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Scaling theory of armed-conflict avalanches
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Armed conflict data display features consistent with scaling and universal dynamics in both social and physical
properties like fatalities and geographic extent. We propose a randomly branching armed conflict model to relate
the multiple properties to one another. The model incorporates a fractal lattice on which conflict spreads, uniform
dynamics driving conflict growth, and regional virulence that modulates local conflict intensity. The quantitative
constraints on scaling and universal dynamics we use to develop our minimal model serve more generally as a set
of constraints for other models for armed conflict dynamics. We show how this approach akin to thermodynamics
imparts mechanistic intuition and unifies multiple conflict properties, giving insight into causation, prediction,
and intervention timing.
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I. INTRODUCTION

As Napoléon Bonaparte once said, “The battlefield is a
scene of constant chaos.” The role of chance in armed conflict
is cited in the classic texts on warfare, Sun-Tzu’s The Art
of War, Lanchester’s Aircraft in Warfare, and Von Clause-
witz’s Vom Kriege. Despite seemingly chaotic fluctuations in
the midst of a single conflict, the ensemble of many con-
flicts displays multiple mathematical regularities including
Richardson’s law, the scale-free distribution of fatalities in
interstate warfare [1,2]. How Richardson’s law and other scal-
ing patterns relate to one another remains unknown [3–6], but
a framework unifying these and other conflict aspects could
facilitate prediction or reveal hidden and spurious causes of
surprising outcomes.

We show, by studying the Armed Conflict Location &
Event Data (ACLED) Project [7], multiple quantitative regu-
larities that we unify in a simple scaling framework [8]. Such
regularities are evocative of scaling laws that emerge in disor-
dered, driven physical systems [9], in animal societies with
long temporal correlations in conflict dynamics [10], elec-
tions [11], and cities [12], among other social systems [13].
We find that lawlike behavior at sufficiently long scales in
armed conflict data is captured by a randomly branching
armed conflict (RBAC) model. This model has an underlying
fractal approximation for geography on which conflict “con-
tagion” spreads, uniform dynamics of conflict development
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on this geography, and scale-free fluctuations in virulence, or
intensity, between conflicts.

We extract these regularities from the statistics of conflict
avalanches, consisting of spatiotemporally proximate events
that have been joined into clusters. The clustered events con-
sist of individual, localized conflict reports in ACLED, which
serves as a database for conflict reports worldwide. Given
that most of the data is from Africa, we focus on that re-
gion. Each conflict report is labeled by type of interaction,
geographic location, date, estimated fatalities, involved actors,
and other information (see Appendices of Ref. [8] for more
details). Restricting our analysis to armed battles, we use a
systematic definition for relating conflict events: We combine
all conflict events within separation time a = 128 days and
separation length b = 140 km to generate conflict avalanches.
Thus, conflict avalanches define a set of spatiotemporally
extended structures characterized by quantitative properties
that, complementary to sociopolitical definitions of “battles”
or “wars,” are constructed only using physical measures of
distance.

After having specified a and b (see Ref. [8] for further
details), conflict avalanches can be described by total duration
T , diameter L, infected geographic sites N (a measure of area),
fatalities F , and number of conflict reports R. We discover
that conflict properties display power-law tails in distribution,
scale nonlinearly with duration, and that the exponents charac-
terizing both types of scaling are consistent with one another
according to a minimal scaling hypothesis, albeit over a lim-
ited range of scales. Over the course of a single avalanche,
each of these quantities increases monotonically with time.
When they are averaged to generate the dynamical trajectories
l (t ), n(t ), f (t ), and r(t ), we find that they are invariant under
rescaling of the separation time. Taken together, these proper-
ties constitute phenomenological scaling variables describing
how conflict starts from some epicenter, spreads in space and
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FIG. 1. Cartoon of RBAC model. A growing conflict avalanche
spreads out in space to new conflict sites in a fractal manner, gen-
erating new events at an ever slower rate. As a result, conflict sites
near the core tend to have more cumulative events (thick lines) than
peripheral sites (thin lines). The rate at which events are generated at
the core is higher than that at the periphery, implied by a site growth
exponent exceeding peripheral suppression exponent, γr > θr .

time, and generates conflict events like fatalities at infected
conflict sites such as population centers. With this description
in mind as is represented in Fig. 1, conflict avalanches are rem-
iniscent of cascades in other contexts like epidemiology [14],
neural activity [15–17], or stress avalanches in materials [9],
where universality and scaling provide valid, reduced descrip-
tions of system dynamics. Despite tremendous social, cultural,
and ecological complexity, the notion that conflict dynamics
likewise conform to a similarly sparse description of conflict
contagion is not only an intuitive analogy but one supported
by quantitative evidence.

We develop the model in Sec. II, building on previ-
ous observations of how conflicts grow to motivate the
model [18–21]. We show that the model is consistent with
features of the data like functional forms, power-law scaling,
and exponent relations. For the reader’s ease, estimated expo-
nent values from data, model, and simulation are compiled in
Tables I and II. In Sec. III, we discuss the structure of the

TABLE I. Dynamical exponents measured from Battles data, cal-
culated analytically for RBAC model, and estimated from simulation
(K = 105 samples). See Fig. 7 for scaling in simulation.

TABLE II. Exponents for power-law distributions measured
from Battles data, calculated analytically for RBAC model, and es-
timated from simulation. For the distribution of sites, the power-law
tail is statistically distinct from a simple power law [2].

model and how it posits a minimal framework for conflict
dynamics. Finally, we discuss insights for prediction and in-
tervention in Sec. IV.

II. RANDOMLY BRANCHING ARMED CONFLICT
(RBAC) MODEL

A. Model dynamics for conflict spread

We first draw a qualitative outline of our RBAC model.
Imagine a big, compact region of length � that is susceptible
to conflict. If conflict breaks out at a central site xi, then it
“infects” neighboring sites through transportation and social
networks, growing outwards from the nucleation site x0 to
cover a set of sites x ≡ {xi}, a conflict avalanche of diameter at
most �. At each newly infected region (e.g., township, county,
province), conflict becomes endemic, generating instability,
news reports, and fatalities. Far from the nucleating site, how-
ever, conflict potency will be lower as the relevance of distant
conflict decays and the density of infrastructure supporting
it shrinks (e.g., transportation networks [22]). Finally, con-
flict avalanches are characterized by spatiotemporal variation
such that some regions or epochs show much more activity,
a kind of spatiotemporally embedded virulence encoded in
the intensity of nucleating events. As we see in Fig. 2, that
different regions show strongly varying levels of conflict is
empirical fact. Deserts, mountains, and oceans show sparse
conflict, if any, but such variation might also result from weak
government [21,23], technological variation [24], or historical
friction between ethnic groups [25].1 These elements of geog-
raphy, endemicity, and virulence define the multiple, parallel
processes in our model for armed conflict.

At the core of our model is a randomly branching tree
mimicking the sparse density of conflict sites at which conflict
events occur on the approximately two-dimensional surface
of the earth. The tree has branches of average length Bk at
generation k, each of which give birth to an average of Q
branches when they reach their branching points with result-
ing fractal dimension δn = 1 + log(Q)/ log(B) as in Fig. 3.
The increasingly distant branching points of the tree mimic
the way road networks become sparse far from highly inter-
connected cores [22]. At each time step, a randomly chosen
branch is extended by unit length, reflecting the addition of a

1We note, in particular, conflict density is not simply proportional
to population density though these are quantities are related.
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FIG. 2. Number of conflict reports averaged over all conflict
avalanches per Voronoi region of Africa. Radii of circles are propor-
tional to number of conflict events. Centers of regions are separated
on average by separation length b = 70 km.

new conflict site on which conflict reports begin to accumu-
late. As a result, the time it takes for a site to reproduce—that
is, seed another conflict site and further extend the conflict
avalanche periphery—increases as the tree becomes larger in
a way reminiscent of how battle fronts spread [20]. These sim-
ple dynamics mean that conflict site number grows linearly

FIG. 3. Random variation of “Nice Trees” grown for T = 8000
time steps with branching number Q = 3 and varying branch length
ratios B [26]. For battles, B = 6.6. There is one conflict site per unit
length.

with time

n(t ) = t, (1)

having set n to share units with t in our model. Likewise,
average avalanche diameter is determined solely by the fractal
dimension after sufficient time,

l (t ) ∼ t1/ζ = t1/δn . (2)

Equation (2) also defines the dynamical exponent ζ , which
is equivalent to fractal dimension δn under these minimal
single-site growth dynamics. This minimal model capturing
geographic spread cannot explain how conflict multiplies at
each new infected location as is measured by reports and fatal-
ities. In fact, the measured spatial dimensions for fatalities and
reports apparently exceed the dimension in which they live,
dF > dR > 2, because of conflict recurrence in fixed areas
(Table I). This implies that in order to capture growth in social
dimensions of armed conflict, we must account for a separate
set of dynamics evolving on top of the geographic lattice.

On each site xi that is infected on day t0(xi ), conflict be-
comes endemic and a cascade of conflict events begins. A
cascade on site xi generates conflict reports as well as fatal-
ities, the cumulative numbers of which we track as rxi (t ) and
fxi (t ). A phenomenological scaling model for reports at site
xi is

rxi (t )=
{
vr (xi )[t −t0(xi )+ε]1−γr [t0(xi ) + ε]−θr , t � t0(xi );
0, t < t0(xi ),

(3)

with an analogous equation for fxi (t ). Equation (3) accounts
for site virulence vr (xi ) modulating local magnitude, growth
scaling with exponent 1 − γr shared across all conflict sites,
peripheral suppression for sites that start later characterized
by exponent θr � 0, and a finite rate at all times, ε = 1. When
the growth exponent is at its maximum value γr = 1, the new
event rate decays quickly, and event count is solely determined
by virulence, start time, and peripheral suppression.

By accumulating over the entire extent of the conflict
avalanche, we obtain

rx(t ) =
∑
xi∈x

rxi (t ). (4)

We expect that at large scales report growth scale with time,

rx(t ) ∼ t δr/ζ , (5)

a scaling relation that defines the dynamical exponent δr/ζ . In
order to proceed with the calculation, we assume that random
fluctuations in site virulence vr (xi ) are uncorrelated with the
time at which a site appeared and use a mean-field approxima-
tion averaging over conflict avalanche extent, assumptions we
verify with data later. Then Eq. (4) only depends on temporal
and spatial scales,

rx(t ) = l (t )δnVr (x)〈[t − t0(xi ) + ε]1−γr [t0(xi ) + ε]−θr 〉, (6)

where we have denoted Vr (x) ≡ 〈vr (xi )〉, the expected viru-
lence over a single avalanche x, and the typical number of
sites l (t )δn . With a single site added at every time step, the
probability that any randomly chosen conflict site was first
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infected at time t0 is uniform and

rx(t ) ∼ Vr (x)t1−γr−θr+δn/ζ (7)

for sufficiently large t . Normalizing Eq. (7) by Rx ≡ rx(t = T )
to remove dependence on conflict region virulence, we aver-
age over x to obtain the universal scaling function,

r(t )/R = (t/T )1−γr−θr+δn/ζ . (8)

This presents our first exponent relation for growth in reports
using the definition in Eq. (5),

δr/ζ = 1 − γr − θr + δn/ζ . (9)

A similar relation holds for fatalities f . Taken together,
Eqs. (1)–(9) describe predictions of functional forms and ex-
ponent relations that we verify with data.

B. Verifying dynamical model on data

At first glance, conflict avalanches are avalanche-like in
that they expand outwards in space, growing in diameter and
extent, as they accumulate fatalities and reports. As we show
in Fig. 4, the approximation that conflict spreads locally from
one location to another is reflected in ACLED data as dis-
cussed in Ref. [8]. Given this alignment with the canonical
avalanche picture, we check whether predictions about uni-
versality and self-consistent exponent relations are supported
by the data.

As one test of our predicted scaling form for normalized
trajectories in Eq. (5), we construct conflict avalanches after
rescaling separation time a → 2a. Under such a change, con-
flict avalanches will increase in size and duration, although in
a way that leaves the normalized functional form unchanged.
We show in Fig. 4 over an order of magnitude of rescaling in a,
the normalized scaling form to be well preserved, confirming
our predictions in Eqs. (1), (2), and (8) that the dynamical
trajectories do not change under temporal rescaling.

As another test of the dynamical hypothesis, we compare
normalized trajectories of short and long conflict avalanches
in Fig. 4. We find that these trajectories largely collapse onto a
universal profile—though national and geographic boundaries
have an outsize effect on diameter growth for the largest
avalanches. Importantly, these “finite-size” effects are not
prominent after we include avalanche of all sizes, suggest-
ing that scaling of this average is less sensitive to variation
in boundary effects across avalanche scales. Taking note of
this difference, we take normalized trajectories averaged over
avalanches of all durations to measure dynamical scaling ex-
ponents δn/ζ , δr/ζ , and δ f /ζ shown in Table I. Given these
trajectories, we can immediately check if the model expo-
nent δn/ζ = 1 is close to the data δn/ζ = 1.06 ± 0.05, which
confirms RBAC does indeed imitate the averaged geographic
spread of real conflict avalanches across conflict regions and
durations.

To check the predicted dynamical exponent expressions
for δr/ζ and δ f /ζ like in Eq. (9), we must measure the site
growth exponent γr and peripheral suppression exponent θr .
First, we consider how to measure γr . It can be measured di-
rectly from observed conflict trajectories for each site as given
Eq. (3). Taking its logarithm, we can fit for some constant
A = log[vr (xi )] − θr log[t0(xi ) + ε] and for some value of γr

(a)

(b)

(c)

(d)

FIG. 4. Dynamical scaling collapse for diameter, extent, fatality,
and report trajectories under rescaling of separation time a. Inset:
Scaling collapse for avalanches of different duration. The particularly
poor exception is diameter growth l (t )/L. Data points are few for
the longest avalanches, but we find long avalanches saturate the
maximum diameter suddenly. Inspecting these avalanches in detail,
we find they tend to hit hard boundaries like coastlines and national
borders they cannot surpass. In the case of the Tunisian and Libyan
revolutions, the aggregation of which is included in the shown aver-
age for the longest conflicts, the population is largely confined to the
coastline. This suggests for conflict avalanches commensurate with
geographic or political boundaries, it is essential to account for such
boundaries delimiting their maximum extent.

such that

log[rxi (t )] = A + (1 − γr ) log[t − t0(xi ) + ε]. (10)

We leave inside A the unknown combination of random
virulence and exponent θr as we discuss in further detail
in Appendix A. After constructing conflict sites by taking
Voronoi regions inside a conflict avalanche, we estimate γr =
0.7 ± 0.2 and γ f = 0.6 ± 0.3 (we show the distributions of
the exponents in Fig. 9), values we then use to calculate θr .

To measure the decay exponent θr , we compute how total
activity at a site decays when it starts later in the conflict
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FIG. 5. Scaling form predicted in Eq. (12) aligns qualitatively
with the data given measured γr = 0.74. We show bounds on θr

corresponding to 90% bootstrapped confidence intervals as θ−
r and

θ+
r and RBAC simulation (orange). Since for each solution of θr there

are corresponding fit parameters from Eq. (B1), the bounding lines
for θ+

r and θ−
r indicate variability in the shape of the curve but not

vertical displacement.

avalanche by combining decay profiles over all the sites over
different avalanches. For a single site, the profiles are

rxi (T )T θr+γr−1 = vr (xi )[1 − g(xi )]
1−γr g(xi )

−θr

(11)+ O(ε/T ),

where we have defined the normalized time at which the
site was infected g(xi ) ≡ t0(xi )/T and have assumed that the
correction to first-order scaling going as 1/T is small.2 Taking
the average over sites xi within an avalanche and over conflict
avalanches x (denoted by a bar),

〈
rxi (T )T θr+γr−1

〉 = Vr[1 − g]1−γr g−θr + O(〈ε/T 〉). (12)

Eq. (12) describes an averaged conflict event density by the
relative time g that has passed, peaking at g = 0 and sharply
suppressed at g = 1. This particular scaling collapse provides
a prediction of how the density of events per site progresses
during the course of the avalanche.

Using our estimates for γ f and γr , we use Eq. (12) to
fit the exponents θ f = 0.2 ± 0.3 and θr = 0.4 ± 0.3 with
90% bootstrapped confidence intervals shown in Table I (see
Appendix A for measurement details). Importantly, the result-
ing curves align qualitatively with our predictions as plotted
in Figs. 5 and 10: The data show an increase in the con-
flict event rate at sites occurring near the beginning of the
avalanche, with strong suppression at the end substantially
different from when θr = 0. With this confirmation, we com-
bine our measured exponents to obtain 1 − γr − θr + δn/ζ ≈
0.9, which is remarkably close to the measured value of
δr/ζ = 1.06. Similarly, 1 − γ f − θ f + δn/ζ ≈ 1.3, compared
to the best fit estimate from Fig. 4, δ f /ζ = 0.96. Though both

2Caution is warranted at end points because the corrections en-
capsulated in O(ε/T ) diverge at g = 0 and g = 1 as in Eq. (11).
However, this may not strongly affect the accuracy of measured
exponents given that our data set spans only about ∼8000 days and
almost all our measured avalanches last T < 103 days.

of these exponent relations are satisfied within bootstrapped
confidence intervals, there is substantial uncertainty in ex-
ponent values for conflict site dynamics γr , γ f , θr , and θ f

such that the predicted relations are loosely bounded between
δr/ζ ∈ [0, 1.4] and δ f /ζ ∈ [0, 1.8]. That the best-fit expo-
nents conform closely to our predicted relations, indeed much
closer than the uncertainty suggested by confidence intervals,
demonstrates that our formulation aligns well with the dom-
inant features of armed conflict growth. Thus, we find our
mean-field formulation of conflict site growth in the RBAC
model accurately captures site evolution, peripheral suppres-
sion, and tightly satisfies self-consistent exponent relations.

C. Conflict virulence and extinction

By definition, a conflict avalanche ends when the rate at
which new reports ∂t rxi (t ) are generated falls below some
threshold as is set by our separation time a. Then conflict
extinction is determined by when the most prolific site at time
t falls below rate threshold C,

C = ∂t rxi∗ (t )
(13)

i∗ = argmaxi ∂t rxi (t ).

Given t and looking over sites with starting times t0(xi ), the
rate is dominated by the two peaks at the end points with
starting times t0(x0) and t0(xT ). As a result, the fastest rate
is determined by the relative magnitudes of the exponents θr

and γr . Since γr > θr , the rate at the core dominates, and the
threshold is met when

C ∼ VrT −γr . (14)

A universal constant threshold C would imply that Vr ∼ T γr .
More generally, we might expect that larger conflicts are more
difficult to observe because of the “fog of war” or if resources
for observation are limited such that smaller events do not
register as easily [27]. Though our rate threshold is fixed by
the separation time, a fluctuating observation threshold could
be effectively represented by rate threshold C fluctuating with
duration such as

C ∼ T 	r . (15)

When 	r > 0, the threshold increases with conflict duration
and thus size, implying that observers are unable to resolve the
smaller events unfolding in the conflict.3 In this more general
case, the rate threshold condition in Eq. (13) implies

Vr ∼ T γr+	r , (16)

where the exponent γr describes the decay of conflict event
rate at any particular conflict site and exponent 	r describes
how the ability to resolve individual conflict events fluctuates
with virulence. Similarly, we can construct an argument for
fatalities, which likewise leads to a dynamical scaling predic-
tion for conflict virulence of fatalities.

3On the other hand, 	r < 0 presents the unlikely possibility that
observations become more detailed with increasingly larger conflicts.
Such an unrealistic outcome would suggest that this intuitive expla-
nation is flawed, but we find reassuringly the sensible bound 	r � 0
to be satisfied.
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FIG. 6. Distributions of average virulence per conflict avalanche
Vr and Vf display power-law tails whose measured exponents satisfy
self-consistent equations derived from the scaling hypothesis (p >

0.8 compared to standard significance threshold p = 0.1) [2].

This scaling relationship between virulence and dura-
tion links local dynamics of conflict growth with conflict
avalanche termination, a global property. To take this further,
we ask what happens if the distribution of conflict virulence
were distributed in a scale-free way,

P(Vr ) ∼ V −βr
r . (17)

Fluctuations in Vr would thus induce scaling in conflict dura-
tion determined by predicted exponent relation,

P(T ) ∼ T −α, α = 1 + (γr + 	r )(βr − 1). (18)

In order to verify this hypothesis, we calculate the virulence
for every site in conflict avalanches using our estimates for
γr and θr . We show the resulting distributions in Fig. 6 for
Vr and Vf , which both are statistically consistent with hav-
ing power-law tails. From the distributions, we determine
βr = 3.0 ± 0.3 and β f = 2.5 ± 0.4. As has been previously
noted [8], the distribution of duration P(T ) also displays a
power-law tail with α = 2.44 ± 0.13. Then comparing vir-
ulence with duration T , we estimate the dynamical scaling
exponent γr + 	r = 0.66 ± 0.02. Interestingly, this measure-
ment means that 	r = 0 is consistent with the data and that
the report rate threshold does not necessarily depend on the in-
tensity of observed conflict. Taking this seriously, we remove
an additional parameter by setting 	r = 0. This is in contrast
to the same calculation for fatalities, 	 f + γ f = 1.32 ± 0.05,
which implies 	 f > 0.3 given the physical bound on conflict
avalanche growth bound γ f � 1 (see Table I). Such a result
suggests that conflict resolution for fatalities fluctuates, a con-
clusion that aligns with the difficulty of estimating fatalities
accurately [7,27]. Reassuringly, these exponents satisfy the
predicted scaling relation in Eq. (18), and conflict avalanche
extinction aligns with a universal threshold in a way consistent
with our a universal separation timescale. Thus, we show
the way that we relate virulence and duration, derived from
assumptions about scaling and our definition of conflict termi-
nation, lead to self-consistent relations satisfied by the data.

D. Scaling framework

Beyond the scaling of virulence with final conflict duration,
the way that the remaining scaling variables—diameter L,
extent N , fatalities F , and reports R—grow with duration also
imply additional power-law distributions,

P(T ) ∼ T −α, P(L) ∼ L−ν, P(N ) ∼ N−u,

P(F ) ∼ F−τ , P(R) ∼ R−τ ′
. (19)

These are not assumptions but are mathematical consequences
of unifying the conclusions in previous sections, and these
power laws hold in the data as described at further length in
Ref. [8]. The new exponents in Eq. (19) are determined by re-
lating site dynamics with total magnitude of conflict avalanche
properties after accounting for virulence. Using fatalities as an
example, we define the exponent combination dF /z,

F ∼ T dF /z ∼ Vf T δ f /ζ ∼ T γ f +	 f +δ f /ζ . (20)

Thus, a positive exponent combination γ f + 	 f means
avalanches grow larger than uniform site dynamics on a
branching tree would imply, the excess scaling captured in
our model by conflict-site correlations induced by virulence.
We calculate from the entries of Table I the contribution of
such virulence. Fatalities show strong effects of virulence re-
vealed by the difference 1.0 � dF /z − δ f /ζ � 2.3, consistent
with γ f + 	 f ≈ 1.3 and implying 	 f > 0. Correspondingly
with reports, we find that the exponent γr = 0.74 accounts
for the difference 0.6 � dR/z − δr/ζ � 1.5 such that 	r = 0,
consistent with a fixed conflict termination threshold as noted
earlier. Virulence seems to play little to no role in the geo-
graphic spread of conflict, 0.2 � γn + 	n � 0.8 and −0.1 �
γl + 	l � 0.4. This observation aligns with our model as-
sumption that virulence is primarily a feature of the social
dimensions of conflict but not of geographic spread.

By connecting the dynamics of conflict growth with the
distributions of conflict scaling variables, we unify within a
single mathematical model all of these properties and confirm
our hypothesis that social growth results from a combination
of geographic spread and conflict virulence.

E. Simulation

As a final check, we simulate the RBAC model. We find
close agreement with scaling patterns in the data as shown in
Fig. 7 and Tables I and II (see Appendix Section C for further
details about the simulation).

III. A MINIMAL MODEL?

Our approach relies on scaling, self-consistency, and sim-
ple dynamical hypotheses to build a minimal model that
unifies both social and geographic characteristics of armed
conflict. Yet, there are sufficiently many components that one
might ask if the model is overparameterized. We argue in this
section that our model represents a dramatic simplification
of the full space of possibilities encompassing seven scaling
variables (i.e., duration, diameter, extent, reports, fatalities,
and two types of virulence) and their trajectories. In princi-
ple, each of the scaling variables constitutes an independent
degree of freedom with infinitely more degrees of freedom

042312-6



SCALING THEORY OF ARMED-CONFLICT AVALANCHES PHYSICAL REVIEW E 102, 042312 (2020)

FIG. 7. Dynamical scaling and distributions of conflict avalanche
scaling variables generated from RBAC compared with data. Left
column: Model simulations (orange) closely mimic calculated expo-
nent relations in Table I (dashed black lines) and are similar to scaling
in data (blue). Measured dynamical scaling functions are shown after
having removed the nonzero intercept at t = 0 averaged over conflict
avalanches with duration T � 4 days. For n(t ), we also require N >

1 and for f (t ) that F > 2 fatalities. Right column: Distributions of
scaling variables whose exponents listed in Table II align closely with
data. Distributions for both data and RBAC are shown above lower
cutoffs determined by a standard fitting procedure (see Ref. [2]) and
their scales matched such that the lower cutoffs coincide. Shaded
regions are spanned by 90% confidence intervals from bootstrapped
sampling. See Appendix of Ref. [8] for further details about fitting.

for the shape of growth trajectories and their distributions. To
specify the functional form of the joint probability distribution
relating every such degree of freedom to one another without
an informative prior is difficult given the sparse and noisy data
available. Instead, we posit a form for the decomposition of
the joint probability that is tractable and empirically verifiable
starting with assumptions about scaling.

As an example, consider the growth of armed conflict in
duration t , diameter l , and extent n. In the most general
possible scenario, we have arbitrarily complicated functions
relating each pair of variables. However, under our scaling hy-
pothesis, we restrict ourselves to only considering power-law
forms that correspond to three separate exponents, or degrees
of freedom. Under self-consistency and the absence of any
additional scaling, the third exponent must be determined in
terms of the other two, leading to the relationship n ∼ t δn/ζ as
follows from in Eqs. (1) and (2). Adding onto this, we assume
single-site growth dynamics, which imposes equality of frac-
tal dimension and dynamical exponent, δn = ζ . Hence, with

FIG. 8. Overview of RBAC model combining a dynamical scal-
ing model with a scale-free distribution of conflict report virulence
to generate conflict simulations. Geographic spread of conflict sites
involves duration t , diameter l , and extent n, all related by a single
exponent. At each conflict site, reports grow in a uniform way,
depending only on growth exponent γr , peripheral suppression ex-
ponent θr , and report virulence Vr . To get total report growth r,
we sum over the geographic extent of the conflict avalanche. Thus,
each aforementioned component contributes an additional exponent
to r as indicated by the incoming arrows. In contrast to the other
scaling variables (black letters), virulence Vr (red) is quenched, or
fixed during the conflict avalanche. The variable t0 (gray) indicates
when a site first became infected during the course of a conflict
avalanche. A similar descriptions holds for fatality growth f (t ).
To obtain the distributions of conflict scaling variables, we further
assume a power-law form for report virulence distribution P(Vr ) that
modulates conflict density per site over the lifetime of the entire
conflict avalanche (gray box).

the case of geographic growth, the combination of scaling,
self-consistent exponents, and minimal dynamics compresses
an arbitrary number of degrees of freedom into a single degree
of freedom captured by the scaling exponent δn/ζ that we
measure from data (blue triangle in Fig. 8).

Bringing reports and fatalities into the fold as we show in
the leftmost panel of Fig. 8, our model can be represented
as a graph of dynamical scaling variables. In particular, re-
ports growth r(t ) is a function of geographic spread, given
by δn/ζ , uniform site dynamics specified by θr and γr , and
mean virulence Vr (x). Thus, each aforementioned component
contributes an additional exponent to r as indicated by the
four incoming arrows. By traversing this sparse graph and
taking the exponent relation corresponding to each edge, it
is possible to relate every dynamical scaling variable with
any other, but note the absence of redundant edges: We have
avoided specifying any more edges than necessary to con-
nect all the scaling variables. This dynamical description of
conflict growth reduces the open-ended problem of fitting
conflict data to specification of a few exponents—to be precise
one for the set t , l , n and two for reports rx(t ) and two for
fx(t )—whose relationships align quantitatively with the data.
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The mean virulence Vr , however, is unusual, as indicated
by its red text color in Fig. 8. Unlike the other scaling vari-
ables in black, it is quenched and so does not change as
conflict progresses. Instead, the criterion for conflict extinc-
tion relates it to the total duration, linking dynamics with
fluctuations in conflict avalanche size. Thus, virulence plays
a special role in our theory, driving the intensity of conflict
site growth in a uniform way within the context of a single
conflict avalanche but displaying scale-free fluctuations across
many separate conflict avalanches. This aspect is represented
in Fig. 8 as the power-law distribution of virulence P(Vr ).
With this assumption, we can calculate distributions of all
remaining variables using the dynamical scaling relations and
obtaining vast simplification. For example, we can construct
the distribution of fatality virulence P(Vf ) by using the dy-
namical scaling relations Vf ∼ T γ f +	 f and Vr ∼ T γr , which

imply Vf ∼ V
(γ f +	 f )/γr

r and thus a power-law form for the dis-
tribution P(Vf ). Taken together, these components—uniform
growth dynamics, scale-free fluctuations in virulence, and
avalanche extinction below some threshold rate—compose a
set of mathematical relationships between measurable con-
flict properties that sparsely relate the multiple aspects of
conflict. Nevertheless, the exponents are fit to data, and a
first-principles explanation may be clearer pending higher-
resolution pictures of geographic and social contexts. Beyond
our model, these scaling relations serve as constraints delim-
iting the set of conflict models that, if specifying many further
microscopic details and proposed mechanisms for conflict
propagation, must still hew to the regularities that we find in
the data.

IV. DISCUSSION

That the complex tangle of armed conflict reveals strong
regularities at large scales is truly remarkable. As one notable
example that might have led us to anticipate the opposite, con-
sider the conflict avalanche spanning Tunisia and Libya [8].
This outbreak of civil wars, which was part of the Arab Spring,
clearly adheres to the geometry of the coastline given the
density of population there. In contrast with other conflicts,
this war began with the end of dictatorship and devolved
into infighting amongst multiple militias seeking control over
land, natural resources, and government [28]. Furthermore,
it is difficult to refute the argument that geography plays
a defining role in this conflict avalanche’s spread. Yet, in
the face of many such particulars, the statistics that emerge
from the ensemble display highly regular, emergent properties
aligned with self-consistent power-law scaling and universal
dynamics. Here we exploit these regularities, using them to
organize and unify social and physical properties of armed
conflict in a scaling framework captured by our RBAC model.

Both qualitative understanding of conflict causes and
observed regularities in the data motivate our starting assump-
tion that multiple features of armed conflict abide by simple
scaling laws [1,3–6]. Although some of these features like the
distribution of conflict sites might reflect a process external
to conflict dynamics such as socioeconomic variability [21],
it remains an open question of how such statistical patterns
emerge in the first place. One set of hypotheses revolves
around the idea that conflict is an example of self-organized

criticality (SOC) [29]. Roughly speaking, one might imagine
that slow growth of social tension contrasted with relatively
abrupt conflict resolution leads to scale-free features [18,30].
This is a debated hypothesis, but we observe that SOC mod-
els such as forest fire models neither abide closely to our
measured scaling laws nor account for the full set of conflict
features [8,18,31]. At the least, SOC models must incorporate
heterogeneity in space and time, which is, as we find, a defin-
ing feature of armed conflicts. Some physical analogs of these
features like quenched disorder [9,32], dissipation [33], or
repetition on sites [16,34] have been considered in canonical
models for criticality in nonequilibrium phenomena—though
armed conflict suggests variations on these themes that may
apply to social phenomena. More generally, the features we
measure and the relations we establish between them in the
RBAC model present a set of quantitative constraints that
can be brought to bear on other models for armed conflict
dynamics.

One constraint of particular note for conflict models re-
sults from our hypothesis that spatial scaling in armed
conflict arises from the underlying geography on which it
evolves [35,36]. As a way of capturing the fractal nature
of conflict site density, we assume that conflict sites form a
randomly branching tree. In this scenario, conflict features are
determined by transportation networks, population density,
and other social factors [37]. In intriguing alignment, some
data suggest that the number of intersections of a road is char-
acterized by a power law with exponent 2.2 � u � 2.4 [22].
Though conflict zones may be traversed in many ways, the
overall statistics might be dominated by few major pathways
such as the ring road in Afghanistan [36]. If so and if we think
of intersections as meeting places where conflict actors con-
verge, then intersection density could account for why conflict
extent is distributed with exponent u = 2.2. Further support
for the idea that transportation networks influence conflict
comes from results showing fractal dimension of metropolitan
road networks globally span the range 1.2 � D � 1.7 [38],
findings that are in agreement with our exponent for armed
conflict extent δn = 1.6. When a complete map of African
transportation networks becomes available, it will be possible
to further specify the mechanistic role of infrastructure on
conflict dynamics.

Interestingly, our model reveals the presence of corre-
lated fluctuations in conflict intensity, or conflict virulence,
indicating spatiotemporal disorder separate from universal dy-
namics. Virulence specifically enhances fluctuations in social
dimensions, reports and fatalities, in our model (though expo-
nent differences suggest that some analog of virulence, e.g.,
population density, may matter for spatial extent, its effects
are much weaker). Superlinear scaling of social phenomena
with population number has been observed in the dynamics
of cities and has been argued to promote innovation and
growth [12], but social scaling might likewise facilitate the
spread of conflict, disinformation [39], or disease [40]. This
aligns with the possibility that virulence reflects local social
properties such as weak governance (e.g., comparing South
Africa with Eastern Somalia [41]) or, similarly in primate
societies, weak conflict management by leaders [42,43]. Al-
ternatively, virulence could reflect a property of the instigating
set of events as in primate society in which conflict duration
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grows with originating event severity [10]. Importantly, our
finding of correlations in intensity over time suggests final
conflict properties might be predicted at onset, linking conflict
demise with the origins of outbreak.

Our approach reveals that conflict is not simply a ge-
ographic growth process but involves lattice-site dynamics
resulting from its social nature. In particular, the density of
reports and fatalities surpasses the two-dimensional phys-
ical landscape in which they are embedded, showing that
the temporal dynamics at each lattice site are relevant. At
each conflict site, reports and fatalities grow independently
of geographic spread and are only rescaled in magnitude
by final conflict duration. This suggests that conflict spreads
locally in a common way—perhaps from shared social net-
work structure across different parts of Africa or universal
conflict spreading dynamics [44]. This would imply that uni-
versality in conflict manifests in both local structure as well
as in the statistics across many conflicts that span larger
scales [45]. Besides highlighting the importance of granular,
high-resolution, and accurate social data to further the study
of armed conflict [46], our work demonstrates the power of
a thermodynamical approach to revealing and accounting for
regularities in a complex and noisy social system [5]. Over-
all, we find armed conflict dynamics are a consequence of
underlying geography, asymmetry in between the core and
periphery, and conflict virulence, aspects that are expressed
through the scaling exponents.
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APPENDIX A: MEASURING CONFLICT PROPERTIES
γr, γ f , Vr, Vf

Here we describe how we measure the conflict site growth
exponents γr and γ f and the virulence Vr and Vf .

We measure γr by using the functional forms for site
growth as in Eq. (10). To estimate the fitting parameters, we

FIG. 9. Cumulative distribution function (CDF) of exponents γr

and γ f estimated from regression to conflict site growth curves.
Given this wide distribution, we take our best estimate of the ex-
ponent to be the median with confidence intervals given by the 5th
and 95th percentiles as given in Table II.

parametrize the logarithm of the scaling form to minimize
the sum of two terms: one to fit the beginning of conflict
avalanches and the other to fit the end. With reports as an
example,

argmin
A,γr

{
log

[
rxi (T )

] − A + (1 − γr ) log
[
T − t0(xi ) + 1

]}2

+ {
log

[
rxi (0)

] − A
}2

. (A1)

We constrain the sum 1 − γr � 0 since conflict avalanches
must eventually decay to go extinct. Then, we follow an anal-
ogous procedure for γ f . The resulting distributions are shown
in Fig. 9. Given the long tail we find, we use the medians as
estimates of the exponents instead of the means.

Then, we take our best estimates of γr and θr , as described
in the main text, to calculate the virulence per site at the
end of the conflict avalanche, t = T . The averages of these
measurements over all sites within a conflict avalanche returns
the average Vr , which we show in Fig. 6.

APPENDIX B: MEASURING θr and θ f

To measure the peripheral suppression exponents θr and θ f ,
we use the average profile defined in Eq. (12). We parametrize
the fit to include a coefficient determining units eA and a small
“average” correction eB. The objective function for reports is
the minimization problem

argmin
θr ,A,B

∑
g

√[〈
rxi (T )

/
T θr+γr−1

〉 − eA(1 − g + eB)1−γr (g + eB)−θr
]2/

σ 2
g + eB, (B1)

where the averaged profile for reports depends on g implic-
itly through the relative time at which site xi started in the
pertinent conflict avalanche. The form for A and B ensures
positive definiteness. The weighting terms σg are the standard
deviation of our measurements used to obtain the averaged

profile 〈rxi (T )/T θr+γr−1〉 such that the fit is more tightly con-
strained by the more precisely estimated points. Finally, we
discretize the relative time g ∈ [0, 1] to intervals spaced out
by 1/9 as shown in Figs. 5 and 10. We solve Eq. (B1) using
standard optimization techniques [47]. This procedure yields
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FIG. 10. Scaling form predicted in Eq. (12) given γ f = 0.56. We
show bounds on θ f corresponding to 90% bootstrapped confidence
intervals as θ−

f and θ+
f . We compare with simulation (orange).

our initial estimates for the peripheral suppression exponents
for the data.

For estimating the same exponents θr and θ f from the
RBAC simulation, however, there are two additional consider-
ations that we take into account to solve the objective function
defined in Eq. (B1). First, we are able to obtain long conflict
avalanches and the singularity at t0 = 0 becomes important
to consider. Indeed, if we fit the profile with the first point
at relative time g = 0.056, then the emerging singularity at
g = 0 can substantially distort the measured value of θr . On
some test examples, we find that the point at g = 0.056 jumps
anomalously and forces the fit to match the remaining points
poorly, an indication that our coarse-graining of g into in-
tervals of 1/9 provides insufficient resolution to estimate θr

accurately when avalanches are much longer than typical ones
in the data. However, it is the case that far from g = 0, the
singularity has much smaller effect and by simply excluding
the point at g = 0.056, we recover accurately θr = 0.5, the
value cited in the main text. Though in principle similar bias
is also an issue for g = 1, it does not skew our estimate of
the exponents strongly and so we include it to replicate the
procedure we use for the data as closely as possible. The
second modification we make to the fitting procedure comes
from the fact that σg is no longer dominated by sampling
noise and reflects the fact that fluctuations become larger near
the singularity at g = 0. Since fluctuations in the model are a
function of θr , the objective behaves deterministically with θr ,
θr is driven to large values, and the objective is minimized by
simply compressing the scaling function to vanishingly small
values. For fitting the model, we replace σg with eA such that
the objective is rescaled by the typical value across the profile.
We find that this allows us to get much more reasonable
estimates for θr and θ f while accounting for the typical scale
of the average profile. As a direct check, we find that these
procedures lead to close fits of the averaged profile over the
values of g that we consider. Putting these pieces together, we

find close agreement between the exponents estimated from
the model and data, providing a way of confirming the validity
of our fitting procedures using the model.

APPENDIX C: RBAC SIMULATION

We start by growing a randomly branching tree of fractal
dimension δn = 1.6 (calculated from taking the ratio of the
separately measured exponents δn/ζ and 1/ζ ) emanating from
a single seed site. Here, we consider Q = 3 and produce an
initial set of three branches with an average extension fac-
tor B = 6.6. At each branching point, each set of children
branches have random length Bk (1 + η), where η is a random
number chosen uniformly in the interval [−ση, ση], ση < 1
such that branches vary in length about the mean with fluc-
tuations that grow proportionally with the mean. Given the
lengths, the angle at which the branches split are chosen such
that no branches will intersect with any other branches for
a tree of arbitrary size. Examples of such random trees are
shown in Fig. 3.

On every newly added site, report and fatality dynamics are
instigated such that the total number of events grow according
to Eq. (3). We set site dynamical exponents to their best fits:
γr = 0.74, θr = 0.43, γ f = 0.56, θ f = 0.23, with Vr sampled
from power-law distribution with exponent βr = 3 and lower
bound of Vr,0 = 1 to avoid very small conflict avalanches dom-
inated by finite-size effects. At each conflict site, we treat the
total cumulative number of events to be a continuous function
of the discrete number of time steps t0(xi ) as would be the
case in the limit of large avalanches.4 This gives us the tra-
jectories per site rxi (t ) and conflict avalanche evolution rx(t )
as well as the corresponding trajectories for fatalities, fxi (t )
and fx(t ).

Conflict avalanches are run until they reach the threshold
rate of events determined by the scaling relation in Eq. (14).
To simulate this, we take the random sample for virulence
Vr as mentioned above. Given a fixed, universal conflict rate
threshold (e.g., C = 2−7, or one event per 128 days), the
simulation ends when the mean event rate at the core crosses
the threshold

∂rxi

∂t

∣∣∣∣
t0=0

= (1 − γr )Vr (x)(t + 1)−γr . (C1)

Thus, conflict extinction is determined by the combination
of our fixed threshold for conflict rate, conflict avalanche
virulence, and the universal rate with which it decays. The
results are shown in Fig. 7.

4Discretization of the continuous measures of reports and fatali-
ties introduces finite-size effects that become unimportant for large
avalanches. Though we do not necessarily expect that the corrections
introduced by discretization of our conflict avalanches align with
those in the data, this issue represents a question of interest for future
work that grapples with deviations from scaling.
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