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Macroscopic approximation methods for the analysis of adaptive networked agent-based models:
Example of a two-sector investment model
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In this paper, we propose a statistical aggregation method for agent-based models with heterogeneous agents
that interact both locally on a complex adaptive network and globally on a market. The method combines three
approaches from statistical physics: (a) moment closure, (b) pair approximation of adaptive network processes,
and (c) thermodynamic limit of the resulting stochastic process. As an example of use, we develop a stochastic
agent-based model with heterogeneous households that invest in either a fossil-fuel- or renewables-based sector
while allocating labor on a competitive market. Using the adaptive voter model, the model describes agents
as social learners that interact on a dynamic network. We apply the approximation methods to derive a set
of ordinary differential equations that approximate the macrodynamics of the model. A comparison of the
reduced analytical model with numerical simulations shows that the approximation fits well for a wide range of
parameters. The method makes it possible to use analytical tools to better understand the dynamical properties
of models with heterogeneous agents on adaptive networks. We showcase this with a bifurcation analysis that
identifies parameter ranges with multistabilities. The method can thus help to explain emergent phenomena from
network interactions and make them mathematically traceable.
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I. INTRODUCTION

Agent-based modeling is a computational approach to sim-
ulate systems composed of a large number of similar subunits
with many applications in ecology [1], business [2], sociology
[3], and economics [4,5]. Agent-based models (ABMs) are
used to study aggregate phenomena emerging from local
interactions [6]. These interactions can be structured by spatial
embedding of agents or by social networks [7–10]. In eco-
nomics, ABMs have been used to study, for example, business
cycles [11], market power [4], and trade [5].

ABMs are a promising alternative to dynamic stochastic
general equilibrium (DSGE) modeling, the current workhorse
of theoretical macroeconomics. DSGE models usually build
on the representative agent approach, i.e., they represent all
individuals of one type such as firms or consumers by one
representative decision maker.

*kolb@pik-potsdam.de

The representative agent approach implies that theoret-
ical macroeconomics reduces macroeconomic phenomena
to assumptions about a few different representative agents,
leaving out many explanatory mechanisms for fluctuations
in aggregate variables based on intragroup interaction and
heterogeneity [12]. Furthermore, DSGE models often assume
rational expectations, i.e., agents know the constraints and
dynamics of the entire economy, which has been criticized as
philosophically unsound and empirically unjustified [13]. But,
due to these assumptions, most DSGEs allow for a thorough
analytical analysis.

ABMs allow implementing various individual decision
models that are behaviorally more realistic than full economic
rationality. Agents are often assumed to be boundedly rational
and adapt their expectations, which is compatible with the Lu-
cas critique [14]. In ABMs, fluctuations in aggregate variables
arise not only from exogenous shocks as in DSGE models but
primarily from irregularities in local interactions. Therefore,
they offer an avenue for explaining various emergent phenom-
ena [15] studied in empirical macroeconomics.
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On the other hand, ABMs are often very detailed so that
an analytic treatment is unfeasible. Therefore, in ABMs, the
difficulties arising from the aggregation of heterogeneous
and interacting agents are usually solved computationally.
Because the model mechanisms are difficult to trace in the
‘black box’ of a computational model, the results of ABMs
are often difficult to interpret and cannot provide mathemati-
cally sound proofs of relationships between model variables.
Results may therefore be difficult to generalize [16]. There
has been some progress in the standardization of model de-
scriptions for ABMs [17], but the lack of standardization, e.g.,
of decision rules, makes the models difficult to compare [5,
p. 239]. Even though there are various techniques available
for comprehensive model analysis [18], a systematic model
exploration is uncommon and mostly limited to sensitivity
analysis with respect to crucial parameters.

Methods from theoretical physics have been applied suc-
cessfully to various problems in economics for many years
[19]. Here, aggregation methods from statistical physics can
bridge the gap between analytic macroeconomic models such
as DSGE approaches and agent-based computational models
(for a review of physics methods in social modeling, see Refs.
[20] and [21]). In contrast to macroeconomic models, these
approaches account for local interactions and use aggrega-
tion techniques to derive macrodynamics, providing a true
microfoundation of the resulting macromodel. These kinds of
approximation methods have found much interest in the fields
of financial economics, behavioral finance, and evolution-
ary game theory recently and have produced interesting and
promising results, e.g., to explain macroeconomic fluctuations
(e.g., [22]) and understand propagation of financial shocks and
the resulting systemic risk (e.g., [23]).

Many authors use mean-field approximations to aggregate
interactions between heterogeneous agents, e.g., making use
of stochastic differential equations or master or Fokker-Planck
equations [24–33]. Such approaches assume that each agent
pair interacts with the same probability. But many social
and economic interactions are structured and the structure
can be described by complex networks [34]. To also capture
the dynamics arising from structured interactions, so-called
moment closure methods take the microstructure of networks
into account when deriving macroscopic quantities (e.g., [35],
[36]). Thereby, they are able to show that often the network
structure, whether fixed or evolving, has a crucial influence
on the dynamics not only quantitatively but also qualitatively
in enriching the stability landscape and introducing additional
(meta-)stable dynamical regimes, e.g., due to effects related to
clustering and community structure.

Yet, most of the literature regards either the network be-
tween agents or the states of agents as static, implicitly as-
suming different time scales for dynamics of and processes in
the network. However, recent literature on opinion formation
processes and the spreading of social norms in the field of
computational social sciences suggests that both happen on a
comparable time scale and therefore cannot be treated sepa-
rately [7,37]. For such adaptive networks [7], moment closure
techniques have been introduced in the physics literature to
aggregate the feedback between complex adaptive network
dynamics and dynamics of single-node states [38–41]. Here,
we introduce these techniques to economic modeling and

combine them with approaches from macroeconomics where
interactions also happen globally via aggregated variables.

The technical challenges of analytic approximation meth-
ods for agent-based models has so far hampered their
widespread use in economics. But they have a huge poten-
tial in providing profound insights into dynamical proper-
ties of economic systems: First, they help to increase the
performance of computer simulations, making calculation of
single model runs much faster and therefore allowing for a
wider range of bifurcation and parameter analyses. Second,
in contrast to stochastic simulations, they make formal proofs
of relations between macroscopic variables possible. Third,
they allow the derivation of analytical expressions of relations
between model variables from the dynamic equations, which
is not possible from single simulation runs. This paper takes
a step forward in showcasing how such methods can be used
to combine interactions in complex adaptive networks with
macroeconomic modeling. It is therefore a contribution to
the integration of nonstandard behavioral assumptions into
macroeconomic models.

The agent-based model we introduce as an illustration of
these methods is designed to investigate low-carbon transi-
tions in an economy in the context climate economics and
features both local interactions on a network and system-level
interaction through markets. We use an adaptive network
approach for our model to demonstrate how the individual
approximation techniques mentioned above may be com-
bined. In our model, the network of interactions between
agents as well as the spreading of strategies between agents
in this interaction network happens on a comparable time
scale. In particular, we combine the different approximation
techniques mentioned above, namely, moment closure, pair
approximation, and large-system-limit approximations to de-
rive an aggregate description for the dynamics of our model
(for an overview of the different techniques, see [42]). The
model consists of heterogeneous households that interact and
learn from neighbors in a social network and a two-sector
productive economy. The households differ in their invest-
ment strategies: they invest their savings either in the “dirty”
or in the “clean” sector, each representing a separate capital
market through which the agents interact. Agents imitate the
investment strategy of acquaintances that are better off with
a higher probability. To the best of our knowledge this is the
first study that applies such a combination of approximation
methods in a model that combines structured local with global
interactions of heterogeneous agents in a socioeconomic set-
ting. By successfully applying approximation techniques for
adaptive networks to our model, we demonstrate that they
are useful for investigating economic relationships within
considerably complex models. Even though our reference
application is an economic one, this approximation method
can also be used to describe similarly structured models in
other fields of research such as social ecology, neuroscience,
and computational social science.

In the remainder of the paper, we first describe the de-
tails of the model (Sec. II). We then derive an aggregate
description of the model by applying three approximation
techniques: moment closure, pair approximation, and large-
system limit (Sec. III). We discuss commonalities and differ-
ences between computer simulations and the approximation
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approach. Before concluding, we illustrate how the derived
macroapproximation can be used in a bifurcation analysis to
better understand the qualitative properties of the nonlinear
model (Sec. IV).

II. MODEL DESCRIPTION

To illustrate the use of the methods that we put forward, we
develop a model of a stylized economy that captures the shift
from a fossil-fuel-based to a renewable-energy-based sector.
Decarbonization pathways consistent with the Paris agree-
ment require a rapid shift of investments away from fossil fuel
exploration and extraction to the development and deployment
of renewable energies [43]. However, the implementation of
climate policies is uncertain and expectations cannot be based
on self-consistent beliefs about the future. In conventional
macroeconomic models such shifts can only occur due to
price signals from either improvements in green technology,
increasing scarcity of fossil reserves, or carbon pricing. While
price signals are certainly important, movements advocating
for the divestment from fossil fuels point to the role of social
norms and practices regarding investment decision to initiate
and accelerate the energy transition [44]. To better understand
such culturally driven situations of socioeconomic change, it
is important to develop models that can incorporate endoge-
nous preferences [45,46] and aspects of bounded rationality
[47] such as imperfect foresight and information as well as
learning.

Our model is designed to incorporate social dynamics that
influence investment decisions [48,49]. In the context of cli-
mate economics and policy, the literature on social influence
and norms has pointed out that such mechanisms are a lever-
age point to induce rapid change in socioeconomic systems
[50–54]. The model focuses on two important mechanisms:
First, investment strategies are spread on a network, which can
be understood as a social learning process [55] influenced by
social norms [56]. Second, the network adapts endogenously
based on simple rules that model homophyly [57,58]. In the
following, we explain the different parts of our two-sector
model in detail.

A. Economic production

Our model as outlined in Fig. 1 consists of two sectors
for production and a set of heterogeneous households that
interact via a complex adaptive social network. The two
production sectors employ different technologies. The pro-
duction technology in one sector depends on the input of
an exhaustible (fossil) energy resource R that is used up in
the process, whereas the technology in the other sector does
not. We call them the dirty and the clean sectors accordingly.
We assume that physical capital is technology specific and
cannot be reallocated between the two sectors. Therefore,
the heterogeneous households in the model provide different
types of capital Kj as well as labor L to the sectors. We assume
that the technology in the dirty sector is fully developed
and adequately described in terms of a fixed technological
factor subsumed in the constant bd , the so-called total factor
productivity. For fossil fuels, price elasticities of demand, i.e.,
changes in demand in response to increasing or decreasing
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FIG. 1. Schematic of the model consisting of two production
sectors of which one depends on an exhaustible fossil resource stock
as well as a set of heterogeneous households that interact on an
adaptive complex network and use social learning to decide upon
which of two production sectors to invest in. Boxes and bubbles
denote modeled entities; arrows denote interactions. Numbers in
parentheses refer to equations that describe the specific part of the
model.

prices, are low in real economies [59–61], even with the
choice between alternative technologies factored in. We ap-
proximate this by assuming that the fossil resource cannot
be substituted by other production factors (capital, labor) in
the dirty sector. This is in line with critique of the commonly
assumed substitutability of natural resources in some widely
used production functions in neoclassical models [62–66].
However, we acknowledge that a shift in the output of eco-
nomic production from manufacturing to services can lead to
substitution of resources by capital and labor [67] and argue
that our model pictures this in a shift of economic production
from the dirty to the clean sector, which is described in the
following.

The clean sector represents a circular economy in which
the output of final goods depends on the machinery, knowl-
edge, and effort used in its production and is not limited
by resource scarcity on the time scale under consideration.
The technology C used in the clean sector is assumed to
be still in development and is therefore explicitly modeled.
Following [68], we model technological progress as learning
by doing according to Wright’s law [69,70]. We assume that C
is proportional to cumulative production but also depreciates
with a constant rate χ . Depreciation can be regarded as a
human capital effect that leads to knowledge depreciation
over time as in [71]. This is also in line with the empirically
observed decrease in learning rates for maturing technologies
[68]

Ċ = Yc − χC. (1)

Capital, labor, and technology or knowledge are assumed
to be mutual substitutes. To satisfy these requirements, we use
the following production functions:

Yc = bcC
γ Lαc

c Kβc
c , (2)
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Yd = min
(
bd Lαd

d Kβd

d , eR
)
. (3)

Subscripts c and d denote the clean and dirty sectors, respec-
tively, Lc and Ld are labor in the two sectors, α and β are the
elasticities of the respective input factors, bc and bd are the
total factor productivities, and Kc and Kd are the capital stocks
for the respective sector. Measuring unit production cost in the
number of working hours as in the original study [69], γ is
equivalent to the elasticity of learning by doing in the clean
sector as outlined in [71].

We assume an efficient usage of resources in the dirty
sector, such that

bd Lαd
d Kβd

d = eR, (4)

where 1/e is the resource intensity of the sector, i.e., the
amount of fossil resource needed for 1 unit of final product.
The usage of the fossil resource R depletes a geological
resource stock G with the initial stock G(t = 0) = G0:

Ġ = −R. (5)

In line with the assumptions common in the literature [72,73],
the cost of the fossil resource extraction and provision cR

depends on the resource flow R and the remaining fossil
resource stock G such that ∂cR/∂R > 0 and ∂cR/∂G < 0. We
chose the specific form to be

cR = bRRρ

(
G0

G

)μ

, ρ � 1, μ > 0, (6)

such that at some point ∂Yd/∂R < ∂cR/∂R to take into account
that some part of the resource is not economic, i.e., its
marginal cost exceeds its marginal productivity. We assume
perfect labor mobility and competition for labor between the
two sectors. This leads to an equilibrium wage w that equals
the marginal return for labor, i.e., the production increase from
an additional unit of labor,

w = ∂Yc

∂Lc
= ∂Yd

∂Ld
− ∂cR

∂Ld
, (7)

with the sum of labor in both sectors equal to a constant total
amount of labor:

Lc + Ld = L. (8)

As discussed before, we assume physical capital to be specific
to the technology employed such that it can only be used in
the sector in which it has been invested originally. This means
that there are separate capital markets for the two sectors.
We assume these capital markets to be fully competitive,
resulting in capital rents equal to marginal productivity, after
accounting for energy costs:

rc = ∂Yc

∂Kc
, (9)

rd = ∂Yd

∂Kd
− ∂cR

∂Kd
. (10)

B. Adaptive network model for investment decision making

We model households as boundedly rational decision mak-
ers [74–76]: Households take their investment decisions, i.e.,
whether to invest their savings in the clean or the dirty

sector, not by forming rational expectations [13,14] but by
engaging in social learning [55] to obtain successful strategies
[77] with reasonable effort. The outcomes of social learning
crucially depend on the structural properties of the complex
network of social ties among the households [78]. The strong
and still increasing polarization of some societies on climate
change issues suggests that social dynamics reinforce opposed
positions in the population [79–84]. In static network models,
such effects cannot be represented. Therefore, we model the
adaptive formation of the social network endogenously. A
well-established principle for the emergence of structured
ties in social networks is homophily, i.e., the tendency that
similar individuals get linked [57,85,86]. The following model
specification uses social learning in combination with endoge-
nous network formation based on homophily to model the
investment decisions of the households.

We model N heterogeneous households denoted with the
index i as owners of one unit of labor L(i) = L/N and capital
K (i)

c and K (i)
d in the clean and dirty economic sectors, respec-

tively. Households generate an income I (i) from their labor
and capital income which they use for consumption F (i) and
savings S(i). The rate at which households save their income
is assumed to be fixed and is given by the savings rate s:

I (i) = wL(i) + rcK (i)
c + rd K (i)

d , (11)

F (i) = (1 − s)I (i), (12)

S(i) = sI (i). (13)

A binary decision parameter oi ∈ [c, d] denotes the sector in
which the households decide to invest. As motivated above,
we model decision making that is driven by two processes:
social learning via the imitation of successful strategies and
homophyly towards individuals exhibiting the same behavior.

We describe households as the nodes in a graph of acquain-
tance relations that change according to the following rules.

(1) Households get active at a constant rate 1/τ .
(2) When a household i becomes active, it interacts with

one of its acquaintances j chosen uniformly at random.
(3) If they follow the same strategy, i.e., they invest in the

same sector, nothing happens.
(4) If they follow a different strategy, i.e., they invest in

different sectors, one of two actions can happen:
(a) Homophilic network adaptation: With probability

ϕ, the households end their relation and household i
connects to another household k, that follows the same
strategy.

(b) Imitation: With probability 1 − ϕ, household i en-
gages in social learning, i.e., it imitates the strategy of
household j with a probability pji that increases with their
difference in income.
We follow previous results on human strategy updating in

repeated interactions from [77] when we assume the imitation
probability as a monotonously increasing sigmoidal function
of the relative difference in consumption between both house-
holds:

p ji =
(

1 + exp

(
−a(F (i) − F ( j) )

F (i) + F ( j)

))−1

. (14)
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TABLE I. List of model parameters with their default values.
Note that the parameter values are set to mirror plausible values
observed in real-world economies but are not the result of a detailed
model estimation procedure.

Symbol Value Parameter description

N 200 Number of households
M 2000 Number of network links between the households
bc 1 Total factor productivity in the clean sector
bd 4 Total factor productivity in the dirty sector
bR 0.1 Initial resource extraction cost
e 1 Resource conversion efficiency
κ 0.06 Capital depreciation rate
χ 0.1 Knowledge depreciation rate
γ 0.1 Elasticity of knowledge in the clean sector
αc 0.5 Elasticity of labor in the clean sector
αd 0.5 Elasticity of labor in the dirty sector
βc 0.5 Elasticity of capital in the clean sector
βd 0.5 Elasticity of capital in the dirty sector
ϕ 0.5 Fraction of rewiring events in opinion formation
1/τ 1. Rate of opinion formation events
ε 0.05 Fraction of noise events in opinion formation
G0 1 000 000 Initial resource stock
L 100 Total labor
s 0.25 Savings rate
ρ 1 Exponent for resource flow in extraction cost
μ 2 Exponent for resource stock in extraction cost

As opposed to the absolute difference in the original study
[77], the probability in our model depends on relative differ-
ences. We set a = 8 to conform to their empirical evidence.
This dependence on relative differences in per-household
quantities is crucial for our method as we discuss at the end
of Sec. III D. We model strategy exploration as a fraction ε

of events that are random, e.g., rewiring to a random other
household or randomly investing in one of the two sectors.
Given the savings decisions of the individual households, and
assuming equal capital depreciation rates κ in both sectors,
the time development of their capital holdings is given by

K̇ (i)
c =δoics

(
rcK (i)

c + rd K (i)
d + wLi

) − κK (i)
c , (15)

K̇ (i)
d =δoid s

(
rcK (i)

c + rd K (i)
d + wLi

) − κK (i)
d , (16)

where δi j is the Kronecker delta. The total capital stocks in the
two sectors are made up of the sum of the individual capital
stocks

Kj =
N∑
i

K (i)
j = Nkj, (17)

where k j is the average per-household capital stock of a given
capital type.

We acknowledge the fact that different model specifi-
cations are possible and interesting. For instance, we only
consider fixed savings rates and the decision between two
capital assets and leave the analysis of the interesting possible
effects of households setting their savings rates individually
to another study [87]. However, we want to point out that
the approximation methods that we develop in the following

are highly useful to gain insights from different but similar
models that rely on complex adaptive interaction networks.

C. Numerical modelling and results

With the model specifications from Sec. II, the
parametrization in Table I, and appropriate initial conditions
for the dynamic variables, the model can be simulated
numerically. For this, we implemented the dynamics in
the multipurpose programming language PYTHON. The
implementation of the ABM as well as the numerical analysis
using the approximation methods described in the following
is available at the github software versioning service in [88].
In the following, we discuss the resulting aggregate dynamics.

Figure 2 displays an exemplary average evolution of our
model calculated as the mean of 100 simulation runs. The
simulation starts with initial conditions of abundant fossil
resources G and low clean technology knowledge stock C
[Fig. 2(b)] as well as equally low capital stocks in the clean
and dirty sectors Kc and Kd [Fig. 2(c)]. As we show later (see
Sec. IV), the rest of the initial configuration of the model is
rather irrelevant for the selected parameter values listed in
Table I, since there is only one stable dynamical equilibrium
as long as resource extraction costs are negligibly low. The
high initial capital rents rc and rd are a direct result of our
model assumptions and initial conditions, more precisely, the
assumption that capital rent equals marginal productivity in
Eqs. (9) and (10) and that of decreasing marginal productiv-
ity due to our choice of βi in combination with the initial
condition of low capital and a fixed labor supply. Also as
a direct consequence of these assumptions, the capital rents
rc and rd decrease over time as the capital stock is built up.
Initially (from t = 0 to t = 100), as a result of our choice of
total factor productivities bi and due to low fossil resource
extraction costs, capital productivity (and therefore capital
rent r) is higher in the dirty sector than the clean sector [see
Fig. 2(a)]. Consequently, the majority of households invest in
the dirty sector, which leads to a high capital stock Kd [Fig.
2(c)] and high production output Yd [Fig. 2(d)] in this sector.

Regarding the capital rents, we would expect the system
to move towards a dynamic equilibrium in which the capital
rent is equal in both sectors, i.e., rd = rc, if everything else
remained constant. However, we find that there is a persisting
difference between rc and rd between t = 50 and t = 100.
This difference can be explained by the exploration of invest-
ment strategies even if they perform worse, which brings the
shares of clean and dirty investors closer together. In terms of
the depicted variables this means that it brings nc closer to 0.5.

For t > 100 the depletion of the fossil resource leads to sig-
nificantly increasing resource extraction costs. Consequently,
the marginal productivity of dirty capital Kd decreases and
so does rd , leading to a peak in accumulation of capital in
the dirty sector around t = 100 [Fig. 2(c)]. Once the relative
return on capital in the clean sector increases, households start
to adopt a clean investment strategy visible in an increase in
nc in Fig. 2(a). When the fossil resource stock reaches its
economically exploitable share at around t = 200, the overall
productivity in the dirty sector reaches 0, leading to full
employment of all available labor in the clean sector. This
drives demand for capital in the clean sector up, accelerating
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(a) (b)

(c) (d)

FIG. 2. Example trajectory of the ABM. Solid lines represent mean results from 100 runs of the model. Gray areas around solid lines show
their standard deviation. Panels show capital rents in the clean and dirty sectors rc and rd as well as the fraction of households investing in the
clean sector nc in (a), knowledge and resource stock C and G in (b), output of the clean and dirty sectors Yc and Yd in (c), and capital stocks
Kc and Kd in the clean and dirty sector in (d). Initial conditions are G = G0, C = 1, K (i)

j = 1 for the economic subsystem. For the investment
decision process, the initial opinions of the N = 200 households are drawn from a uniform distribution. Their initial acquaintance structure is
an Erdős-Renyi random graph with mean degree k = 10.

the change from dirty to clean investment. As all households
except for the share caused by exploration are investing in
the clean sector, the system reaches an equilibrium with high
capital in the clean sector and low capital in the dirty sector.

Notably, we find an increasing variance in the fraction of
households investing in the clean sector before and around the
transition, which means that due to the stochasticity of the
social learning process the transition happens earlier for some
simulation runs than for others. Nevertheless, we find that
the inertia of the model resulting from the large accumulated
stock of capital that is specific to the dirty sector eventually
leads to an almost-complete depletion of the fossil resource.

The adaptation dynamics in our model can lead to a frag-
mentation of the network with stark economic consequences.
As the results in Appendix B show, an increased rewiring
rate ϕ in the network adaptation process leads to a strongly
delayed shift of investment from one sector to the other
during the transition, even though the incentive in terms of an
increased return rc for the investment in this sector is high.
This fragmentation is equivalent to a strong decline in the
fraction of active edges in the network, e.g., the fraction of
edges that connect households investing in different sectors of
the economy. This finding is consistent with a major result of

adaptive network modeling studies that show that adaptation
will lead to fragmentation of a network at high rewiring rates
ϕ [26,29,77,78,89]. Such network properties emerging from
adaptation dynamics have been studied, for example, in the
context of opinion dynamics, epidemics, and social-ecological
systems [7,40,91,92]. One could suspect that the slowdown in
the transition from one sector to the other results from the
decreased rate of imitation events as their frequency scales
with 1 − ϕ. However, the results in Appendix A show that this
effect is particular to the adaptive network model and cannot
be reproduced in a well-mixed system simply by adjusting
for the reduced frequency of imitation events. Appendixes
B and A discuss further differences between the full model
and special cases without adaptation as well as well-mixed
interaction.

III. APPROXIMATE ANALYTICAL SOLUTION

Structurally, the model described in Sec. II consists of a
set of coupled ordinary differential equations, (1), (5), (15),
and (16), with algebraic constraints (4), (7), (8), (9) and (10)
for the economic production process and a stochastic adaptive
network process for the social learning component that is

042311-6



MACROSCOPIC APPROXIMATION METHODS FOR THE … PHYSICAL REVIEW E 102, 042311 (2020)

described by rules 1 to 4 in Sec. II B. The state space of this
combined process consists of 2 degrees of freedom of the
knowledge stock and the geological resource stock as well as
2N degrees of freedom for the capital holdings of the set of
all individual households plus the configuration space of the
adaptive network process of the social learning component.
We denote the variables of this process by capital letters
(C, G, K (i)

j , . . . ). To find an analytic description of the model
in terms of a low-dimensional system of ordinary differential
equations, we approximate it via a pair-based proxy process,
a stochastic process in terms of aggregated quantities, thereby
drastically reducing the dimensionality of the state space. We
denote the variables of this process by capital letters with
overbars (X̄ , Ȳ , Z̄ , K̄ (k)

l , . . . ).
The derivation of this approximate process is done in

three steps: First, we solve the algebraic constraints to the
economic production process given by market clearing in the
labor market and efficient production in the dirty sector—
loosely following [93]. Second, we use a pair approximation
to describe the complex adaptive network process of social
learning in terms of aggregated variables, similarly to [91].
Third, we use a moment-closure method to approximate
higher moments of the distribution of the capital holdings of
the heterogeneous households by quantities related to the first
moments of their distribution. Finally, we take the limit of
infinitely many households (large-system or thermodynamic
limit) to obtain a deterministic description of the system.

A. Algebraic constraints

To calculate labor Lc and Ld as well as wages in the two
sectors, we use Eqs. (6) and (7) and for simplicity assume
ρ = 1 and μ = 2. We also assume equal labor elasticities in
both sectors αd = αc = α, resulting in

w = ∂Yd

∂Ld
− ∂cR

∂Ld

= ∂Yd

∂Ld
− ∂cR

∂R

∂R

∂Ld
= ∂Yd

∂Ld
− ∂cR

∂R

∂

∂Ld

Yd

e

= ∂Yd

∂Ld
− bR

G2
0

G2

∂

∂Ld

Yd

e
= bdαLα−1

d Kβd

d

(
1 − bR

e

G2
0

G2

)
(18)

for the dirty sector and

w = bcαLα−1
c Kβc

c Cγ (19)

for the clean sector. Combining these results via Eq. (8),
substituting

Xc = (
bcKβc

c Cγ
) 1

1−α , Xd = (
bd Kβd

d

) 1
1−α ,

XR =
(

1 − bR

e

G2
0

G2

) 1
1−α

, (20)

and solving for w yields

w = αLα−1(Xc + Xd XR)1−α. (21)

Plugging (21) into Eqs. (18) and (19) results in

Lc = L
Xc

Xc + Xd XR
, (22)

Ld = L
Xd XR

Xc + Xd XR
(23)

for labor in the two sectors, and plugging this into (4) leads to

R = bd

e
Kβd

d Lα

(
Xd XR

Xc + Xd XR

)α

(24)

for the use of the fossil resource. Using the results for Lc and
Ld together with Eqs. (9) and (10), the return rates on capital
result in

rc = βc

Kc
XcLα (Xc + Xd XR)−α, (25)

rd = βd

Kd
(Xd XR)Lα (Xc + Xd XR)−α. (26)

It is also noteworthy that if we assume constant returns to
scale with respect to capital and labor, e.g.,

βc = βd = 1 − α (27)

(even though it is not necessary for our method), this yields
zero profits in both sectors:

Yc = wLc + rcKc,

Yd = wLd + rd Kd + cR.

To sum up, we solved the algebraic constraints to the
ordinary differential equations describing the economic pro-
duction process resulting in the following equations:

Xc = (
bcKβc

c Cγ
) 1

1−α , Xd = (
bd Kβd

d

) 1
1−α ,

XR =
(

1 − bR

e

G2
0

G2

) 1
1−α

, (28a)

w = αLα−1(Xc + Xd XR)1−α, (28b)

rc = βc

Kc
XcLα (Xc + Xd XR)−α, (28c)

rd = βd

Kd
Xd XRLα (Xc + Xd XR)−α, (28d)

R = bd

e
Kβd

d Lα

(
Xd XR

Xc + Xd XR

)α

, (28e)

Ġ = −R, (28f)

K̇ (i)
c = sδoi,c

(
rcK (i)

c + rd K (i)
d + wL(i)

) − κK (i)
c , (28g)

K̇ (i)
d = sδoi,d

(
rcK (i)

c + rd K (i)
d + wL(i)

) − κK (i)
d , (28h)

Ċ = Yc − χC. (28i)

B. Pair approximation

To derive a macroscopic approximation of the social learn-
ing process described by rules 1 to 4 in Sec. II B, we make use
of a pair-based proxy process that is derived via pair approxi-
mation from the adaptive network process. This proxy process
is not equivalent but sufficiently close to the microscopic
process approximating it in terms of aggregated quantities
by making certain assumptions about the properties of their
microscopic structure. The aggregated quantities of interest
are the number of households investing in clean capital N (c),
the number of households investing in dirty capital N (d ), and
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the number of links between agents in the same group, [cc]
and [dd], as well as between the two groups, [cd]. Since
the total number of households N and links M are fixed,
these five variables reduce to 3 degrees of freedom, which we
parametrize as follows:

X̄ = N (c) − N (d ), Ȳ = [cc] − [dd], Z̄ = [cd]. (29)

These 3 degrees of freedom span the reduced state space of
the social process S̄ = (X̄ , Ȳ , Z̄ )T . The investment decision-
making process can then be described in terms of jump lengths
S̄ j and jump rates W (S̄, S̄ + S̄ j ) in this state space for the
different events j in the set � of all possible events. Their
derivation is illustrated by the example of a clean household
imitating a dirty household: The approximate rate of this event
is given by

Wc→d = N

τ
(1 − ε)(1 − ϕ)

N (c)

N

[cd]

[cd] + 2[cc]
pcd . (30)

In some more detail this results from
(i) N/τ , the rate of social update events, i.e., the rate of

events per household times the number of households.
(ii) (1 − ε), the probability of the event not being a noise

event.
(iii) (1 − ϕ), the probability of imitation events (versus

network adaptation events).
(iv) N (c)/N , the probability that each active household will

invest in clean capital.
(v) [cd]/(2[cc] + [cd]), the approximate probability of

interaction with a household investing in dirty capital. Here,
we approximate the distribution of dirty neighbors among
clean households with its first moment i.e., we act as if links
between clean and dirty households were evenly distributed
among all households.

(vi) pcd , the expected value of the probability that each
active household will imitate its randomly chosen neighbor,
depending on the difference in consumption between house-
holds investing in clean vs dirty capital as given in Eq. (14).
The expression is derived in detail as part of the moment
closure in Sec. III C.

The corresponding change in the state-space variables is a
little trickier. Since the event is a clean household imitating a
dirty household, we already know about one of the neighbors
of the household. As laid out in detail in, e.g., [38], the state
of the remaining neighbors in the full model is determined
by the frequency of higher-order network motifs, e.g., [dcd]
and [dcc]. The frequency of these higher-order motifs is
approximated by the expected value of the states of additional
neighbors as follows: summing over the excess degree of
node qc by drawing kc − 1 times from the distribution of
neighbors, which is, as before, approximated by an even
distribution of edges between same and different households
among all households. Again, this approximates the respective
full distributions with their first moments. If one wanted to
include higher-order effects in the network dynamics, one
could follow one of the various ways laid out in, e.g., [39].
Thus the probability that a neighbor is dirty, p(d ), or clean,
p(c), reads

p(c) = 2[cc]

2[cc] + [cd]
; p(d ) = [cd]

2[cc] + [cd]
. (31)

This results in an expected number of n(c) additional clean
neighbors and n(d ) additional dirty neighbors,

n(c) = (1 − 1/k(c) )
2[cc]

N (c)
, n(d ) = (1 − 1/k(c) )

[cd]

N (c)
, (32)

where k(c) is the mean degree, e.g., the mean number of
neighbors of a clean household in the network. With the
results from (32) the changes in the expected values of the
state space variables can be approximated as follows:

N (c) = −1,

N (d ) = 1,

[cc] ≈
(

1 − 1

k(c)

)
2[cc]

N (c)
,

[dd] ≈
(

1 − 1

k(c)

)
[cd]

N (c)
,

[cd] ≈ −1 +
(

1 − 1

k(c)

)
2[cc] − [cd]

N (c)
,

and summing up, the change in the state vector is approxi-
mately given by

S̄c→d ≈
⎛
⎝ −2

−k(c)

−1 + (
1 − 1

k(c)

) 2[cc]−[cd]
N (c)

⎞
⎠. (33)

In terms of the jump lengths S̄ and the rates W , the
dynamics of the pair-based proxy can be written as a master
equation for the probability distribution P in the state space of
S̄:

∂P(S̄, t )

∂t
=

∑
j∈�

P(S̄ − S̄ j, t )W (S̄ − S̄ j, S̄)

− P(S̄, t )W (S̄, S̄ + S̄ j ). (34)

C. Moment closure

To describe the capital structure in the model that consists
of 2N equations of the type of (15) and (16), we use the cohort
of N (c) households investing in clean and the cohort of N (d )

households investing in dirty capital and look at the aggregates
of their respective capital holdings:

K̄ (k)
l =

N∑
i

δoikK (i)
l . (35)

Here, the upper index in K̄ (k)
l indicates the shared investment

decision of the cohort of households as opposed to the index of
the individual household before. The lower index still denotes
the capital type. δoik is the Kronecker delta.

Later, we use the fact that in the limit of N → ∞ these
aggregates should converge to their expected values, e.g., the
first moments of their distribution with probability 1. The
time derivative of the aggregates defined in (35) is given by
the deterministic process of capital accumulation, (28g) and
(28h), as well as terms resulting from the stochastic process
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of agents switching their saving decisions:

˙̄K (c)
c =

˙̄K (c)
d =

˙̄K (d )
c =

˙̄K (d )
d =

(src − α)K̄ (c)
c + srd K̄ (c)

d + swL̄

− αK̄ (c)
d

− αK̄ (d )
c

srcK̄ (d )
c + (srd − α)K̄ (d )

d + swL̄︸ ︷︷ ︸
D(i)

l

+switching terms.

(36)
The switching terms for K̄ (c)

c result from agents changing their
saving decision, thereby moving their capital endowments
from the aggregate capital of the cohort of clean investors
to the aggregate of the cohort of dirty investors, and vice
versa. We assume that each household switching to the other
cohort is endowed with the mean capital of the cohort and that
their capital endowment is independent of the probability of
switching such that we can describe the switching terms as a
product of both factors. Then we can write down the changes
in capital stocks explicitly including the switching terms as a
simple stochastic differential equation,

dK̄ (k)
l = D(k)

l dt + K̄ ( j)
l

N ( j)
dN j→k − K̄ (k)

l

N (k)
dNk→ j,︸ ︷︷ ︸

switching terms

(37)

where the first term on the right-hand side refers to the change
in aggregates without switching, as given by the equations of
capital accumulation, (36), and the following terms denote
the influx and outflux of capital from the aggregate due to
households changing their savings decisions. dN j→k denotes
the stochastic process of households switching from one
opinion to another according to the rules outlined in Sec. II B.
In line with the pair approximation described in Sec. III B we
approximate them as

dN j→k =
∑

l∈� j→k

Wldt, (38)

where � j→k denotes the set of all events that result in a
household changing from cohort j to cohort k and Wl is the
rate of the respective event analogously to (30).

The imitation probability pcd in Eq. (30) is approximated
as the expected value of a linearized version of Eq. (14) when
drawing a pair of neighboring households i, j as specified.
More precisely, we perform a Taylor expansion of Eq. (14) in
terms of the consumption of the two interacting households
F (c) and F (d ) around some fixed values F (c)∗ and F (d )∗ up to
linear order. To maintain the symmetry of the imitation prob-
abilities with respect to the household incomes, we change
variables to F = F (c) − F (d ) and F = F (c) + F (d ) and ex-
pand around F = 0, F = F0, where F0 is yet to be fixed to a
value. In linear order this results in

pcd = 1

2
− a

4F0
F, (39)

pdc = 1

2
+ a

4F0
F. (40)

To make the approximation work in the biggest part of the
system’s state space, we set the reference point F0 to be the

middle of the sum of the estimated upper and lower bounds
for the attainable income of households investing in the clean
(dirty) sector. The minimum attainable income is assumed
to be 0. The maximum attainable income for a household
investing in the clean sector is assumed to be reached at
equilibrium given that all other households also invest in the
clean sector; e.g., we calculate F (c)∗ as half of an average
household income at the steady state of K̇c = sbcLαKβc

c Cγ −
δKc and Ċ = bcLαKβc

c Cγ − δC,

C∗ =
(

bcLαsβc

δ

) 1
1−βc−γ

, K∗
c =

(
bcLαs1−γ

δ

) 1
1−βc−γ

. (41)

Equivalently, we calculate F (d )∗ as half of an average house-
hold income at the steady state of K̇d = s(1 − bR

e )bd Kβd

d Pα −
δKd :

K∗
d =

(
sbd Lα

δ

(
1 − bR

e

))(
1

1−βd

)
. (42)

With these results, using the fact that we set βc = βd = α =
1/2, the reference point F0 is

F0 = 1

2

(
F (c)∗ + F (d )∗)

= 1 − s

2N
(r∗

c K∗
c + wL + r∗

d K∗
d + wL) (43)

= 1 − s

2N

((
sbcLα

δβc+γ

) 1
1−βc−γ

+ s

δ

((
1 − bR

e

)
bd Lα

)2
)

,

(44)

where r∗
c and r∗

d in (43) are the capital return rates, (9) and
(10), in the respective equilibria, (41) and (42).

Given this linear approximation of the imitation proba-
bilities, we approximate the consumption Fc and Fd of the
randomly selected households i and j as the household con-
sumption of the average household investing in clean and dirty
capital using the aggregated variables as introduced in (35). In
the large-system limit, this is equivalent to taking the expected
value over all households in the respective cohorts:

pcd = 1

2
− a

4F0

(
rc

(
K̄ (c)

c − K̄ (d )
c

) + rd
(
K̄ (c)

d − K̄ (d )
d

)
+w

L

N

(
N (c) − N (d )

))
, (45)

pdc = 1

2
+ a

4F0

(
rc

(
K̄ (c)

c − K̄ (d )
c

) + rd
(
K̄ (c)

d − K̄ (d )
d

)
+w

L

N

(
N (c) − N (d )

))
. (46)

With this approximation, we have now reached an approx-
imate description of the microscopic dynamics in terms of
stochastic differential equations for the aggregate variables.

D. Large-system limit

The description of the model in terms of Eqs. (28f), (28i)
(34), and (36) poses a significant reduction in complexity,
yet it is still a description in terms of a stochastic process
rather than in terms of ordinary differential equations, as
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typically used in macroeconomic models. To further reduce
it to ordinary differential equations, we do an expansion in
terms of system size, which in our case is given by the number
of households N . Therefore, following Van Kampen [94, p.
244], we introduce the rescaled variables

x = X

N
, y = Y

M
, z = Z

M
, k = 2M

N
(47)

and expand the master equation, (34), that describes the social
learning process in terms of a small parameter N−1. In the
leading order, the time development of the rescaled state
vector s = (x, y, z) is given by

d

dt
s = α1,0(s), (48)

where α1,0 is the first jump moment of W . In terms of the
rescaled variables s, α1,0 is given by

α1,0(s) =
∫

sW (s,s)ds, (49)

which in the case of discrete jumps in state space simplifies to

d

dt
s =

∑
j∈�

sjWj, (50)

where � is the set of all possible (discrete) events in the
opinion formation process.

As for the economic processes, we keep the aggregated
quantities (K̄ j

i ,C, G) fixed and formally go to a continuum of
infinitesimally small households. As people and also house-
holds, for that matter, are finite entities, a continuum of house-
holds makes no sense. But practically, this can be understood
as an interpretation of the heterogeneous households as a
weighted sample of a very large population of heterogeneous
individuals and increasing the sample size up to the point
where a continuum of households is a sufficiently good ap-
proximation of reality in terms of the model. The only element
in the approximation of the economic model that depends
on per-household quantities is the imitation probability, (14),
or rather its approximation, (39) and (40). Since we have
chosen this to depend on relative differences in income, their
dependence on the number of households N cancels out and
the limit of N → ∞ becomes trivial, resulting in the following
deterministic approximation for the capital endowments in
sector l of households investing in sector k described in
Eq. (37),

˙̄K (k)
l = D(k)

l + K̄ ( j)
l

N ( j)

∑
l∈� j→k

Wl − K̄ (k)
l

N (k)

∑
l∈�k→ j

Wl , (51)

where D(k)
l are the capital accumulation terms as given in (36)

and �l→k is the set of all opinion formation events, where a
household changes its opinion from l to k.

Together with Eqs. (28f) and (28i) the sets of equations
specified by (50) and (51) fully describe the approximate
dynamics of the original model as specified in Sec. II. The
full set of equations is given in Appendix C.

Our approximation reduces the full model to a set of first-
order differential equations with 9 degrees of freedom. For
comparison, the full model has 2N + 2 degrees of freedom
in the economic system plus the configuration space of the

social network component. The right-hand sides of the set
of differential equations are continuously differentiable and
depend on 12 parameters for the economic system and 2
parameters for the social network process. The state space
of the system is bounded between −1 and 1 in x and y and
between 0 and 1 in z as well as by 0 from below in the
variables of the economic system K̄ (k)

l , G, and C. As the
equations are bulky, it is recommended to use a computer
algebra system to work with them.

The freedom to choose equations for economic production
that are not scale invariant critically depends on the assump-
tion that household interaction only depends on relative dif-
ferences. For individual interaction that depends on absolute
differences, one can show that the large-system limit only
works if the system is scale invariant in terms of aggregated
quantities. Nevertheless, it would be possible to relax both
of these assumptions and to work with the pair-based proxy
process with the results explicitly depending on the number
of households, which in return could lead to interesting finite-
size effects.

E. Results of the model approximation

The results in Fig. 3 are to some extent complementary to
the results in Fig. 2 that we discussed in Sec. II C. Figure 3(d)
shows capital in both sectors belonging to households that
actually invest in these sectors, which is almost equivalent to
the variables in Fig. 2(d), as it makes up almost the entirety
of these capital stocks. This can be seen in Fig. 3(c): It
shows the capital of households in the sector in which they
do not currently invest, which is approximately an order of
magnitude smaller (note the different scale of the vertical axis
in the figure).

A comparison of the results of the approximation (dashed
lines) with those of the numerical simulation of the ABM
(solid lines) in Fig. 3 shows that the approximation exhibits
the same qualitative features, such as the trends, timing,
and order of magnitude of the displayed variables, as the
microscopic model. Particularly, these results show that for
the given parameter values the macroscopic approximation
is capable of reproducing very closely the quasiequilibrium
states before and after the transition from the dirty to the clean
sector, as it lies within the standard error of the ensemble of
ABM runs. Also, the approximation is reasonably capable of
reproducing the timing of and the transient states during the
transition. This is somewhat surprising since in other works,
macroapproximations were less well able to get the timing of
the transition right.

In the following, we discuss the existing differences be-
tween the results of the approximated model and the nu-
merical simulation results. For instance, we find that the
approximation estimates the transition from investment in
the dirty sector to investment in the clean sector a bit too
early [best visible in Fig. 3(a)]. The reason for this might
be the slight underestimation of the share of clean-investing
households, leading to a slight overestimation of the share
of dirty capital in the system, which is also visible in
Fig. 3(c).

We find a second obvious discrepancy between the mi-
cromodel and the approximation in the overestimation of
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(a) (b)

(c) (d)

FIG. 3. Trajectories of dynamic variables from the macro approximation and from measurement in ABM simulations. The results of ABM
simulations (solid lines) are obtained as an ensemble average of 50 runs, with standard errors indicated by gray areas. Initial conditions are
given by equal shares of the N = 200 households investing in both sectors and equal endowments in both sectors for all households. The initial
acquaintance network among the households is an Erdős-Renyi random graph with mean degree k = 10. Other initial conditions are C0 = 0.5
and G0 = 5 × 105. All other parameters are listed in Table I. The results from the macro approximation (dashed lines of the same colors) are
obtained by integration of the ODEs that are obtained from the large-system limit with fixed per-household quantities. The initial conditions are
drawn from the same distribution as previously for the ABM simulations, e.g., Nc, [cc], and [cd] are calculated from an Erdős-Renyi random
graph with mean degree k = 10.

dirty capital of clean investors (K (c)
d ) [Fig. 3(d)] during the

transition phase between t ≈ 150 and t ≈ 200. This can
be explained by the inequality in capital holdings among
households. In the approximation, all households investing in
dirty or clean capital are assumed to have the same income,
respectively. Therefore, the probability of changing their in-
vestment behavior will change for all of them at once during
the transition phase, leading to a rapid shift of dirty investors
changing to invest in clean capital but taking their dirty capital
endowments with them [hence the sharp peak in dirty capital
of clean investors during the transition phase; see Fig. 3(d),
upper dashed line].

Also, in the micromodel, households changing from a
dirty to a clean investment strategy take their—presumably
high—endowments in dirty capital with them. Therefore, the
endowments in dirty capital of households investing in the
clean sector are relatively widespread [see gray area around
the upper solid line in Fig. 3(d)]. This has effects on the
estimated timing of the transition too. In the micromodel,

the income of households is heterogeneous. Therefore, for
each of them the probability of changing their investment
behavior changes at different points in time, i.e., poorer
households are likely to switch earlier during the transition
than richer households. Together this leads to a slower, more
spread-out transition dynamic, the micromodel resulting in a
flatter peak in the dirty capital endowments of clean-investing
households.

Another effect at play during the transition is related to the
assumptions in Eqs. (31) and (32). Namely, all households that
invest in the same type of capital have the same distribution of
clean and dirty neighbors.

In the reality of the micromodel, however, these assump-
tions that are essential to the pair approximation may well be
wrong—especially so during a rapid transition. For example,
a household that has only recently changed its state has a
neighborhood that is atypical for its group and adapts only
slowly. Consequently, when many changes in the state of the
system happen in a short time, a significant proportion of the
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population is not well described by the assumed approximate
distribution.

A number of these effects that lead to discrepancies be-
tween the micromodel and the approximation can be mitigated
by higher-order moment closure for the distribution of hetero-
geneous agent properties or higher-order motif approximation
of the network dynamic.

For instance, a higher-order moment closure approxima-
tion that tracks the variance and skewness of the distribution
of capital endowments can also account for the likelihood
of capital endowments of agents that switch their investment
decision to be biased. This would presumably mitigate the
overestimation of dirty capital of clean investors [K (c)

d ] during
the transition as well as the underestimation of [K (c)

d ] before
the transition and therefore also estimate the timing of the
transition even more precisely.

Similarly, a higher-order motif approximation of the net-
work dynamic can describe the heterogeneity in the local dis-
tribution of opinions in the neighborhood of individual agents
and correct for the effects of this, especially during periods
of transient nonequilibrium dynamics in the approximated
model.

In the previous section we derived a set of ordinary
differential equations describing the stochastic dynamics of
an agent-based model in terms of aggregated variables in
the large-system limit. We intend this derivation to be a
prototypical example for a macroeconomic model with true
microfoundations based on heterogeneous agents, given that
their microscopic interactions are of similar complexity. As
such, it might also serve as a starting point for the application
and development of similar models for other kinds of social
dynamics. For example, an extension to continuous opinions
requiring a Fokker-Planck-type description would follow nat-
urally and would grant compatibility to a large body of models
for social influence (see Ref. [95], pp. 988 ff.).

IV. BIFURCATION ANALYSIS

The description of the model as a system of ordinary differ-
ential equations allows for the analytical analysis of emergent
model properties such as multistability, tipping, and phase
transitions. As a proof of concept application we subsequently
show the results of a bifurcation analysis.

A. Methods

Bifurcation theory is the analysis of qualitative changes of
dynamical systems under parameter variation, for example,
between a regime with a unique equilibrium (fixed point)
and a multistable regime. The parameter value at which a
qualitative change, for example, in the stability of an equi-
librium, occurs is called a critical value or bifurcation point.
Bifurcations are classified according to the changes in dy-
namical properties of the system [96,97]. Analytical methods
have limited scope to identify bifurcation points in nonlinear
systems. Methods like numerical continuation can handle
complex systems of ordinary differential equations like the
one derived in Sec. III [98]. Consequently, we use numerical
continuation from PyDSTool [99,100], a PYTHON package for
dynamical systems modeling and analysis [101].

A common bifurcation type that appears in our model
is the fold bifurcation, which is also known as saddle-node
bifurcation. This type is a local bifurcation in which a stable
fixed point collides with an unstable one and both disappear.

Varying two bifurcation parameters at the same time can
result in even richer qualitative changes in the dynamics. A
prevalent example of such a bifurcation is the cusp geometry
[97, p. 397]. A change in the second bifurcation parameter in
this geometry beyond a certain value results in the so-called
cusp catastrophe: the multistability of the system disappears
for all values of the first bifurcation parameter. As we show in
the following, the macroapproximation of our model indeed
exhibits a cusp bifurcation.

B. Discussion of results

A considerable advantage of the description of our model
in terms of ordinary differential equations (28f), (28i), (50),
and (51) over agent-based modeling is the fact that it allows
for the usage of established tools for bifurcation analysis. As
a proof of concept, we show some results in Fig. 4. Here, we
analyze the possible steady states of the system with abundant
fossil resources, e.g., the possible equilibrium states of the
model in the regime before the fossil resource becomes scarce
and acts as an external driver on the system, pushing it towards
clean investment. Therefore, we set the resource depletion
to 0, i.e., we keep the resource stock in Eq. (28f) constant,
G(t ) ≡ G0, such that the resource usage cost in Eq. (6) still
depends on resource use R but is not increased by deceasing
resource stock G. Thereby, we eliminate the rising resource
extraction cost as the constraint in (7) and (10) that eventually
halts production in the dirty sector. We choose the learning
rate γ as the bifurcation parameter, as we expect it to yield
interesting results. Generally, in nonlinear dynamical systems,
exponential factors are expected to have a strong influence
on dynamical properties. Therefore, changing these factors
is expected to lead to bifurcation behavior. Consequently, in
Figs. 4(a) and 4(c) we see that for certain learning rates γ the
macroscopic approximation exhibits a bistable regime limited
by two fold bifurcations with bifurcation points indicated by
LP1 and LP2. In this regime both low investment in the clean
sector together with high investment in the dirty sector and
low knowledge as well as high investment in the clean sector
together with low investment in the dirty sector and high
knowledge are stable states of the economic system. This
means that in this region economic outcomes are highly path
dependent. Starting with slightly different knowledge about
clean technologies may lead to widely differing adoption
levels of the technology in the long run.

Figure 5 shows an example of how this bifurcation struc-
ture of the dynamical system depends on other parameters.
When the total factor productivity in the dirty sector, bd ,
is varied the system undergoes a cusp bifurcation. Above a
certain value of bd the system exhibits bistability, whereas
below this value it does not.

Clearly, this choice of bifurcation parameters is only one
of many, and other choices may very well lead to interesting
results. However, we had to limit ourselves to this proof-
of-concept study since an extensive analysis of all possible
combinations would be well beyond the scope of this paper.
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FIG. 4. Bifurcation diagram: Continuation of the stationary solution of the macroscopic approximation without resource depletion, i.e.,
with Ġ = 0 instead of the rate R as given by Eq. (28f). The bifurcation parameter is γ , the elasticity of knowledge in the clean sector, which
also reflects the elasticity of learning by doing of the respective technology. The points labeled P1 and P2 are the beginning and end points of
the continuation line; points LP1 and LP2 are the bifurcation points of twofold bifurcations. The stable unstable manifold is indicated by the
dotted line; the stable manifold is indicated by the solid line. Note that the intersections of the curves in (b) and (d) do not actually mean that
the stationary manifold is not a bijective function of the bifurcation parameter γ but rather a result of the projection of the multidimensional
manifold onto the two-dimensional space.

Multistability of the economy would mean that policies
could make use of inherent dynamical properties of the system
to reach a desired state or bring the system onto a desired
pathway. For example, policy measures such as regulation or
taxes can help drive the system into another basin of attraction,
i.e., a region of the phase space in which trajectories approach
another equilibrium in the long term. To do so, the system
has to cross a separatrix, the boundary between two basins of
attraction. After this boundary is crossed, the policy measure
can be discontinued, and the system’s dynamics guarantee that
it reaches the new equilibrium. Figure 5 shows that such an

intervention could be complemented by an additional policy
measure, lowering the total factor productivity in the dirty
sector, effectively reducing the distance of the stable manifold
from the separatrix and thereby presumably making the first
measure less costly. Another possibility to take advantage
of the system’s inherent dynamical structure is to use its
hysteresis, i.e., to find policy measures that change the first
bifurcation parameter γ across a bifurcation point or to change
the second bifurcation parameter bd to move the bifurcation
point past the current state of the system (or a combination
of both), after which the system would fall to the other
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FIG. 5. Cusp bifurcation diagram: Stationary manifold from
Fig. 4(a) for different values of the total factor productivity in the
dirty sector bd . Red circles indicate the limit points of the one-
dimensional fold bifurcation separating the stable and the unstable
parts of the stationary manifold indicated by the solid and the dashed
line, respectively. For a critical value of bd ≈ 1.4 and γ ≈ 0.03034
the two limit points converge and annihilate each other. This codi-
mension 2 bifurcation with bifurcation parameters γ and bd is called
a cusp catastrophe. In our two-sector economic model, this results
in a lock-in effect in the dirty sector; i.e., below this point, there is
a smooth transition of production from the dirty to the clean sector
and above this point production in the dirty sector is continued even
though production in the clean sector would be more efficient.

branch of the stable manifold. Afterwards, the policy can be
discontinued and the system would remain in its new state. For
such considerations, tools from dynamical systems theory and
topology can be used to classify the phase space of the system
into regions with respect to the reachability of a desirable
state [93,102]. This allows designing temporary policies that
leverage the multistability of the socioeconomic system.

V. CONCLUSION

This paper combines a set of methods to overcome
shortcomings of current approaches to base macroeconomic
models on microfoundations. While representative agent ap-
proaches are unable to capture dynamics that emerge from
structured and local interactions of multiple heterogeneous
agents, computational agent-based approaches have the dis-
advantage that they make tractable model analysis difficult
and computationally challenging. We demonstrated that a
combination of approximation techniques allows finding a
macrodescription of a multiagent system in which hetero-
geneous agents interact locally on a complex adaptive net-
work as well as via aggregated quantities. In contrast to
previous analytic work, where the network structure was
either static [36], restricted to starlike clusters [23], or ap-

proximated by a mean-field interaction approach and hence
neglected [24,25,29,30,35], we explicitly treat the structure
of the adaptive complex interaction network with appropriate
approximation methods.

We develop a stylized two-sector investment model, in
which investment decisions are driven by a social imita-
tion process, to showcase the three approximations: First,
a pair approximation of networked interactions takes into
account the heterogeneity in interaction patterns. Second,
a moment-closure approximation makes it possible to deal
with heterogeneous attributes that characterize the agents.
Third, the large-system limit abstracts from effects due to the
finite population size. It is only possible to take this limit if
the model has at least one of the following properties: (i)
individual interactions depend only on relative rather than
absolute quantities such that the size of households can be
decreased while taking the number of households to infinity
or (ii) the economic production functions exhibit constant
returns to scale such that they scale linearly with the number
of households N . The resulting set of ordinary differential
equations captures the effect of local interactions at the system
level while still allowing for analytical tractability.

A comparison between a computational version of the
ABM and the macrodescription reveals that the approximation
works well for parameter values distinct from special cases
even if only accounting for first moments. Taking more mo-
ments into account would increase the accuracy but comes
at the cost of higher dimensionality and complexity of the
macroscopic dynamical system.

Our model shows that social imitation dynamics add inertia
to the investment decisions in the system that cannot be
captured by a representative agent approach. The imitation
process results in social learning such that agents tend to direct
their investments into the more profitable sector over time.
Because of this, the shift of investments from the dirty (fossil)
to the clean (renewable) sector is driven only by economic
factors, namely, increasing exploration and extraction costs
for the fossil energy resource. Thus, we conclude that neutral
imitation of better-performing peers is not a feasible mecha-
nism to initiate a bottom-up transformation of the economy.
Directed imitation, for example, driven by changes in social
norms, and supporting policies that make dirty production less
profitable are needed to initiate a transformation towards a
sustainable economy in the absence of fossil resource short-
age.

Finding a system of ordinary differential equations to
approximate ABMs is useful because it makes the analysis
of the dynamical properties of the model much easier. One
promising application here is bifurcation theory, as illustrated
in Sec. IV. Furthermore, it opens the possibility of mathe-
matically proving model properties such as the dependency
between different parameters and variables in the model.

In the context of climate economics and policy, the pro-
posed techniques are especially important because they allow
investigation of the interplay of learning agents adapting to
new policies and effects of shifts in values and preferences.
The resulting changes in individual behavior and their impact
on macroeconomic dynamics can be studied in a comprehen-
sive modeling framework. Large shifts in investments that are
required to reach the goals of the Paris agreement are likely to
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FIG. 6. Comparison of a microscopic model with adaptive network dynamics with a microscopic model with a fully connected network
for varying the rewiring rate ϕ. All other parameters are listed in Table I. Solid lines indicate results with network adaptation; dashed lines,
results with a fully connected network. Initial network topology is a Erdős-Renyi random graph.

profit from both policies that rely on price signals and policies
that target individual norm change, interaction, and behavior
not unlike those researched in, e.g., the public-health context
[86,103,104]. The presented techniques can help us to better

understand how such behavioral interventions would impact
the macrolevel dynamics of the economic system.

In this regard, there are several promising avenues to
develop the model and approximation techniques further: For

FIG. 7. Model trajectories with varying ϕ values. All other parameters are listed in Table I. Results are ensemble averages of 200 runs.
Initial network topology is a Erdős-Renyi random graph.
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example, instead of binary opinions, the social interaction
model can use continuous variables to represent gradual
opinions, drawing on a variety of models of social influence
(see Ref. [83], pp. 988 ff.). An approximation of the agent
ensemble would then need a Fokker-Planck-type description
rather than a master equation.

Our model could be extended to explicitly include policy
instruments such as a carbon tax and explore its impact on the
investment decisions of the heterogeneous agent population.
Another promising modification could include consumption
decisions in our two-sector model. Consumption decisions are
strongly influenced by social norms and interactions [105].
Their inclusion could inform the discussion about green con-
sumption as a potential mechanism for a bottom-up transfor-
mation towards a more sustainable economy.

Finally, the techniques proposed in this paper could be
used to approximate other systems that interact both lo-
cally in a network and in an aggregate way at the sys-
tem level, for example, social-ecological systems or neural
networks.
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APPENDIX A: COMPARING ADAPTIVE WITH FULLY
CONNECTED NETWORKS

We compare the dynamics of the micro model with adap-
tive network rewiring with the dynamics of the micro model
with a fully connected acquaintance network. The model
with a fully connected acquaintance network is equivalent to
a well-mixed model with pairwise interactions between all
agents. The results in Fig. 6 show that the well-mixed model
approximates the adaptive network model for ϕ = 0.5 quite
well. However, for increasing ϕ, the fragmentation increases
in the adaptive network model, indicated by the lower fraction
of links between agents with different savings decisions (clean
and dirty), [cd]/M. This cannot be captured by the fully
connected network model. As an economically observable
result, this leads to significantly slower tipping in the adaptive
network model.

APPENDIX B: EFFECTS OF THE REWIRING RATE ϕ ON
MODEL DYNAMICS

We analyze the effect of changes in the network rewiring
rate ϕ on the model dynamics. The results in Fig. 7 indicate
that for an increasing rewiring rate ϕ the model undergoes a
transition from a connected network state with a considerable
number of connections between agents investing in different
sectors to a fragmented network state in which such connec-
tions are effectively nonexistent. This transition is especially
apparent in the fraction of [cd] links in the network given
in Fig. 7(b). This fragmentation transition is well known for
adaptive voter-type models [39,41,89,90].

APPENDIX C: ODEs RESULTING FROM APPROXIMATION

The following are the full ordinary differential equations resulting from (50), (51), (28f), and (28i):

ẋ = −εx

τ
− pcd z(ε − 1)(φ − 1)(x + 1)

τ (y + 1)
+ pdcz(ε − 1)(φ − 1)(x − 1)

τ (y − 1)
, (C1)

ẏ = −m(pcd z(ε − 1)(φ − 1) − pdcz(ε − 1)(φ − 1) + 0.5ε(y − 1) + 0.5ε(y + 1))

τ

+ (x − 1)(0.25εz(x − 1) − 0.25ε(x + 1)(y + z − 1) + 0.5φz(ε − 1))

τ (y − 1)

+ (x + 1)(0.25εz(x + 1) + 0.25ε(x − 1)(y − z + 1) − 0.5φz(ε − 1))

τ (y + 1)
, (C2)

ż = −εm(2z − 1)

τ
− 0.5pcd z(ε − 1)(φ − 1)((x + 1)(y + 1) − 2(y − 2z + 1)(my + m − 0.5x − 0.5))

τ (y + 1)2

− 0.5pdcz(ε − 1)(φ − 1)((x − 1)(y − 1) − 2(y + 2z − 1)(my − m − 0.5x + 0.5))

τ (y − 1)2

+ (x − 1)(0.25εz(x − 1) − 0.25ε(x + 1)(y + z − 1) + 0.5φz(ε − 1))

τ (y − 1)

− (x + 1)(0.25εz(x + 1) + 0.25ε(x − 1)(y − z + 1) − 0.5φz(ε − 1))

τ (y + 1)
, (C3)

042311-16



MACROSCOPIC APPROXIMATION METHODS FOR THE … PHYSICAL REVIEW E 102, 042311 (2020)

K̇ (c)
c = K (c)

c (−δ + rcs) + K (c)
d rd s + Lsw − 0.5K (c)

c (x + 1)(pcd z(ε − 1)(φ − 1) + 0.5ε(y + 1))

τ (y + 1)

+ 0.5K (d )
c (x − 1)(pdcz(ε − 1)(φ − 1) − 0.5ε(y − 1))

τ (y − 1)
, (C4)

K̇ (d )
d = K (d )

d (−δ + rd s) + K (d )
c rcs + Lsw + 0.5K (c)

d (x + 1)(pcd z(ε − 1)(φ − 1) + 0.5ε(y + 1))

τ (y + 1)

− 0.5K (d )
d (x − 1)(pdcz(ε − 1)(φ − 1) − 0.5ε(y − 1))

τ (y − 1)
, (C5)

K̇ (c)
d = −K (c)

d δ − 0.5K (c)
d (x + 1)(pcd z(ε − 1)(φ − 1) + 0.5ε(y + 1))

τ (y + 1)

+ 0.5K (d )
d (x − 1)(pdcz(ε − 1)(φ − 1) − 0.5ε(y − 1))

τ (y − 1)
, (C6)

K̇ (d )
c = −K (d )

c δ + 0.5K (c)
c (x + 1)(pcd z(ε − 1)(φ − 1) + 0.5ε(y + 1))

τ (y + 1)
− 0.5K (d )

c (x − 1)(pdcz(ε − 1)(φ − 1) − 0.5ε(y − 1))

τ (y − 1)
,

(C7)

Ġ = −Lπbd

eR

⎛
⎝ (

bd
(
K (c)

d + K (d )
d

)κd
) 1

1−π
(
1 − G2

0bR

G2eR

) 1
1−π(

bd
(
K (c)
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d

)κd
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⎠π(

K (c)
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d

)κd
, (C8)

Ċ = −Cδ + Cξ bc

⎛
⎝ L

(
Cξ bc
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K (c)
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)κc
) 1
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bd
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, (C9)

where pcd and pdc are given by Eq. (45) and (46) and rc, rd , and w are given by

rc = Lπκc
(
Cξ bc

(
K (c)

c + K (d )
c

)κc
) 1

1−π
(
C

1ξ

1−π b
1

1−π
c

(
K (c)
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) 1κc
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bd
(
K (c)

d + K (d )
d

)κd
(
1 − G2

0bR

G2eR

)) 1
1−π

)−π
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, (C10)

rd = Lπκd
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bd
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w = Lπ−1π
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