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Low-dimensional dynamics of phase oscillators driven by Cauchy noise
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Phase oscillator systems with global sine coupling are known to exhibit low-dimensional dynamics. In this
paper, such characteristics are extended to phase oscillator systems driven by Cauchy noise. The low-dimensional

dynamics solution agreed well with the numerical simulations of noise-driven phase oscillators in the present
study. The low-dimensional dynamics of identical oscillators with Cauchy noise coincided with those of
heterogeneous oscillators with Cauchy-distributed natural frequencies. This allows for the study of noise-driven
identical oscillator systems through heterogeneous oscillators without noise and vice versa.
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I. INTRODUCTION

The synchronized rhythmic flashing of fireflies is a spec-
tacular example of a collective phenomenon [1]. Fireflies
exhibit different and fluctuating flashing frequencies and can
be regarded as heterogeneous and noisy oscillators. Both
heterogeneity and noise are essential properties of systems
that display collective phenomena. Coupled phase oscillators
have been used to examine how heterogeneity and noise af-
fect the synchronization of physical, chemical, and biological
systems [2,3]. Phase oscillator systems with heterogeneous
natural frequencies have been studied since the invention of
the phase oscillator model. Ott and Antonsen [4] showed that
the behavior of globally sine-coupled oscillators, the natural
frequencies of which obey a family of rational distribution
functions, can be described by low-dimensional dynamics.
Specifically, if the natural frequencies obey the Cauchy or
Lorentzian distribution, the dynamics of an infinite number
of oscillators are described by a Stuart-Landau equation,
i.e., a two-dimensional dynamical system. If the coupling
strength takes on several values or the natural frequencies
obey the mixture of Cauchy distributions, the dynamics are
described by coupled Stuart-Landau oscillators. This is an
exact result for a specific initial condition and not an approx-
imation obtained by ignoring higher-order terms. This type
of low-dimensional description has accelerated the study of
heterogeneous oscillator systems [5,6].

However, investigating noise-driven oscillator systems ap-
pears to be more challenging than studying heterogeneous
oscillator systems. Previous studies have approximated the
dynamics with circular cumulants to obtain low-dimensional
dynamics similar to those proposed by Ott and Anton-
sen [7,8]. Although this approach has been implemented with
some success, it is not always free from approximation er-
rors. Determining low-dimensional descriptions with fewer
approximation errors will be useful in understanding the col-
lective phenomena in various fields, although it may not be
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as general as an approximation with circular cumulants. This
may be possible using a noise that adheres to the assumption
of the analysis by Ott and Antonsen.

This paper reports that systems driven by Cauchy noise
can be described by closed-form low-dimensional dynamical
equations. Non-Gaussian noise is known to be prevalent in
biological systems [9]. For example, a circular autoregres-
sive model with wrapped Cauchy noise has been proposed to
model animals’ direction of travel [10]. Thus, the behavior of
phase oscillators driven by Cauchy noise is worthy of further
examination. Kallionatis and Roberts reported the behavior
of phase oscillator systems driven by Lévy noise [11,12]. In
addition, as harmonic oscillators display a nontrivial phase
distribution under Lévy noise [13], the dynamics of phase
oscillators driven by Cauchy noise is of interest.

This paper is organized as follows. First, the Watanabe-
Strogatz theory is reviewed and used to derive the low-
dimensional dynamics of the order parameter of identical
sine-coupled oscillators driven by Cauchy noise. Second, the
Ott-Antonsen ansatz is reviewed, and the dynamics of the
order parameter of heterogeneous noise-driven oscillators are
derived. It is shown that the amplitude of Cauchy noise and
the scale parameter of natural frequency are equivalent in
the low-dimensional description, and the implications of the
model are discussed.

II. ANALYSIS AND RESULTS

This section first considers the system of identical oscil-
lators and then that of heterogeneous oscillators. Using the
notation of Pikovsky and Rosenblum [14], we consider a
system of N noise-driven phase oscillators with an identical
natural frequency o, in which the dynamics of oscillator k are
given by

b = o + Im[H (1) exp(—igy)] + o ()& (t)
=+ |H(@)|sinfarg H(1) — ¢l + o (OE(), (1)

where H(t) is the common forcing, o (¢) > 0 is the amplitude
of the noise, and &, (¢) is the noise. This paper uses the Cauchy
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distribution instead of the Gaussian distribution, which has
been used in earlier studies [7,8]. It is assumed that & () is
the Cauchy white noise, i.e.,

t+At
ar(t; Ar) =/ &(r)dr 2

follows the Cauchy distribution with the scale parameter At
and the location parameter 0,

RN Pp——

a(t; = — .
P 7 [t AP + A2
Defining a;(¢) = a(t; 1), we can see that ai(¢t) follows the
standard Cauchy distribution. The common forcing H(¢) can
be an external forcing or mutual interaction between oscilla-
tors. For example, the dynamics with o(t) = ¢ and H(t) =
Kz(t), where

3)

1 N
2) =+ ) explidn) )
k=1

is the complex-valued order parameter and K is the coupling
strength, lead to the following dynamics,

: K<
o=+ 3 D sin(@; — g0+ o&(0). 5)
j=1
In this system, the oscillators are driven by the Cauchy noise
and are attracted to each other. The system of Eq. (1) can be
numerically implemented by the Euler method as

Or(t + At) = ¢ (t) + At{w + |H(t)| sin[arg H(t) — ¢y ()]
+ o ()ar(t)}, (6)

where a;(¢) follows the standard Cauchy distribution. Let us
note that the noise term is multiplied by At instead of v/Ar
because the Cauchy distribution is the stable distribution of
index 1.

Here, what has been clarified by previous studies on the
behavior of the system without noise is reviewed. Inserting
o(t) = Ointo Eq. (1) yields

¢ = @ + Im[H (1) exp(—idy)]. (N

Watanabe and Strogatz [15,16] demonstrated that this system
is described using three variables and N — 3 constants of
motion. More specifically, the phases ¢ (¢) (1 < k < N) of
oscillators driven by the common forcing H(¢) are given by
a three-parameter function of the initial phases, ¢;(0). Using
the Watanabe-Strogatz theory, the function that maps ¢ (0) to
¢x(¢) is defined by the real and imaginary components of the
order parameter and a parameter corresponding to the rotation
of the initial phases [15,17]. This allows us to obtain a closed-
form description of the dynamics of the order parameter. In the
following analysis, it is assumed that the constants of motion
are uniformly distributed in the limit of an infinite number
of oscillators. This assumption has successfully described the
behavior of a finite number of phase oscillators whose initial
phases are drawn from a uniform distribution on [0, 27]. The
order parameter z(¢) becomes

2
Z(w.1) = /0 (. 1) explig) d ®)

in the limit of N — oo, where p(¢, t|w) is the density of the
phases of oscillators with natural frequency w at time ¢. For
the system of Eq. (7), the dynamics of the order parameter
have been shown to follow

H(@t) H@) >

0Z@.1) _oz(w.t)+ Z(w, 1)
— = iwZ(w, — = —Z(w,
ot 2 2
[17,18]. Because, if the initial phases are uniformly dis-
tributed, the rotation of the initial phase does not affect the
final distribution of the phases, the phase distribution of os-
cillators at ¢ is determined solely by the order parameter [17].
Thus, it has been shown that the density of the oscillators’

phase obeys the Poisson kernel [4]

C))

(@, tw)
b 1 —|Z(w, 1)
T 2m 1 —2|Z(w, t)| cos[¢p — arg Z(w, 1)] + | Z(w, 1)|?”

(10)

Having reviewed the previous results, we are prepared to
examine the dynamics of noise-driven oscillators. Because
the phase distribution in a system without noise, which has
a low-dimensional description, is determined by the order
parameter, a system with noise can have a low-dimensional
description if the phase distribution is determined by a few
parameters. To obtain a low-dimensional description, it is use-
ful to note that the Poisson kernel is identical to the wrapped
Cauchy distribution [19]

o0

A
PO= Y TG it ]

n=—oo
1 sinh A
2w cosh A — cos(¢p — )
if the following is set,
w=argZ(w,1), (12)
Z(w, )™ = |Z(w, t
)L:sinh”(| (@, 1)l 3 2@ )|>=—10g|Z(w,I)|.
(13)

Before considering noise-driven sine-coupled oscillators, un-
coupled oscillator systems driven by Cauchy noise are
examined, that is, o(¢) > 0 and H(¢) = 0. In this system,
assuming that the oscillators are initially distributed according
to the wrapped Cauchy distribution [Eq. (11)], the Cauchy
noise ensures that the oscillators obey the wrapped Cauchy
distribution. This is illustrated by the Euler method

it + A1) = i (t) + Aro ()a(1). (14)

If ¢x(tp) obeys the Cauchy distribution with the scale pa-
rameter A and the location parameter u, ¢ (fo + nAt), where
n > 0, obeys the Cauchy distribution with the scale parame-
ter A(to + nAt) = A + At Z?zl o (to + jAt) and the location
parameter p owing to the reproductive property. Therefore,
the Cauchy noise & (¢) increases the scale parameter X as

r=o(1), (15)
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while keeping the location parameter constant as

L =0. (16)
Inserting Eqs. (12) and (13) gives

0Z(w, 1)

T =—o0(t)Z(w,1). (17)

This equation means that the Cauchy noise causes the expo-
nential decay of the order parameter.

Because Eqgs. (9) and (17) are exact closed-form descrip-
tions of Z(w, t) in the limit of N — 0o, we can combine
these two equations to obtain the dynamics of Cauchy noise-
driven coupled oscillators. This is justified by the fact that
the oscillators obeying a wrapped Cauchy distribution remain
obeying a wrapped Cauchy distribution if driven by either
the sine coupling or Cauchy noise. Combining Eq. (9) with
Eq. (17) yields the dynamics of the system with H(t) # 0 and

o(t) >0,
920D _iw — o0z )+ T _H D70, 1y,
ot 2 2

(18)
This is equivalent to the system of oscillators driven alter-
nately by Eqgs. (9) and (17). A much more mathematically
rigorous and general derivation is presented in a recent pa-
per by Tonjes and Pikovsky [20]. For globally sine-coupled
phase oscillator systems [Eq. (5)], the common forcing of
the oscillators is proportional to the order parameter, that is,
H(t) = KZ(w, t). Hence, it is suggested that inserting it into
Eq. (18) yields the dynamics of the order parameter of the
system of Eq. (5) with

z.1) _(; + 8V z0.0 - K200, 0)2(0. 17
or =|iw—o0o > w, 2 w, w,t)”.
(19)
It has a closed-form stable solution
1 — 2 explio(t — f o < £y,
Zeont) — 2 explio(t —19)] (0 < %) 20
0 (5 <o)

where 1y is a constant. This means that a weak noise allows for
the synchronization whereas noise stronger than a threshold
value abolishes the synchronization as is general with noise-
driven systems.

To numerically confirm the above theoretical prediction,
the simulation of Eq. (5) was performed by the Euler method

o1t + At)

K
= ¢+ Ar| o+ = ) sinl () — O]+ o) ),

j=1
(21

with the parameter values N = 10000, w =0, and K =1,
and the simulation time step At = 0.005. The noise a(t) was
drawn from the independent standard Cauchy distribution.
The initial phase was uniformly distributed on [0, 27r]. The
average (|z|) of the absolute value of the order parameter
[Eq. (4)] was obtained during 100 < ¢t < 200. Figure 1 shows
the numerical results of (|z|) (circles) and the theoretical value
of |Z(w, )| [solid line, Eq. (20)]. The numerical values for

OO T T T T 1
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FIG. 1. Numerical and theoretical results of (|z|) for the system
of Eq. (5) with K = 1. The numerical and theoretical results are
indicated by the circles and the solid line, respectively.

N = 10000 and the theoretical values for an infinite number
of oscillators agreed quite well. The continuous transition
from the synchronized state to the desynchronized state is
observed.

In the literature on phase oscillators, oscillator heterogene-
ity is often represented by heterogeneous natural frequencies.
The dynamics of oscillator k are

br = wp + Im[H (1) exp(—ig)] + o (&),  (22)

where the natural frequency wy is drawn from the probability
density function g(w). In this system, the order parameter of
the whole system is defined by

Y(t)= /OO g(w)Z(w, t)dw, (23)

oo

which is the center of mass of all oscillators in the system.
In other words, the order parameter of the whole system Y (¢)
is the average of the order parameters Z(w, t) of the oscilla-
tors with a natural frequency w. It has been shown that the
Ott-Antonsen ansatz can reduce the dynamics of the order pa-
rameter of phase oscillators whose natural frequencies obey a
family of rational distribution functions into low-dimensional
dynamical equations. In the most commonly studied version
of this system, g(w) is the Cauchy distribution,

2

1
gw) = — Y

S — 24
Ty (@ — wy)? + y? @9

where y is the scale parameter and wy is the location parame-
ter. In this case, the Ott-Antonsen low-dimensional dynamics
are shown to be given by inserting

Y(t)=Z(wo +iy,1) (25)

into Eq. (9) [4,14,18]. Again, it is assumed that the density
of the phases of oscillators with frequency w follows the
wrapped Cauchy distributions and that Eq. (18) holds for
the oscillators with a natural frequency w. This assumption
could not necessarily be needed because the order parameter
of the system of oscillators with Cauchy-distributed natural
frequencies is described by the low-dimensional dynamics in
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FIG. 2. Numerical results of (|z|) for the system of Eq. (27) with
K = 1. The theoretically derived boundary between the synchro-
nized state and the desynchronized state is indicated by the dashed
line.

the limit of t — oo [21]. This results in

oY (¢ H@) H@
85 ) _ liwg —y — o ()Y () + # - %Y(t)z. (26)

Specifically, in globally coupled phase oscillator systems

. K
o= o+ 3 D _osin(p; —d) +ok@),  Q7)

j=1

with Cauchy-distributed natural frequencies, the mutual inter-
action is H(t) = KY (t). Therefore, the dynamics of the order
parameter are given by

Y (¢ K K _
35 ) _ <iw0 —y—o+ E)Y(t) — EY(I)Y(I)Z. (28)

Its stable solution is

Y(t) = \/@exp[iwo@ —1)] (o’ +y < §)7
’ (5 <o+v).
(29)

Replacing Y (¢), wg, and y + o with Z(w,?), w, and o in
Eq. (29) yields Eq. (19). The macroscopic behavior of the
system can be perfectly represented as a function of o + y;
that is to say, the noise amplitude and the scale parameter of
the natural frequency are equivalent in the dynamics of the
order parameter. This means that weak noise and narrowly
distributed natural frequencies allow for the synchronization
whereas strong noise and widely distributed natural frequen-
cies abolish the synchronization.

To test this analytical result, the simulation of Eq. (27) was
performed by the Euler method

o1t + At)

<

K<
= (1) + At wk+ﬁ;smwj(t)—qbk(t)]wak(t) :

(30)

with the same parameter values as in Fig. 1. In Fig. 2, the black
and white colors correspond to (|z|) = 1 and O, respectively.

The dashed line represents the boundary between the synchro-
nized state and the desynchronized state (i.e., 0 +y = K/2).
The figure clearly indicates that the steady-state value of the
order parameter is a function of o + y. This supports the
equivalence of the noise amplitude and the scale parameter
of the natural frequency in the present model.

III. DISCUSSION

This paper examined phase oscillator systems driven by
Cauchy noise and obtained the low-dimensional descrip-
tion of the dynamics of the order parameter using the
Watanabe-Strogatz theory and Ott-Antonsen ansatz. The
low-dimensional dynamics agreed relatively well with the
numerical results of a system of a finite number of oscillators.
In the derived low-dimensional dynamics, the scale parameter
of the natural frequency y and the noise amplitude o were
equivalent. The macroscopic dynamics of the system with het-
erogeneous natural frequencies were indistinguishable from
those of the system driven by Cauchy noise.

The time evolution of the phases of sine-coupled oscillators
is described by linear fractional transformations [18]. Linear
fractional transformations map the Cauchy distributions to the
Cauchy distributions and the wrapped Cauchy distributions
on the unit circle to the wrapped Cauchy distributions on
the unit circle [22,23]. The combination of linear fractional
transformations and the Cauchy distribution has also been
examined in the context of a coupled map [24]. As the Cauchy
distribution is a stable distribution, it is continued to be obeyed
by the oscillators driven by Cauchy noise. Although the trajec-
tory of the vector of oscillators’ phases is not microscopically
contained in a low-dimensional manifold (because it is driven
by independent noise), it can macroscopically be considered
as being confined to a low-dimensional manifold. Within the
framework of the circular cumulant approach [25], only the
first circular cumulant is nonzero in the present model.

The present results shed light on the dynamics of phase
oscillators driven by Cauchy noise. For example, Martens
et al. investigated the dynamics of phase oscillators whose
natural frequencies followed a mixture of two Cauchy distri-
butions [5]. The results of the present study combined with
those of Martens et al. predict the low-dimensional dynam-
ics of Cauchy-noise-driven phase oscillators whose natural
frequencies take on one of two values. The analysis of the
conformist and contrarian oscillators [6] can also be applied
to the analysis of noise-driven oscillators. The present results
allow for the reinterpretation of previous analyses on oscilla-
tor systems with Cauchy natural frequencies as the analyses
on oscillators driven by Cauchy noise. Whether or not the
Gaussian noise facilitates the same type of reinterpretation in
certain problem settings is not within the scope of the present
research.

The present model assumes that the noise is temporally
uncorrelated. The dynamics of phase oscillators driven by cor-
related Gaussian noise were previously investigated [26]. The
effect of the correlated Cauchy noise could be investigated
by extending the present results. Because the 1/f fluctuation
is found in heartbeats [27] and in the activity of the central
nervous system [28,29], the analyses of systems driven by
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temporally correlated noise are likely to find applications in
physiology research.

The present study showed that white Cauchy noise
and Cauchy-distributed natural frequencies have the same
effect on the macroscopic behavior of a specific model.
In the context of statistical physics, the critical behavior
of a d-dimensional random field model is related to the
critical behavior of a d — 2-dimensional model without dis-
order [30-32]. The model presented in this study offers a

further example of the equivalence of annealed and quenched
disorders. The interplay between annealed and quenched dis-
orders or noise and heterogeneity could be explored further by
extending the present model.
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