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Community structures in allelopathic interaction networks: An ecoevolutionary approach
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Evidence is mounting that the race of living organisms for adaptation to the chemicals synthesized by their
neighbors may drive community structures. Here, an ecoevolutionary model for community assembly through
resource competition, toxin-mediated interactions (allelopathy), and evolutionary branching is investigated. We
found that stable communities with increasing biodiversity can emerge at weak allelopathic suppression, but
strong chemical warfare drastically impairs diversity. For successive invasion events, the allelopathic interaction
networks exhibit, respectively, Gaussian and Weibull degree distributions at weak and strong allelopathy. For
the branching process dynamics, degrees scale as power laws truncated by stretched exponentials in both
regimes. In addition, allelochemical interactions tend to be arranged in modules with low clustering coefficients
and disassortative behavior to ensure community stability. So, in a homogeneous environment, species-rich
communities can be assembled only at the context of a weak biochemical warfare between organisms, and
even under this regime species interact with only a few others.
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I. INTRODUCTION

Conventional explanations of biodiversity postulate that
it is passively shaped by niche differentiation, density-
dependent predation pressure, habitat heterogeneity, or fluc-
tuations in the resources required by the biological communi-
ties. Furthermore, stabilizing mechanisms relying on negative
intraspecific interactions, stronger than interspecific interac-
tions, are essential for species coexistence [1] since they
cause species to limit themselves more than other organ-
isms. Without stabilizing mechanisms, the inhibitory effects
of competition on inferior competitors will ultimately lead to
their extinction. Classically, such stabilizing interactions have
been thought to result from resource partitioning: Competing
species can coexist provided they are most limited by different
resources and consume the resources they are most limited by
at a higher rate than do other species [2].

However, the conventional view that biodiversity is ruled
by resource competition is challenged by the extraordinary
species richness observed within microorganism communities
in seemingly uniform environments. Indeed, only a highly
structured habitat could sustain large diversities, but not even
such astronomical species numbers. Again, we are looking
at the famous paradox of the plankton [3]. Moreover, experi-
ments performed with plants have neither shown intraspecific
unequivocally exceeding interspecific competition [4] nor
competing plants coexisting through resource partitioning [5].
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Also, abiotic supply rates seems to be relatively high and
stable over time, whereas the resident species neither reduce
resource densities nor interfere greatly with resource access
[6].

In contrast, interference competitions mediated by the
production of toxic chemical compounds—antibiotic, phyto-
toxins, lactate, etc.—are ubiquitous in biological communi-
ties, from microorganisms, such as bacteria [6], yeasts [7],
and other fungi [8] to cancer cells [9,10] and plant inva-
sions [11]. So, in addition to other nontrophic interactions
(e.g., the rise of mycorrhizal networks in plant communities
[12], mutualism at weak direct competition [13], and facilita-
tion [14], the biochemical warfare between living organisms
may drive species coexistence and community composition.
Nonetheless, the alternative explanation for the emergence
of biological communities driven by competing interactions
between their species is challenging—mainly, if such interac-
tions involve inhhibitions or suppressions mediated by toxins
released in the environment, i.e., allelopathy. Intuitively, mul-
tiple toxic environments are the least expected to sustain
great biological diversity. Indeed, some invasive plants release
secondary metabolites (allelochemicals) to disrupt the native
communities they invade [15,16]. Therefore, community and
invasion ecology are naturally interconnected because both
the persistence of a species in a community or its invasion
success abroad its native habitat primarily depends on its
ability to increase from low density [17–19].

In this paper, our goal is to discuss how community
structures of populations enforced to adapt and survive the
direct allelochemical suppression of each other is affected by
the evolutionary history of the interaction. Specifically, we
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extend previously proposed models for the allelopathic war-
fare between two species [20–22] by integrating ecological
and evolutionary processes. In the model, the genetic diver-
sity is generated by mutations that induce changes in the
allelochemical traits of the evolving species and selection is
driven by ecological interactions, namely, intra- and inter-
specific resource competition and allelopathic suppression.
These interactions determine how species evolve and enhance
or diminish the diversity of communities. A minor part of
the results studied in this paper was previously reported in
Ref. [22]. We decided to include such results, but extended
and more thoroughly discussed.

II. ECOEVOLUTIONARY MODEL FOR ALLELOPATHIC
COMMUNITIES

To model the community dynamics, a set S of l ∈ N bio-
logical species with populations given by N = (N1, N2,··· , Nl )
is considered. The interactions among these species occurs
only via intra- and interspecific resource competition and al-
lelopathic suppression. Thus, every species in S synthesizes
and releases toxic secondary chemical compounds (microcins,
fitotoxins, etc.) that enhance the mortality of other species.
The strengths of such interactions depends on the toxin con-
centration B = (B1, B2,··· , Bl ) and vary in time because B
depends on the abundance of the species. Furthermore, the
community assembly proceeds from an initial subset S0 ⊆ S
by randomly adding new species through mutations fixed in a
fraction of resident species’ offspring.

A. Ecological dynamics

The temporal evolution of the biological community in a
homogeneous environment is described by the coupled ordi-
nary differential equations:

dNi

dt
= ri

(
1 −

l∑
j=1

νi jNj

)
Ni −

l∑
j �=i

μi j�
(k)
i j Ni,

dBi

dt
= βi Ni − δi Bi −

l∑
j �=i

γ ji Nj Bi. (1)

Here, Ni stands for the population density of the species i that
produces the allelochemical concentration Bi, respectively.
Also, ri, βi and δi, i = 1, 2, . . ., respectively, are the reproduc-
tion, toxin release, and natural degradation rates associated to
the competing species. A classical interspecific competition
for the environmental resources is assumed. The parameters
νi j are the competition coefficients that measure the extent
to which each species presses upon the resources used by
the others. The term −∑

j �=i μi j�
(k)
i j (y j ) represents species

decreases induced by the allelochemicals released by their
allelopathic suppressors, in which μi j is the mortality rate of
the species i induced by the toxin released by its competitor j.
Finally, the quantity y j = γ jiNiB j represents the overall con-
sumption of the toxin j by the species i, i �= j, with per capta
absorption rate γi j . These quantities depend on the toxin’s
levels in a linear way. Different Holling types I, II, and III

functional responses were assumed,

�
(k)
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Bj

B0
(k = 1)

Bj

ci+Bj
(k = 2)

B2
j

ci+B2
j

(k = 3),

(2)

where the parameter B0 ≡ 1 is the slope of the linear response
used to make it dimensionless and ci controls the toxin’s
efficiencies in poisoning their competing species. All these
response functions assume null thresholds for toxin effects,
but those with k > 1 impose saturation to the allelopathic
suppression. Also, all the response functions involve the total
toxin concentration.

Equations (1) and (2) for two species were extensively
investigated through analytical and numerical methods in
Refs. [20–22]. In the present paper, up to l = 100 competing
species were considered and the interacting parameters νi, j ,
γ j,i, and μi, j define networks in which the species are the
nodes. These parameters can be expressed as νi, j = νi, j εi, j ,
γ j,i = γ j,i ζ j,i, and μi, j = μi, j ζi, j , in which εi, j = 1 (ζi, j = 1)
if species i competes with (poisons) species j, but εi, j = 0
(ζi, j = 0) if i does not compete (poisons) j. Every εi, j, ζi, j = 1
is a link connecting two species. The set of values εi, j and ζi, j

define two matrices ε and ζ which characterize the compe-
tition and allelochemical interaction networks, respectively.
These matrices are examples of the adjacency matrix, cen-
tral in network theory [23–25]. The diagonal elements of ε

are εi,i = 1 and represent intraspecific competition, with all
νi,i = 1 by definition. In turn, we set all ζi,i = 0 to avoid
self-allelopathic suppression.

Under competition and allelopathy, the system dynamics—
Eq. (1)—reaches a stationary state (N∗, B∗) determined by the
species initially present and their ecological interactions. Even
at weak interspecific competition (the coexistence regime),
some populations are eventually extinct and the community
diversity (species richness) decreases.

B. Evolutionary dynamics

The interplay between evolutionary processes and eco-
logical interactions among species drives the origin and
maintenance of biological communities [26]. In our math-
ematical model, ecology and evolution are integrated by
assuming that mutations in one of the competing species
generate a new one. Such mutations, occurring after the com-
munity reaches a stationary state, is the source of genetic
diversity and disturbs the system dynamics. Indeed, the newly
introduced species, as well as the old ones in the community,
must survive and evolve in response to novel conditions. Ul-
timately, the ecological dynamics reaches another stationary
state comprised by distinct populations and interaction net-
works. Two mechanisms for species introduction were tested.

1. Sequential invasion events

In a stationary community currently comprised by n
species, an alien species is introduced and a new node, n + 1,
representing it is added to the ecological interaction network.
Since we assume that this alien species competes for resources
with all the n species already present in the community, their
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matrix elements in the competition interaction network are
εn+1,i = εi,n+1 = 1 for i = 1, . . . , n. In turn, concerning al-
lelochemical suppression, we assume that the alien species
affects kout

n+1 of the old ones and is affected by kin
n+1 of them.

So, kout
n+1 elements ζn+1,i in the row n + 1 of the enlarged

adjacency matrix ζ are fixed in 1 and the remaining in 0. To
do this, an integer i is randomly chosen in the interval [1, n],
and we set ζn+1,i = 1, with a probability p = 1 − nout/n, or
ζn+1,i = 0, with a probability 1 − p = nout/n. Then, a distinct
i is randomly selected and the protocol repeated until kout

n+1
elements in the (n + 1)th row of ζ are set to 1. The value
nout ∈ [1, n] defines the probability p and, again, is an integer
random number chosen with equal change. On average, nout

determines the fraction of species in the community which do
not interact with the alien species. Analogously, kin

n+1 elements
ζi,n+1 in the column n + 1 of the enlarged adjacency matrix are
fixed in 1 and the remaining in 0. The same protocol is used to
determine the kin

n+1 nodes i that suppress the node n + 1 (i.e.,
ζi,n+1 = 1). But now the probability used is p = 1 − nin/n.
Finally, the initial toxin concentration of the alien species is
Bn+1 = 0 and its population density is Nn+1 = 0.01N∗

i , with
N∗

i corresponding to the stationary population density of one
species chosen at random between the n current members of
the community. Regarding the initial community structure, the
sequential invasion event (SIE) evolutionary dynamics starts
from a single species.

2. Branching process

The new species n + 1 introduced in the network descends
from one of the n species present at the community station-
ary state. The ancestor species i is randomly chosen and
only their allelochemical traits are mutated in its descendant
species n + 1. Specifically, all the kin

i input and kout
i output

connections of the ancestor node i are inherited by the new
node n + 1, except one of them. With equal chance, either
a randomly chosen input ζ j,i or output ζi, j of node i will be
activated (ζ j,n+1 = 1) in node n + 1 if inactive (ζ j,i = 0) in
i, or vice versa. Since its is supposed here that the resource
competition traits are not changed by mutations, εi, j = εn+1, j

and ε j,i = ε j,n+1 for j = 1, . . . , n. Again, the initial toxin
concentration of the new species is Bn+1 = 0 and its popula-
tion density is Nn+1 = 0.01N∗

i . Finally, concerning the initial
community structure, the branching process (BP) evolutionary
dynamics starts from a network with n0 < l nodes. Different
starting graphs for the BP dynamics are shown in Fig. 1.

C. Numerical integration

The previously described ecoevolutionary processes were
investigated through numerical integration using the fourth-
order Runge-Kutta method. Distinct distributions for the
values of the competition and allelochemical parameters εi j

and ζi j were employed. Also, 200 independent evolutionary
histories were generated for the SIE and BP dynamics, in the
latter case for each initial graph shown in Fig. 1. From the
numerical integrations, the adjacency matrix at the successive
stationary states for each evolutionary history were obtained.
Then, the community structures (interaction network topolo-
gies) and species richness were determined for both SIE and
BP dynamics.

FIG. 1. Allelopathic networks used as starting structures for the
BP dynamics. The species interactions are indicated by arrows. In
numerical integrations, the population densities Ni (0) = 0.7 and
toxin concentrations Bi (0) = 0 were fixed.

III. RESULTS

The SIE and BP dynamics were analyzed for three distinct
scenarios considering functional responses 2. In the first one,
called a homogeneous SIE, all the original and introduced
species have equal competition and allelopathic traits: ri =
1 ∀i, νi j = 0.1 and εi j = 1, ∀i, j and γi j = 0.1, ∀i, j, ci =
0.1, βi = 0.1, and δi = 0.2, with weak (μi j = 0.1) or strong
(μi j = 0.5) alellopathic suppression ∀i, j. In the second sce-
nario, called heterogeneous competition, the allelochemical
traits are equal, as before, but the mortality effect is weak
(μi j = 0.1) and competition coefficients νi j are disordered,
i.e., randomly drawn from a uniform distribution on the in-
terval (0,1]. Thus, the species can have different competition
but the same allelochemical capabilities. Finally, in the third
scenario, called completely heterogeneous, it is supposed that
both competition and allelochemical traits are disordered and
independently drawn from uniform distributions on the in-
terval (0,1]. Only the toxins’ degradation and uptaken rates,
δi = 0.2 and γ ji = 0.1, are assumed the same for all species.
For BP dynamics, the scenarios are the same of SIE except in
completely homogeneous scenarios was tested only for weak
allelopathic suppression (μi j = 0.1) ∀i, j. Results concerning
the absorption effect in the response functions 2 are reported
in the Supplemental Material [27].

In Fig. 2, the average diversity as a function of the num-
ber nSIE and nBP of, respectively, SIE and BP events are
shown. The diversity is defined as the number of surviving
species at the new community stationary state reached after
an SIE or BP event. For the SIE dynamics, communities
exhibiting large diversities can be assembled at weak allelopa-
thy (μ = 0.1). This is the rule for all response functions
tested. Moreover, the diversity decreases as the response to
toxins increases, as should be expected. Indeed, except for
small (x < 0.11) or large (x > 0.89) toxin concentrations,
the inequalities �(1)(x) < �(3)(x) < �(2)(x) are satisfied in
our simulations. In contrast, strong allelopathic suppressions
drastically reduce community diversity [see Supplemental
Fig. 1(a)]. In addition, community diversity is reduced when
competition (νi j ∈ (0, 1]) or competition and allelopathy are
heterogeneous (all parameters are drawn from random dis-
tributions, except ri = 1, δi = 0.2, and γi j = 0.1 ∀i, j). The
introduction of heterogeneity in competition coefficients has
stronger effects as shown in Fig. 2(b). In comparison with
Fig. 2(a), a drastic decrease in diversity is observed even
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FIG. 2. Average diversity for 200 independent ecoevolutionary histories as function of the number nSIE and nBP observed after successive
invasion events SIE (a)–(c) and branching process BP (d)–(f). In the SIE dynamics, the community always starts from a single species,
whereas in BP dynamics the initial communities are the graphs shown in Fig. 1. The upper, middle, and bottom plots refer, respectively,
to homogeneous (ri = 1, νi j = μi j = γi j = 0.1, ci = βi = 0.1, and δi = 0.2 ∀i, j) competition and allelopathic suppression, heterogeneous
competition (νi j ∈ (0, 1], randomly drawn), and completely heterogeneous (both competition νi j and allelopathic μi j , ci, and βi parameters
randomly chosen in (0,1]) scenarios. Diversities for typical individual realizations, shown in Supplemental Fig. 3, evidence the presence of
small noises leading to very smooth average curves.

under weak allelopathy μ = 0.1 and for all response func-
tions. The same qualitative behavior is observed in BP
dynamics (see Figs. 2(d)–2(f), where the middle and bottom
plots evidence that heterogeneous competition and allelo-
chemical traits strongly decrease community diversity in
comparison to homogeneous traits (upper plot). Disorder
(heterogeneities) in the allelochemical traits further rein-
forces extinctions in the network. Finally, we believe that the
monotonous increase of diversity observed for weak homoge-
neous competition and allelopathy with functional responses
�(1,3) will eventually stop at larger numbers of invasion or
speciation events. After that, the diversity will decrease and
behaves similarly to the regimes of strong allelopathy or
heterogeneous competition (which exhibit saturation). Hence,
after an eventual saturation, the statistical properties for these
weak interactions recovery those of heterogeneous scenarios.

The degree distributions P(k) for allelochemical inter-
action networks generated by the SIE (a,b) and BP (c-e)
dynamics are shown in Fig. 3. Normal (Gaussian) and Weibull
distributions were observed for in- and out-degree distribu-
tions P(kin ) and P(kout) (data not shown) depending on the
mortality μ induced by allelopathy in SIE. For weak al-
lelopathic suppression, P(kin ) is a Normal distribution [see
Fig. 3(a)]. In contrast, at strong allelopathic suppression,
P(kin ) is Weibull distributed. The apparent anisotropies ob-
served in the insets for �(1,2,3) are very weak, as supported
by skewness S ∼ 0 and kurtosis K ∼ 3. The ratio 〈k2〉/〈k〉 is

obtained for either weak or strong allelopathic suppression μ,
indicating that the SIE allelochemical networks are homoge-
neous [23]. The in- and out-degree distributions, P(kin ) and
P(kout), for the allelochemical interaction networks generated
by the BP dynamics are fitted by power-laws truncated by
stretched exponentials P(k) ∼ k−α exp(−η kλ) (Weibull-like
distributions). The ratio 〈k2〉/〈k〉 ∼ 〈k〉 is observed only for
both competition and allelopathy homogeneous and weak
(ν < 1 and μ = 0.1), indicating the homogeneous nature of
such networks. In contrast, 〈k2〉/〈k〉 � 〈k〉 was found for the
remaining cases: (i) weak homogeneous competition (ν < 1)
and strong homogeneous allelopathy (μ = 0.5), (ii) weak het-
erogeneous competition (νi j ∈ (0, 1] randomly chosen) and
weak homogeneous allelopathy (μ = 0.1), and (iii) heteroge-
neous competition and allelopathy (νi j, μi j, ci and βi ∈ (0, 1]
chosen at random). In these regimes, the emergence of hetero-
geneous networks is expected.

In Fig. 4, the average betweenness centrality 〈xi〉 is plot-
ted for every node i present at the stationary allelochemical
network after l = 100 SIE [Figs. 4(a) and 4(b)] and BP
events Figs. 4(c)–4(e). In SIE, 〈xi〉 decreases dramatically as
the strength of allelopathic suppression increases. Also, the
stronger the responses to toxins (�(2) for μ = 0.1 and �(2,3)

for μ = 0.5), the smaller is〈xi〉. Furthermore, the average
centrality is almost constant at weak allelopathic suppression,
indicating a homogeneous connectivity pattern for every node
and the absence of hubs, bridges joining distinct modules,
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FIG. 3. Degree distributions P(k) for SIE (a), (b) and BP (c), (e) allelochemical interaction networks in which the competition and
allelochemical traits are the same for all species. In SIE dynamics, the plots refer to homogeneous scenarios (ri = 1, νi j = γi j = 0.1,
ci = βi = 0.1, and δi = 0.2 ∀i, j) in weak (μi j = 0.1) and strong (μi j = 0.5) allelopathic suppression regimes. Insets: Log-log plots of the
in-degree distributions. For the BP dynamics, the in- and out-degree distribution functions in directed allelochemical networks are shown.
The upper, middle, and bottom plots refer, respectively, to homogeneous, heterogeneous competition, and completely heterogeneous scenarios
whose parameters are those used in Fig. 2. Solid curves correspond, respectively, to (a) Gaussian and (b) Weibull fittings to the data in SIE
dynamics. For BP dynamics, the solid curves are fits using typical power laws truncated by a stretched exponential (c)–(e). The parameters
used to fit these distributions and statistical metrics are listed in Tables 1 and 2 in the Supplemental Material.

and star graphs in the network. This feature is consistent with
the typical network structures seen in the Fig. 4(a) plot. In
contrast, at strong allelopathy [see Fig. 4(b)], the average
centrality fluctuates probably due to the emergence of mod-
ules in the network, as suggested by the typical structures for
�(1) and μ = 0.5. In addition, the small values for 〈xi〉 are a
consequence of very small and sparsely connected network
structures. Conversely, for BP, 〈xi〉 decreases dramatically
as the strength of allelopathic suppression increases. Indeed,
even at weak suppression (μ = 0.1, upper plot), strong re-
sponses to toxins (�(2)) lead to small average centrality.
However, in contrast to the SIE dynamics for which a constant

〈xi〉 is observed, the centrality is higher for the first species
introduced in the community and monotonously decreases for
those species attached later.

To further characterize these BP networks, the clustering
coefficient and the average degree among nearest neighbors of
a node with degree k were also determined. Figure 5(a) shows
the average local clustering as a function of in-and out-degree.
Our results reveal that both Cc(kin ) and Cc(kout ) increase
slowly for small degrees but exhibit stretched exponential cut-
offs for large degrees, i.e., Cc ∼ k−α exp(−η kλ) and η > 0.
The stretched exponential decays of both Ccin and Ccout for
large degrees are faster than power-lay decays, Cc(k) ∼ k−α

FIG. 4. Average betweenness centrality for each node (surviving species) in communities generated from a single initial species through
SIE (a), (b) and from the initial graphs shown in Fig. 1 through the BP dynamics (c)–(e). Typical network structures associated to each
functional response are also included. Plots (a) and (b) describe the homogeneous competition and allelopathy at weak (μ = 0.1) and strong
(μ = 0.5) allelopathic suppression. Inset: Very small but nonvanishing centralities for the response functions �(2) and �(3) at strong μ = 0.5
allelopathic suppression. Frames (c)–(e) describe, respectively, (c) homogeneous, (d) competition heterogeneous, (e) completely heterogeneous
scenarios. Insets: Zooms for small 〈xi〉 values. The model parameters are those used in Fig. 3.

042305-5



S. A. CARVALHO AND M. L. MARTINS PHYSICAL REVIEW E 102, 042305 (2020)

FIG. 5. (a)–(c) Average local clustering coefficient 〈Cci〉 as a function of in and out degrees and average nearest-neighbors degree 〈Knn〉
of a node with total degree kt . In both cases, the upper, middle, and bottom plots correspond to the homogeneous, heterogeneous competition,
and completely heterogeneous scenarios. The initial networks were all the graphs shown in Fig. 1 and the model parameters are those used in
Fig. 3. Specifically, a typical power law truncated by a stretched exponential (solid curve) is fitted to the data of the clustering coefficient (see
Table 3 in the Supplemental Material).

with α ∼ 1, characteristic of modular structures with hierar-
chical organization [28]. Also, for homogeneous and weak
competition and allelopathy, the average clustering coefficient
has the same magnitude as those for random networks with the
same n, 〈k2〉 and 〈k〉. However, heterogeneity in competition
or strong allelopathic suppression leads to an average cluster-
ing coefficient smaller than those for random networks. Since
the behavior of Cc is associated to the dynamical mechanisms
controlling which new attached node survives or extinguishes,
this result indicates that allelochemical networks grow pri-
marily by adding nodes with few links. In Fig. 5(b), we see
that Knn decays for the large node’s degree even at weak
homogeneous allelopathy in a clear disassortative behavior.
Such a result is consistent with the observation that assortative
mixing by degree makes a network more unstable [29].

Lastly, typical allelochemical networks or community
structures generated by the SIE and BP dynamics are il-
lustrated in Figs. 6(a)–6(d) and 6(e)–6(h), respectively. The
nodes in these networks represent species present in the
community and the directed edges between them represent
allelopathic interactions. For the SIE dynamics, as the al-
lelopathic strength increases, the number of nodes (surviving
species) decreases, the network topology seems to change
from random to modular structures, and the corresponding
connectivity distributions change from normal (or Gaussian)
to Weibull distributions. In contrast, for the BP dynamics,
at weak allelopathic suppression (μ = 0.1), Figs. 6(e) and
6(f), the hierarchical and modular character of such networks
emerges. This trait seems to be reflected on the larger values
of 〈xi〉 for small k, but smaller and almost constant for large
k. In turn, for heterogeneous competition and allelopathy,
Figs. 6(g) and 6(h), the networks are very small and sparsely
connected.

As can be observed, we determined the statistical prop-
erties of chemical networks generated after 100 SIE or BP
events. As shown in Supplemental Fig. 4, the number of
species coexisting at this stage is not so far way from the
asymptotic diversity stationary states. However, a relevant
issue concerns the dependence of the chemical network’s

statistical properties on the number of invasion or speciation
events. In Supplemental Figs. 7–10, the statistical metrics at
the diversity maximum in Fig. 2 were determined. The ob-
tained results were qualitatively the same as those for nSIE =
nBP = 100, except for SIE average betweenness centrality. As
shown in Supplemental Fig. 8, this quantity is not essentially
constant as for nSIE = 100, but a decreasing function of the
index species. The constant behavior seems to be preserved
only for �(1,3) functional response at weak allelopathy [Sup-
plemental Fig. 8(a)].

Additional results concerning statistical and network met-
rics and for response functions involving only the absorbed
toxins are reported in the Supplemental Material. The qualita-
tive behavior response functions taking into account only the
uptake toxins are the same aforementioned.

IV. DISCUSSION

We have proposed and studied, through numerical meth-
ods, an ecoevolutionary model for community assembly
involving two coupled processes. The first is a fast ecological
dynamic in which species compete for common resources
and suppress each other allelopathically. The second are slow
evolutionary events in which new species are added to the bi-
ological community at its ecological stationary state. Clearly,
our study address a basic question: the relation between stabil-
ity and complexity in the ecology of many interacting species.

All the results obtained here must be analyzed, bearing in
mind the scenario for pure intra- and interspecific competi-
tion. In the coexistence regime and homogeneous competition
(νi j = ν < 1 ∀i, j), diversity increases linearly with the num-
ber l of introduced species, but all their stationary densities,
which are inversely proportional to l , vanish as l → ∞. Fully
connected communities with high diversity are the rule. In
turn, weak (νi j < 1 ∀i, j) and disordered competition can lead
several of the introduced and/or resident species to extinc-
tion. Therefore, the community diversity tends to be smaller
than the number of invasion or speciation events. Yet, all
the surviving species at every stationary state constitute fully
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

SIE BP

FIG. 6. Typical allelochemical networks generated after l = 100 SIEs (a)–(d) and BP (e)–(h). The graphs resulting in the SIE were
obtained for (a) weak (μ = 0.1) and (b) strong allelopathic suppression (μ = 0.5) for homogeneous competition and allelochemical
traits (r = 1, νi j = γi j = 0.1, βi = ci = 0.1, and δi = 0.2 ∀i, j). (c) Heterogeneous competition (νi j ∈ (0, 1] randomly chosen, r = 1), but
weak and homogeneous allelopathy (μi j = γi j = 0.1, βi = ci = 0.1, δi = 0.2 ∀i, j). (d) Both competition and allelopathy heterogeneous
(νi, j, μi, j, βi, ci ∈ (0, 1] randomly chosen, r = 1 and δi = 0.2). The functional response �(1) was used. For BP generated by speciations,
the graph results in a homogeneous scenario (νi j = γi j = 0.1, ci = βi = 0.1 and δi = 0.2 ∀i, j) at (a) weak (μ = 0.1) and strong (μ = 0.1)
allelopathy. (e) Heterogeneous competition scenario [the same parameters of (d) but randomly chosen competition coefficients νi j] and (f)
completely heterogeneous scenario (ri = 1, δi = 0.2 and all other parameters randomly chosen). The starting community structures are those
shown in Fig. 1. The response functions �(1) (e) and (f), �(2) (g), and �(3) (h) were used.

connected competition networks, as assumed in our models.
This scenario changes considerably in the presence of in-
hibitory species-species interactions mediated by toxins.

In the SIE dynamics, ecological networks grow through a
succession of species immigration. These alien species allelo-
chemically suppress and are suppressed by resident species
at random, eventually leading to the eradication of either
the invader or some resident species. Our results, shown in
Figs. 2(a)–2(c) and Supplemental Fig. 1, reveal that commu-
nities exhibiting large diversities can be assembled at weak
allelopathy, but diversities are drastically reduced at strong
allelopathy for all response functions. In the weak allelopathic
regime, the diversity either increases linearly or saturates, de-
pending on response function [see Fig. 2(a)]. For the response
functions �(1,3), competition overcomes toxin-mediated sup-
pressions. The reason is that all stationary species densities
decrease after each invasion event, consequently reducing the
toxin concentrations to very low levels (B ∼ 0 and B < c) for
which the response functions are small. This is the reason why
we do not expect the community diversity saturation, even
for more than nSIE > 100. In contrast, for the functional form
�(2), the strength of the response to toxins is stronger for very
small concentrations in comparison to �(1,3) (d �(i)(0)/dB =
1, 1/c, 0 for, respectively, i = 1, 2, 3 and c < 1). In this case,
diversity saturation is expected because the chemical warfare
is enhanced with the introduction of new species. So, the
initial increase in diversity for all response functions occurs
until a certain number of new introduced species causes a
significant allelopathic suppression.

Furthermore, in the strong suppression regime, species
richness either saturates or decreases slowly after reaching a
maximum. The maxima occur after ∼10 − 30 invasion events,
depending on the response function to toxins. At the max-
ima, the average number of species in the communities never
exceeds 16 − 18 [17]. So, the system of interacting species

becomes unstable and the networks stop to grow, consistent
with the limit found by May [30]. Beyond these upper bounds,
the number of surviving species decreases continuously after
each SIE until rest only one (a successful invasion) or very
few species. For BP dynamics [see Figs. 2(d)–2(f)], diversity
seems to saturate independently on either response functions
or allelopathic strength μ. Indeed, every introduced species
has suppressive interactions highly correlated to those of
its ancestor, in contrast to the random choice of targets in
the SIE dynamics. Thus, the chemical warfare is enhanced
after each speciation event against a particular subset of tar-
get species. Accordingly, network topologies evolve toward
marked hierarchical structures, as seen in Figs. 6(a)–6(d), and
the corresponding connectivity distributions change from nor-
mal (or Gaussian) to Weibull distributions [Figs. 3(a)–3(b)].
Moreover, almost constant average centralities indicate homo-
geneous connectivity patterns for every node and the absence
of hubs, bridges joining distinct modules, and star graphs
in the network generated at weak allelopathic suppression.
In contrast, at strong allelopathy, networks are very small
and sparsely connected, leading to small centrality values
[see Figs. 4(a) and 4(b)]. Maybe fluctuations in the small
average centralities for strong allelopathic suppression sug-
gest the emergence of modules in the network. Regardless of
the regime, such networks comprise a subset of almost null
measure in a random ensemble which can only be generated
through a constrained growth process.

A major feature in Fig. 2 is that diversity usually reaches a
maximum. Then, every new SIE or BP event increases diver-
sity before this maximum but decreases it after the maximum.
As suggested by Supplemental Fig. 5, we hypothesize that
initially the introduction of new species promotes a relatively
uniform increase of node degrees up to a maximally connected
network. In this maximally connected network, every node
attains its upper degree, which depends on the allelopathy
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strength μ and functional response �. To overcome this di-
versity maximum, a further introduction of species tends to
induce the extinction of previous species, all of them highly
connected and, therefore, strongly threatened. Then, succes-
sive SIE or BP events progressively extinct the surviving
highly connected species and ultimately generate a stationary
network characterized by small numbers of nodes (low diver-
sity) and links (chemical interactions) between them.

The fundamental distinction between the SIE and BP dy-
namics is that new species are attached to the community
with either random or correlated connectivity patterns in the
former and the latter case, respectively. Accordingly, species
diversity and centrality for BP communities are greater than
those for SIE networks (see Figs. 2 and 4). Indeed, each
attached species in BP dynamics has, due to its connec-
tivity pattern strongly correlated to that of its ancestor, a
smaller chance to destabilize the network. Also, this is the
reason why the founders or first species in BP communities
have large centrality values in comparison to those almost
constant for SIE dynamics (Fig. 4). Additionally, these con-
nectivity correlations foster the emergence of hierarchical and
modular structures in BP community networks, as seen in
Figs. 6(e)–6(h). These networks have a clear disassortative
behavior even at weak homogeneous allelopathy, since the
average nearest-neighbors degree Knn decays for the large
node’s degree [Figs. 5(d)–5(f)]. Such a result is consis-
tent with the observation that assortative mixing by degree
makes a network more unstable. Accordingly, the local clus-
tering coefficients for nodes with high degrees k are very
small [Figs. 5(a)–5(c)], indicating that species which interact
strongly should do so with a few ones, a corollary of May’s
stability criterium for multispecies communities [30]. Here,
the growth process favors the attachment of nodes with few
links, since they modify the interaction matrix stability much
less than new nodes with many links.

Concerning the main ecological question on the
complexity-stability relationship, our findings reveal that
high species diversities and dynamical stability of growing
ecological networks are very constrained under a widespread
biochemical warfare between the interacting species. Indeed,
the rate in which species abundance decreases as the number
of strong allelopathic interactions increases is faster than
those predicted by May’s classical analysis [30]. In addition,
even in a regime of weak allelopathy, the complexity and
stability of ecological networks is drastically impaired
by fluctuations in species growth rates exceeding a given
threshold. In our simulations, we tested ri = r0 (1 + ωi ) with
ωi randomly chosen in the range [−θ, θ ]. We observed that
extinction begins and, consequently, diversity decreases for
θc > 0.5. Also, at strong allelopathy, the emerging community
networks exhibit average connectivity, degree distributions,
and clustering coefficients described by stretched exponentials
tails. The clear disassortative behavior of the interaction
networks, observed even at weak homogeneous allelopathy
generates strongly hierarchical and modular community
structures. In contrast, Perotti et al. [31], analyzing a model
in which new attached nodes to an existing community have
interaction coefficients randomly chosen, both positive and
negative, found a power-law scaling for such network metrics

(connectivity, degree distribution, and clustering coefficient).
So, interspecific positive interactions are essential to enhance
species persistence, diversity, and community stability.
This intuitive expectation was recently demonstrated by
Pascual-García and Bastolla [13] who pointed out that
mutualism can lead to highly connected and diverse networks
when the direct interspecific competition is weaker than a
critical value.

Considering our results, the species coexistence in unstruc-
tured environments remains unexplained unless the negative
allelopathic interactions are weak. A possible alternative to
enable the long-term coexistence of complex communities
was proposed by Kelsic et al. [32]. Analyzing a theoretical
model for microbial communities, these authors showed that
the combined effect of antibiotic production and degradation
can sustain biodiversity. Coexistence depends on the presence
of an antibiotic-degrading species which attenuates the in-
hibitory interactions between two other species. At least two
antibiotics are required for stability, but more complex com-
munities and dynamical behaviors emerge for greater numbers
of antibiotics. Accordingly, Cordero and Davis [33,6] re-
vealed that environmental bacteria are organized into socially
cohesive units in which antagonism occurs between rather
than within ecologically defined populations. Within popula-
tions, few species produce broad-range antibiotics, whereas
all others are resistant, suggesting cooperation between
conspecifics.

Summarizing, our major result is that, in allelochemical
networks generated either by SIE or BP dynamics, species
with strong and negative (inhibitory) interactions are part
of systems with a small number of species. Moreover, the
interactions tend to be arranged in modules or hierarchies
with low clustering coefficients, dissortative behavior and
homogeneous and/or heterogeneous degree distributions to
ensure community stability. So, communities sustaining large
diversities in a homogeneous environment can be assembled
only under weak allelopathy. Also, even in this regime the
rule is that species interact with a few others. Therefore, in
a context of generalized strong allelochemical suppression
between organisms, the plankton paradox stands. However,
it seems unlikely that biological communities exist under a
total biochemical warfare. Thus, for instance, regardless of
additional interactions at the level of resource competition,
metabolic cross feeding, predator-prey relationships, etc., sup-
posedly there are relevant antagonist relationships between
the released allelochemicals. Our model disregards this pos-
sibility which promotes alliances between species involved
in biochemical warfare. We hypothesize that the coexistence
of positive (or activatory) and negative (or inhibitory) in-
teractions is necessary to generate stability and diversity in
homogeneous, unstructured environments. Currently, we are
focusing on this question.
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