈k↓〉 − 4q − p

1 − p
.

(3)
In our model, we can distinguish between two active phases
based on the steady values of c and m. The symmetric ac-
tive phase corresponds to c = 1/2 and m = 0, whereas the
asymmetric active phase corresponds to c 
= 1/2 and m 
= 0.

In contrast, the coevolving nonlinear voter model with the
rewire-to-same mechanism does not exhibit the asymmetric
active phase [31]. Note that in the active phases, c = 1/2
implies m = 0, and c > 1/2 (c < 1/2) when m > 0 (m < 0)
based on Eq. (1) when q > 0. This means that the group of
nodes that hold the majority opinion (which we understand to
be j = 1 when c > 1/2, and j = −1 when c < 1/2) has more
links connecting voters with the same opinions, ↑↑ or ↓↓,
than the group with the minority opinion. Moreover, having
combined Eqs. (A5), (A6), and (1), we get

〈k↑〉 = 〈k↓〉
(1 + m

1 − m

)1−q

. (4)

Thus, 〈k↑〉 = 〈k↓〉 = 〈k〉 only in the symmetric active phase
since then m = 0. Note that 〈k↑〉 > 〈k↓〉 (〈k↑〉 < 〈k↓〉) when
m > 0 (m < 0) for the values of the nonlinearity parameter
that we consider, i.e., 0 < q < 1. This means that nodes that
hold the majority opinion have on average higher degrees
when 0 < q < 1.

Figure 2 illustrates a phase diagram for our model placed
on the network with the average node degree 〈k〉 = 6. In the
diagram, the regions marked by the blue and red stripes cor-
respond to the stable solutions associated with the symmetric
and the asymmetric active phases, respectively. In contrast, the
unstable solutions associated with these phases are depicted
by the yellow and green regions (yellow for the symmetric
and green for the asymmetric phase). The solid and dashed
lines, on the other hand, indicate continuous and discontinu-
ous phase transitions, respectively. The stability was checked
numerically by the linearization technique.

For 0 < q < q̄, where

q̄ = 1

2

[〈k〉 −
√

〈k〉2 − 2〈k〉], (5)

all the steady solutions are stable and are situated on a curve
in the space (c, ρ, m) for which c = 1/2,

ρ = 2(1 − p)(〈k〉 − 2q) − p

4(1 − p)(〈k〉 − q)
, (6)

and m = 0. In this case, the system displays a continuous
phase transition between the symmetric active and the absorb-
ing phase at

p∗ = 〈k〉 − 2q

〈k〉 − 2q + 1/2
, (7)

where the concentration of active links, ρ, is an order pa-
rameter, like in other similar models [26,31]. In Fig. 2, the
solid black line corresponds to p∗. For p < p∗, ρ > 0, and
the system is in the symmetric active phase, where nodes in
different states coexist and form groups of equal sizes (since
c = 1/2). Along with the increasing control parameter p, the
concentration of active links, ρ, continuously decreases and
becomes zero at p∗. In the vicinity of the critical point, p∗, we
can approximate Eq. (6) by

ρ = p∗ − p

4(〈k〉 − q)(p∗ − 1)2
. (8)

Thus, the critical exponent associated with the order parame-
ter in this case is β = 1 since ρ ∼ (p∗ − p)β , just like for the
coevolving voter model in Ref. [26]. For p > p∗, the system
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FIG. 2. Phase diagrams for the network with 〈k〉 = 6. The areas with blue and red stripes correspond to the stable solutions associated with
the symmetric (S) and the asymmetric (A) active phases, respectively. On the other hand, the yellow and green areas correspond to the unstable
solutions associated with these phases (yellow for the symmetric and green for the asymmetric phase). In the areas without any stripes, only the
absorbing phase is stable. The solid and dashed thick lines indicate continuous and discontinuous phase transitions, respectively, whereas the
line colors indicate between which phases the transition occurs: blue, between the symmetric and the asymmetric active phase; red, between
the asymmetric active and the absorbing phase; and black, between the symmetric active and the absorbing phase. For more details, see the
text. See as well the representative stability diagrams projected onto the (ρ, p) plane that are presented in Fig. 3 for several values of q, where
all these transitions can be observed directly.

dynamics ends in the absorbing phase, for which ρ = 0; see
Fig. 3(a). This type of transition is also displayed by the
coevolving nonlinear voter model with the rewire-to-same
mechanism for 0 < q � 1 [31] or by its linear predecessor
[26].

On the other hand, the system behavior for q̄ < q � 1
is more complex and different from that exhibited by the
coevolving nonlinear voter model with the rewire-to-same
mechanism [31]. First of all, the steady solutions associated
with the symmetric active phase [for which ρ is given by
Eq. (6), c = 1/2, and m = 0] are stable for p < ps, where

ps = 2〈k〉(1 − q)

2〈k〉(1 − q) + q
. (9)

Otherwise, these solutions are unstable; see Figs. 3(b)–3(f).
In Fig. 2, the boundary between the regions marked by blue
stripes and yellow correspond to ps.

Secondly, there are also steady solutions given by Eqs. (1)–
(3) for which ρ > 0, c 
= 1/2, and m 
= 0. These solutions
correspond to the asymmetric active phase, where nodes in
different states coexist and form groups of different sizes
(since c 
= 1/2). For q̄ < q < q∗, where q∗ = 1

6 (
√

13 + 1) ≈
0.7676, these solutions may be either stable or unstable (the
regions marked by red stripes and green, respectively, in
Fig. 2). In contrast to q̄, q∗ does not depend on the average
node degree of the network. In this region, discontinuous
phase transitions are possible. They are marked by dashed
lines in Fig. 2. These discontinuous transitions may occur
between the symmetric active and the absorbing phase [see
Figs. 3(b) and 3(c)], or directly between both active phases
[see Figs. 3(c) and 3(d)]. Note the inset in Fig. 3(d) with
the hysteresis loop indicated by arrows. The region where the
system is bistable corresponds to a small triangular part of the
diagram in Fig. 2 constrained by two dashed blue lines and a

solid red line. The stability diagrams depicted in (p, ρ) space
in Figs. 3(b) and 3(d) are also presented in Figs. 4(a), 4(b),
4(d), and 4(e), however in (c, p, ρ) and (c, m, ρ) spaces. We
do not present the diagram from Fig. 3(c) in these spaces since
it would look similar to the diagrams in Figs. 4(b) and 4(e) for
the parameter ranges covered in these figures.

For q∗ � q < 1, the solutions that correspond to the asym-
metric active phase are always stable; see Fig. 2. In this case,
the absorbing transition occurs between the asymmetric active
and the absorbing phase after spontaneous symmetry breaking
in the active phase at ps; see Fig. 3(e) or Figs. 4(c) and
4(f). In Fig. 2, the solid red line corresponds to the absorb-
ing transition, whereas the solid blue line corresponds to the
spontaneous symmetry breaking. In the vicinity of ps, we can
analyze the critical behavior of all our state variables. Let us
start with the link magnetization. For p < ps, the only stable
solution is associated with m = 0. However, when p > ps, we
can write down the following expansion, which is fulfilled by
two stable values of m for a given value of p:

p − ps = q(q − q∗)p2
s

6q + √
13 − 1

12(1 − q)〈k〉 m2 + O(m4). (10)

Therefore, the critical exponent associated with the link mag-
netization is β = 1/2 for q∗ < q < 1, and β = 1/4 for q =
q∗, since then the first coefficient that does not disappear in
the expansion stands next to m4. Similar critical behavior is
displayed by the node magnetization (defined as 2c − 1) since
near ps, 2c − 1 = qm, i.e., the node magnetization is pro-
portional to the link magnetization. Finally, we can associate
two critical exponents with the concentration of active links
depending on the active phase in which we approach ps; see
Figs. 3(e) or 4(c). Let us call them βS and βA for the symmetric
and the asymmetric active phase, respectively. Thus, we have
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FIG. 3. Representative stability diagrams for the network with 〈k〉 = 6 and different values of q: (a) 0 < q < q̄, (b)–(d) q̄ < q < q∗, (e)
q∗ < q < 1, and (f) q = 1, where q∗ ≈ 0.7676 and q̄ ≈ 0.5505 for the given average node degree of the network. Part (d) contains an inset
with a magnified region where a discontinuous phase transition between the symmetric and the asymmetric active phase occurs. The hysteresis
loop is indicated by arrows. The solid and dashed lines correspond to the stable and unstable solutions, respectively. The blue lines refer to the
symmetric (S) active phase (for which c = 0.5 and m = 0), whereas the red lines refer to the asymmetric (A) active phase (for which c 
= 0.5
and m 
= 0). The exact values of q in the plots are as follows: (a) q = 0.5, (b) q = 0.62, (c) q = 0.7, (d) q = 0.72, and (e) q = 0.95. On top of
each diagram, a slice of Fig. 2 for the corresponding parameter q is shown.

ρ − ρs ∼ (ps − p)βS for p < ps, and ρs − ρ ∼ (p − ps)βA for
p > ps, where ρs is the value of the concentration of active
links at the point of spontaneous symmetry breaking ps, i.e.,

ρs = 2q(〈k〉 − q) − 〈k〉
2q(〈k〉 − q)

. (11)

Having conducted the series expansion of ρ at ps, we get
that βS = 1 for q∗ � q < 1, whereas βA = 1 for q∗ < q < 1
and βA = 1/2 for q = q∗. Therefore, the system has different
critical exponents on both sides of the transition for q = q∗.

For q = 1, the asymmetric active phase disappears,
whereas the symmetric active phase is unstable; see Fig. 3(f).

IV. MONTE CARLO SIMULATIONS

Although our analytical calculations rely on some approx-
imations, the existence of the asymmetric active phase in the
coevolving nonlinear voter model with the rewire-to-random
mechanism is confirmed by Monte Carlo simulations. The
model starts its time evolution on the Erdös-Rényi network
[46] with N = 104 nodes and the average node degree 〈k〉 =
6. At the beginning, the opinions are randomly distributed
among nodes in a way that on average gives c0 = 0.45 (c0

is an expected value, not a sample mean). Due to fluctuations
in finite systems, such a model always eventually reaches the
absorbing phase. Thus, in order to detect the active phases,
we use heatmaps that represent the average time spent by the

system in a given state during its time evolution. The time
horizon of our simulations amounts to 5000 time steps, and the
results are averaged over 100 realizations. Figure 5 illustrates
such heatmaps for three different values of the nonlinearity
parameter q, one for each column. On the other hand, Fig. 6
presents theoretical heatmaps depicted based on the numer-
ical solutions of the equations that set the time evolution of
the system, derived based on the pair approximation, i.e.,
Eqs. (A9)–(A11). Note that these equations are for the average
values of the state variables. Thus, they do not account for
the fluctuations that occur during the system dynamics in
the simulations. However, we took into account the fluctu-
ations connected with the initial distribution of opinions in
the simulations by solving Eqs. (A9)–(A11) from different
initial conditions and then averaging the results. Thus, each
numerical trajectory, used for creating Fig. 6, starts from c that
comes from the same distribution as the sample average of the
initial values of c in the simulations (i.e., the distribution of
X/N , where the number X of nodes with the initial opinion
j = 1 follows the binomial distribution with parameters N
and c0). In the heatmaps from Monte Carlo simulations, we
see that the system sometimes passes through the states for
which c > 0.5, although it does not happen in the analytical
heatmaps. This is because of the fluctuations that occur during
the system dynamics, which are present only in Monte Carlo
simulations. For the chosen parameters, the fluctuations con-
nected with the initial conditions for the solutions of the pair
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FIG. 4. Stability diagrams for the network with 〈k〉 = 6 depicted in different spaces: (c, p, ρ ) in the top and (c, m, ρ ) in the bottom row.
Each column corresponds to one value of the nonlinearity parameter: q = 0.62, 0.72, and 0.95 from left to right. The same parameters are used
in Figs. 3(b), 3(d), and 3(e), which are the projections of the diagrams in the top row to a two-dimensional space (p, ρ ). The solid and dashed
lines correspond to the stable and unstable solutions, respectively. The blue lines refer to the symmetric (S) active phase (for which c = 0.5
and m = 0), whereas the red lines refer to the asymmetric (A) active phase (for which c 
= 0.5 and m 
= 0).

approximation are too small to make the system pass through
c > 0.5 when the evolution starts from c0 = 0.45 (then the
theoretical standard deviation of the initial c is around 0.005).

Having compared corresponding columns in Figs. 5 and 6,
we see qualitative similarities between the results from the
simulations and the pair approximation. We tried to choose

FIG. 5. Heatmaps that represent the average time spent by the system in a given state during its time evolution with the horizon 5000 time
steps. The data come from Monte Carlo simulations of the network with N = 104 nodes and 〈k〉 = 6. The simulations start from a random
distribution of opinions so that on average c0 = 0.45. The results are averaged over 100 realizations. Each column in the figure corresponds
to one value of the nonlinearity parameter: q = 0.6, 0.8, and 0.95 from left to right (we tried to choose such values of q that qualitatively
reproduce the theoretical heatmaps presented in Fig. 6). For q = 0.95, there is a range of p for which the system stays neither in the symmetric
active phase nor in the absorbing phase. This region corresponds to the asymmetric active phase.
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FIG. 6. Heatmaps that represent the average time spent by the system in a given state during its time evolution with the horizon 5000
time steps. Used trajectories come from the pair approximation, i.e., the numerical solutions of Eqs. (A9)–(A11). As in Fig. 5, 〈k〉 = 6, and
the random initial conditions are used so that on average c0 = 0.45. The results are averaged over 100 trajectories. Each column in the figure
corresponds to one value of the nonlinearity parameter: q = 0.5 (q < q̄), q = 0.7 (q̄ < q < q∗), and q = 0.95 (q > q∗) from left to right. For
q = 0.5, the system displays a continuous phase transition between the symmetric active and the absorbing phase. For q = 0.7, a discontinuous
phase transition between the symmetric active and the absorbing phase occurs. For q = 0.95, we have two continuous phase transitions—the
first one between the symmetric and the asymmetric active phase and the second one between the asymmetric active and the absorbing phase.
In the simulations, the asymmetric active phase is much narrower (see the last column of Fig. 5).

such values of q in the simulations that qualitatively repro-
duce the theoretical heatmaps depicted for three characteristic
ranges of the nonlinearity parameter. Note that the exact val-
ues of q̄ and q∗ in the simulations may differ from those
derived based on the pair approximation. In Fig. 6, the first
column captures a continuous phase transition between the
symmetric active and the absorbing phase, which occurs for
q < q̄. The second column corresponds to the case q̄ < q <

q∗, where discontinuous phase transitions are possible. The
symmetric active phase loses its stability at some point, and a
discontinuous phase transition occurs to the absorbing phase.
In fact, due to absorbing nature of the model, it is difficult
to state unambiguously whether in the simulation we have a
discontinuous phase transition to the absorbing phase or to
the asymmetric active phase that is narrow and close to the
absorbing one. The last column illustrates a continuous phase
transition between the symmetric and the asymmetric active
phase, which occurs for q > q∗. After the symmetry of the
active phase is spontaneously broken, a second continuous
phase transition takes place, but this time from the asymmet-
ric active to the absorbing phase. As seen, the asymmetric
active phase is much narrower in the simulations than in the
theory.

Figure 7 presents analogous heatmaps for q = 0.95 that
illustrate the average node degrees calculated among nodes
with the majority and the minority opinions. In the symmetric
active phase (smaller values of p), these average node degrees
are equal to the average node degree of the simulated network
〈k〉 = 6, which is in accordance with the theoretical predic-
tions. The properties of the asymmetric active phase are less
well captured. The reason may lie in the fluctuations that push
the system into the absorbing phase more easily when ρ is
close to zero.

V. CONCLUSIONS

We analyzed the coevolving nonlinear voter model with the
rewire-to-random mechanism with use of the pair approxima-
tion in which the distinction between the average degrees of
nodes in different states is made. This approach allowed us
to identify two dynamically active phases, namely the well-
known symmetric phase and the asymmetric one, which can
arise from spontaneously broken symmetry. The symmetric
active phase is characterized by the same numbers of nodes
in the opposite states, so none of the states is preferred in the

FIG. 7. Heatmaps that represent the average time spent by the
system with a given average node degree during its time evolution
with the horizon 5000 time steps. The average node degrees, 〈kmaj〉
and 〈kmin〉, are calculated among nodes that hold the majority and
the minority opinions, respectively. The first column refers to Monte
Carlo simulations, whereas the second one refers to the outcomes of
the pair approximation. As in the previous heatmaps, 〈k〉 = 6, and
the random initial conditions are used so that on average c0 = 0.45.
The results are averaged over 100 realizations, and q = 0.95.
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ARKADIUSZ JĘDRZEJEWSKI et al. PHYSICAL REVIEW E 102, 042313 (2020)

network. In the asymmetric active phase, on the other hand,
there is a predominance of nodes in one state, so the majority
opinion can be distinguished. Only in the symmetric active
phase are the average degrees of nodes in different states equal
to the average node degree of the network.

In the pair approximation, for 0 < q < q̄, where q̄ depends
on the average node degree of the network, the coevolving
nonlinear voter model with the rewire-to-random mechanism
exhibits only continuous phase transitions between the sym-
metric active and the absorbing phases. Similar behavior is
shared by the coevolving nonlinear voter model with the
rewire-to-same mechanism for 0 < q � 1 [31]. However, for
q̄ < q < 1, the pair approximation predicts much richer phase
diagram for the model with the rewire-to-random mechanism
than for its rewire-to-same counterpart. In this range of the
parameter, the asymmetric active phase emerges. For q̄ < q <

q∗, where q∗ = 1
6 (

√
13 + 1) ≈ 0.7676, discontinuous phase

transitions are possible, and a hysteresis loop may be ob-
served as a result of system bistability. The discontinuous
phase transitions may occur between the symmetric active and
the absorbing phase or directly between both active phases.
On the other hand, for q∗ � q < 1, two continuous phase
transitions are predicted. The first transition occurs between
the symmetric and the asymmetric active phase. At the tran-
sition point to the asymmetric active phase, the symmetry is
spontaneously broken, and the majority opinion arises in the
network. Interestingly, there are different critical exponents on
both sides of this transition for q = q∗. As p increases further,
a continuous phase transition to the absorbing phase takes
place. Although the quantitative results of our approximate
calculations derive from the results of Monte Carlo simula-
tions, the appearance of the asymmetric active phase in the
model was correctly predicted by the pair approximation.

In our analysis, we focused on single-layer networks. How-
ever, since considering multilayer networks in the coevolving
nonlinear voter model with the rewire-to-same mechanism
leads to the emergence of new phases [33], the analysis of
its rewire-to-random counterpart on such structures seems to
be an interesting research direction. Another interesting idea
is to include links that can be in different states and consider
the coevolution of node and link states [47].

ACKNOWLEDGMENTS

This work was created as a result of the research
projects financed from the funds of the National Science
Center (NCN, Poland) No. 2016/23/N/ST2/00729, No.
2018/28/T/ST2/00223, and No. 2015/19/B/ST6/02612.
The work was partially supported as RENOIR Project by the
European Union Horizon 2020 Research and Innovation Pro-
gram under the Marie Skłodowska-Curie Grant No. 691152,
by Ministry of Science and Higher Education (Poland), Grants
No. 34/H2020/2016 and No. 329025/PnH/2016, and by
POB Research Centre Cybersecurity and Data Science of
Warsaw University of Technology within the Excellence Ini-
tiative Program—Research University (IDUB). J.A.H. has
been partially supported by the Russian Scientific Foundation,
Agreement No. 17-71-30029 with cofinancing of Bank Saint
Petersburg.

APPENDIX: DETAILS OF THE PAIR APPROXIMATION

Although our network consists of undirected links, we use
directed links to describe the system. Conceptually, this means
that we replace each undirected link with two oppositely di-
rected links [24]. Thus, the state variables are defined by the
numbers of directed links connecting nodes in different states:
E↑↑, E↑↓, E↓↑, E↓↓, where the first subscript corresponds to
the state of a node at the origin of the link (since our network
is undirected, E↑↓ = E↓↑). Now, the state variables can be
expressed in the following way:

c = 1

〈k↑〉N (E↑↑ + E↑↓), (A1)

ρ = 2

〈k〉N E↑↓, (A2)

and

m = 1

〈k〉N (E↑↑ − E↓↓). (A3)

Since 〈k〉N is the total number of directed links in the network,
we have an additional constraint in the form

E↑↑ + E↓↓ + 2E↑↓ = 〈k〉N (A4)

for our system. Having combined Eqs. (A1), (A3), and (A4),
we get a formula for the average degree of nodes with j = 1:

〈k↑〉 = 〈k〉1 + m

2c
. (A5)

Similarly, we can obtain an equation for the average degree of
nodes with j = −1:

〈k↓〉 = 〈k〉 1 − m

2(1 − c)
. (A6)

Let us denote by θ j the conditional probability of choosing an
active out-link from the out-links of a node with the opinion
j. In this kind of pair approximation, these probabilities are
approximated by the following formulas [5,9,24,25]:

θ↑ = E↑↓
E↑↑ + E↑↓

= ρ

1 + m
(A7)

and

θ↓ = E↓↑
E↓↓ + E↓↑

= ρ

1 − m
. (A8)

Having defined all the necessary quantities, we can write
down three rate equations for the time evolution of our state
variables. In the thermodynamic limit, i.e., in the limit of an
infinite system size, we have

dc

dt
=(1 − p)

[
(1 − c)θq

↓ − cθq
↑
]
, (A9)

dρ

dt
= 2

〈k〉
∑

j∈{↑,↓}
c jθ

q
j

× {(1 − p)[〈k j〉 − 2q − 2(〈k j〉 − q)θ j] − pc j} (A10)
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and
dm

dt
= 2

〈k〉 p
[
c2θ

q
↑ − (1 − c)2θ

q
↓
]

− 2

〈k〉 (1 − p)
[
cθq

↑〈k↑〉 − (1 − c)θq
↓〈k↓〉], (A11)

where we set c↑ ≡ c and c↓ ≡ 1 − c to simplify notation.
To derive Eqs. (A9)–(A11), first we find changes in c, ρ,

and m in one update of the model described in Sec. II. Let
us start with the changes in c. In every update, when a voter
changes its opinion, this concentration increases or decreases
by 1/N . The opinion change is possible with probability 1 −
p, and then it occurs with probability θ

q
↑ for nodes with j = 1

and with θ
q
↓ for nodes with j = −1, according to the model

definition. This results in the following formula:

�c = (1 − p)
1

N

[
(1 − c)θq

↓ − cθq
↑
]
. (A12)

Since �t = 1/N , taking the limit N → ∞ in the above equa-
tion gives Eq. (A9).

The changes in ρ and m are calculated directly from the
changes in the numbers of directed links connecting nodes in
different states with the use of Eqs. (A2) and (A3). However,
in order to ease calculations and obtain analytical formulas,
we make some approximations. First, let us notice that when
q is an integer, the interaction probability, ρ

q
i , corresponds

to the probability of choosing with repetition q disagreeing

neighbors of the node i. In the model without repetition, on the
other hand, this probability would have the following form:

f (ai, ki ) =
∏q

j=1(ai − j + 1)∏q
j=1(ki − j + 1)

= ai!(ki − q)!

ki!(ai − q)!
, (A13)

where ai and ki are the number of active links and the degree of
the node i, respectively. If we use in our calculations Eq. (A13)
instead of ρ

q
i with the assumption that q is an integer, we are

able to get analytical results in a similar way to Ref. [44],
where the q-voter model is analyzed on static complex net-
works with the pair approximation. Next, the applicability of
the obtained formulas can be extended to the initial variability
range of q. The same procedure applied to the coevolving
nonlinear voter model with the rewire-to-same mechanism
leads to the formulas obtained in Ref. [31], where this model is
analyzed. In a similar way, one can obtain equations presented
in Ref. [35] for the dynamics of the coevolving nonlinear
voter model with the rewire-to-same mechanism and noise.
Despite such a simplification, the pair approximation that does
not account for repetition captures correctly some qualitative
properties of the model with repetition, such as the appearance
of the asymmetric active phase in our case.

Based on this approximate method and the model defini-
tion, we obtain the following formulas for the changes in the
numbers of directed links connecting nodes in different states:

�E↑↓ =
∑

j∈{↑,↓}
c j

∑
k

Pj (k)
k∑

a=q

(
k

a

)
θa

j (1 − θ j )
k−a f (a, k)[(1 − p)(k − 2a) − pc j], (A14)

�E↑↑ = 2c
∑

k

P↑(k)
k∑

a=q

(
k

a

)
θa
↑(1 − θ↑)k−a f (a, k)[pc − (1 − p)(k − a)]

+ 2(1 − c)
∑

k

P↓(k)
k∑

a=q

(
k

a

)
θa
↓(1 − θ↓)k−a f (a, k)(1 − p)a, (A15)

�E↓↓ = 2(1 − c)
∑

k

P↓(k)
k∑

a=q

(
k

a

)
θa
↓(1 − θ↓)k−a f (a, k)[p(1 − c) − (1 − p)(k − a)]

+ 2c
∑

k

P↑(k)
k∑

a=q

(
k

a

)
θa
↑(1 − θ↑)k−a f (a, k)(1 − p)a, (A16)

where Pj (k) is the degree distribution associated only with
nodes in the corresponding state j ∈ {↑,↓} (since we con-
sider an undirected network, �E↓↑ = �E↑↓). In the above
equations, we assume that the number of active out-links, a,
connected to the node with the degree k and in the state j
is binomially distributed with probability θ j . After summing
over k and a indexes, we get the following expression for the
changes in the number of active links:

�E↑↓ =
∑

j∈{↑,↓}
c jθ

q
j {(1 − p)[〈k j〉−2q − 2(〈k j〉− q)θ j] − pc j}.

(A17)

On the other hand, the numbers of inactive links change in the
following way:

�E↑↑ =2cθq
↑[pc − (1 − p)(〈k↑〉 − q)(1 − θ↑)]

+ 2(1 − c)(1 − p)θq
↓[q + (〈k↓〉 − q)θ↓], (A18)

�E↓↓ =2(1 − c)θq
↓[p(1 − c) − (1 − p)(〈k↓〉 − q)(1 − θ↓)]

+ 2c(1 − p)θq
↑[q + (〈k↑〉 − q)θ↑]. (A19)

Equations (A10) and (A11) result directly from the above
equations and the definitions of ρ and m, i.e., Eqs. (A2) and
(A3). The obtain results depend only on the average node
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degree of the network. A similar situation arises in the case
of the pair approximation applied to the q-voter model [44]
and the noisy threshold q-voter model [48] considered without

repetition on static networks. However, taking into account
repetition in these models leads to the appearance of other
moments in the solutions [45,48].
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