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Nonlinear dynamics in an optoelectronic feedback delay oscillator with piecewise linear transfer
functions from the laser diode and photodiode
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We investigate the nonlinear dynamics of a recent architecture of an optoelectronic oscillator, where the
emitting laser and the receiving diode are connected in a head-to-tail configuration via an optical fiber delay
line. The resulting nonlinear transfer function is a piecewise linear profile, and its interplay with the delay leads
to many complex behaviors such as relaxation oscillations and deterministic chaos. This system belongs to a
recent class of optoelectronic oscillators where the nonlinearity does not originate from the sinusoidal transfer
function of an imbalanced interferometer, and, in particular, it is a simple optoelectronic oscillator configuration
that is capable of displaying a chaotic behavior. The results of the analytic study are confirmed by numerical
simulations and experimental measurements.
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I. INTRODUCTION

Optoelectronic oscillators (OEOs) are nonlinear dynami-
cal systems characterized by a feedback loop that associates
an optical and an electrical branch [1,2]. These systems are
generally delayed, as the signal round-trip delay time is not
negligible with regards to the other timescales of the sys-
tem. The scientific and technological interest in these systems
arises from the fact that OEOs natively interconnect signals
in the optical and radio-frequency ranges. This key property
opened the way for applications in microwave generation
[3–12], optical chaos cryptography [13–15], photonic neuro-
morphic computing [16–20], and sensing (see review article
[21]).

The complex dynamics of OEOs has also been the focus
of a large amount to fundamental research activities, driven
by the necessity to understand in depth the nonlinear phenom-
ena in these systems [22–33]. Indeed, the complex dynamics
in OEOs mainly originates from the time delay, which is
known to drastically expand the dimensionality of the system
to infinity [34]. However, the exact nature of the nonlinear
transfer function in the feedback loop also plays a major role
in the complex dynamics of OEOs systems, because of si-
nusoidal transfer functions from imbalanced interferometers,
such as phase or intensity electro-optic modulators. Alter-
native approaches use instead the laser itself as a nonlinear
electrical-to-optical signal converter [35,36].

The dynamics of a semiconductor laser with AC-coupled
nonlinear optoelectronic feedback has been experimentally
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studied [37]. A period doubling sequence of small periodic
and chaotic attractors is observed. The chaotic pulsing and the
route to chaos in a semiconductor laser with delayed, positive
optoelectronic feedback have been investigated numerically
and experimentally [38]. In a laser with delayed feedback
operating in an oscillatory regime, phase defects appear for
delays longer than the oscillation period [39]. A nonlinear
system with delayed feedback, whenever the delay time is
much longer than the intrinsic correlation time, displays two
widely separated timescales [40]. Experimental and theoret-
ical researches, shows the existence of slow chaotic spiking
sequences in the dynamics of a semiconductor laser with AC-
coupled optoelectronic feedback [41].

The approach we are proposing is to use the effective “el-
bow” nonlinearity of the power-intensity (PI) transfer function
of the emitting laser, which is a piecewise linear nonlinearity
[42]. At the receiver end of the optical fiber delay line, the
photodiode can also feature a nonlinearity of opposite nature,
which is induced by saturation. The overall transfer function
therefore cascades the laser and diode nonlinearities, and the
goal of the present work is to show that, as a result, the OEO
can be driven to fully developed chaos via a sequence of
bifurcations when the gain is continuously increased. The ad-
vantage of studying this class of OEOs is essentially threefold.
First, it permits one to build optoelectronic oscillators with a
minimum amount of components, and, in particular, without
electro-optic modulators. Such a modulator-less configuration
is simpler to implement, and, since the lasers and photodiodes
are the most affordable elements in the oscillator loop, it facil-
itates and simplifies overall the experimental study. Second,
semiconductor lasers and photodiodes are easy to integrate
at chip scale on the same platform, so that the architectures
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we are exploring have the key advantage of being compatible
with full integration. This integration process becomes sig-
nificantly more complex if an electro-optical modulator has
to be integrated as well. Finally, oscillators having piecewise
linearity are ideal test benches to investigate nonlinear dy-
namics analytically. Piecewise linearity is for example the key
property that has permitted the gain of significant theoretical
understanding of the nonlinear dynamics of the Chua circuit,
which has become a paradigmatic, widely studied chaotic sys-
tem [43–45]. The effect of delayed time feedback in piecewise
linear oscillators is also a topic that has investigated in recent
years [46–48].

The plan of the article is the following. In the next section,
we present the system under study along with the model used
to investigate its complex dynamics. We perform the stability
analysis of the system in Sec. III, while the numerical and ex-
perimental results are presented in Sec. IV A. The last section
will conclude the article.

II. SYSTEM AND MODEL

The architecture of our OEO is displayed in Fig. 1, and it
consists of five elements. The first one is the continuous-wave
(CW) distributed feedback laser diode (LD) source operating
at the telecom wavelength λ = 1550 nm. It has a threshold
current Ith = 16 mA, and it is driven by a pump current
Ipol + IRF (t ), where Ipol is the polarization current, while IRF (t )
is the time-varying radio-frequency (RF) current. The output
of this laser diode has an output power P(t ) typically varying
from 0 to 10 mW. The optical fiber delay line has a length L =
40 m, corresponding to a delay time T = ngL/c = 0.2 μs,
where ng = 1.5 is the group refraction index of the fiber
and c is the velocity of light in vacuum. The optical signal
is transduced into a photocurrent by an InGaAs photodiode
(PD) with power-dependent responsivity S(P), where S is a
nonlinear function featuring a saturation profile. This photodi-
ode has a 100 MHz bandwidth, and converts the input power
P(t ) into an electric voltage V (t ) that is attenuated using a
voltage variable attenuator (VVA), with the control voltage Vcr

directly linked to the gain G < 1 and broadband bandwidth of

FIG. 1. Experimental setup of our OEO. The nonlinearity of
the feedback loop is a piecewise linear transfer function. LD:
Laser diode. DL: Delay line (optical fiber). PD: Photodiode. BPF:
Bandpass filter. VVA: Variable voltage attenuator. Ipol: Polarization
current. IRF : Radio-frequency current.

0.01–2.5 GHz. This voltage is converted back into a current
IRF (t ), which is added to a polarization current Ipol using a bias
tee (with bandwidth 0.1 MHz to2.2 GHz) before being used to
pump the laser diode, thereby closing the feedback loop.

The dynamical properties of the system are ruled by the
overall bandpass filtering induced by the superimposed band-
widths of the RF amplifier, the photodiode, and the coupler.
We can take advantage of the fact that the low and high cutoff
frequencies fL = 530 kHz and fH = 6.4 MHz are distant one
from each other in the spectral domain, and consider that
this bandpass filter consists of two cascaded high-pass and
low-pass first-order linear filters.

The input voltage Vin(t ) and output voltage Vout (t ) of the
cascaded bandpass filter are linked by the equation[

1 + fL

fH

]
Vout (t ) + 1

2π fH

dVout (t )

dt
+ 2π fL

∫ t

t0

Vout (s) ds

= Vin(t ). (1)

The optical power P at the output of the optical fiber is
converted into the electrical signal through the photodiode,
according to the nonlinear relation S × P(t − T ), where T
is the time delay originating from the fiber propagation; this
photodiode output voltage is in fact equal to the voltage Vin(t )
at the input of the bandpass filter. The relationship between
VRF (t ) and the output voltage is VRF (t ) = κGVout (t ). This volt-
age is converted into the current IRF (t ) = VRF (t )/RZ , where
RZ = 50 � is characteristic impedance used for the current-to-
voltage conversion, while κ is a dimensionless factor standing
for all the linear losses (electrical and optical) in the feedback
loop.

It can therefore be shown that the radio-frequency voltage
VRF (t ) obeys the following equation:[

1 + fL

fH

]
VRF (t ) + 1

2π fH

dVRF (t )

dt
+ 2π fL

∫ t

t0

VRF (s) ds

= κG

RZ
F [VRF (t − T )] (2)

where F [VRF (t − T )] = S × P(t − T ) is the piecewise linear
transfer function of the feedback loop, which directly depends
on the radio-frequency voltage.

If we take fL � fH into account, Eq. (2) can be rewritten
in the following dimensionless form:

x(t ) + τ
dx(t )

dt
+ 1

θ

∫ t

t0

x(s) ds = β F [xT ], (3)

where the variable of the system is x(t ) = VRF (t )/VREF , with
VREF ≡ 1 V being a convenient reference voltage for yielding
|x(t )| = |VRF (t )|. The delayed variable in this equation is xT ≡
x(t − T ). The bandpass filter parameters of Eq. (3) are the
timescales τ = 1/2π fH = 25 ns and θ = 1/2π fL = 0.3 μs,
and the dimensionless feedback loop gain β = κG

RZ
.

To obtain our transfer function, we proceed with the exper-
imental setup, which essentially consists of the laser diode and
the photodiode. An input voltage is injected to the laser diode,
we slowly increase it, and we record this voltage and the
output voltage at the photodiode. The recorded data are used
to plot the points obtained in Fig. 2. Finally we interpolate
these points with a piecewise linear transfer function of the
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FIG. 2. Experimental and numerical transfer functions of the
feedback loop. The polarization voltage of the semiconductor laser
is adiabatically increased and output voltage of the photodiode is
measured in the open-loop configuration. The numerical part is the
plot of the piecewise linear function F (x) given by Eq. (5).

form

F (x) =

⎧⎪⎨
⎪⎩

a1x + b1 for x � α1,

a2x + b2 for α1 < x � α2,

a3x + b3 for α2 < x � α3,

a4x + b4 for x > α3.

(4)

The coefficients of the piecewise linear transfer function are
determined with the linear interpolation between two known
points. After solving Eq. (4), we obtain a1 = 0, b1 = 0, a2 =
3.43, b2 = 0.70, a3 = −1.12, b3 = 7.74, a4 = 0, b4 = 2.00,
α1 = −0.20, α2 = 1.55, and α3 = 5.11.

The dimensionless piecewise linear transfer function F (x)
is expressly defined as

F (x) =

⎧⎪⎨
⎪⎩

0 for x � α1,

3.43x + 0.70 for α1 < x � α2,

−1.12x + 7.74 for α2 < x � α3,

2.00 for x > α3.

(5)

The numerical Equation 5 is plotted in Fig. 2. The figure
shows the good agreement between the experimental results
and the numerical modeling.

Equation (3) is a nonlinear integrodifferential delay equa-
tion (iDDE), which can be conveniently rewritten in the form

ẏ = x, (6)

τ ẋ = −x − 1

θ
y + β F [xT ], (7)

where the overdot denotes the derivative with respect to time,
xT ≡ x(t − T ), and y = ∫ t

t0
x(s) ds.

III. FIXED POINTS AND LINEAR STABILITY

The linear stability analysis is based on analyzing the
time-dependent trajectory of the system when it is slightly
perturbed from the steady state (x0, y0). This fixed point has

to be perturbed as (x, y) = (x + δx, y + δy), and we have to
determine the asymptotic behavior of the perturbations. The
perturbations can be considered dependent on the eigenvalue
λ following δx(τ ) ∝ eλτ and δy(τ ) ∝ eλτ . We examine the
stability nature of the fixed points for Eqs. (6) and (7) both
in the absence and in the presence of the time delay T .

A. Time delay T = 0

In the absence of time delay, the following fixed points can
exist depending on the choice of parameters α1, α2 and α3 in
Eqs. (6) and (7).

(1) For x � α1, the fixed point is (x0, y0) = (0, 0) and the
characteristic equation in this region is

τλ2 + λ + 1

θ
= 0. (8)

The solutions of this eigenvalue equation are

λ± = 1

2τ

[
−1 ±

√
1 − 4

τ

θ

]
. (9)

The fixed point is stable, since the values of λ are negative
(λ± < 0).

(2) For α1 < x � α2, the fixed point is (x0, y0) =
(0, 0.7θβ ) and the characteristic equation in this region is

τλ2 + (1 − 3.43β )λ + 1

θ
= 0. (10)

The solutions of this eigenvalue equation are

λ± = 1

2τ

[
−(1 − 3.43β ) ±

√
(1 − 3.43β )2 − 4

τ

θ

]
. (11)

Its clear that at the critical point, β0 = 1/3.43, there is a
Hopf bifurcation as long as the quantity within the square root

(1 − 3.43β )2 − 4
τ

θ
is less than zero. When (1 − 3.43β ) > 0,

there is a stable focus at the origin and we can see that, as
(1 − 3.43β ) is changed from positive values to negative ones,
the focus at the origin changes from being stable to unstable.
The critical frequency and gain values at the Hopf bifurcation
are therefore

β0 = 0.29, ω0 � 1√
θτ

. (12)

(3) For α2 < x � α3, the fixed point is (x0, y0) =
(0, 7.74θβ ) and the characteristic equation in this region is

τλ2 + (1 + 1.12β )λ + 1

θ
= 0. (13)

The solutions of this eigenvalue equation are

λ± = 1

2τ

[
−(1 + 1.12β ) ±

√
(1 + 1.12β )2 − 4

τ

θ

]
. (14)

The fixed point can only be stable, given the fact that
(1 + 1.12β ) > 0.

(4) For x > α3, the fixed point is (x0, y0) = (0, 2θβ ) and
the characteristic equation in this region is the same as that
obtained in (i). Then the fixed point is stable.

Next we consider the case when time delay is present,
T > 0.
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B. Time delay T > 0

In the presence of time delay, we examine the stability as
follows.

(1) For x � α1, the fixed point is (x0, y0) = (0, 0), and the
study of the stability remain the same as for the case T = 0:
the fixed point is stable.

(2) For α1 < x � α2, the fixed point is (x0, y0) =
(0, 0.7θβ ) and the characteristic equation in this region is

τλ2 + [1 − 3.43βe−λT ]λ + 1

θ
= 0, (15)

The Hopf bifurcation occurs when λ = iω; it then follows
from Eq. (15) that

τω2 + 3.43βω sin(ωT ) − 1

θ
= 0, (16)

3.43β cos(ωT ) − 1 = 0, (17)

which can be transformed into

ω tan(ωT ) = −τω2 + 1

θ
, (18)

(3.43β )2 = 1 +
[

1

θω
− τω

]2

, (19)

when we assume tan(ω1T ) � 0. The trivial solution ω1T �
2π is obtained and then introduced into Eq. (19) in order to
obtain β1. The critical frequency and gain values at the Hopf
bifurcation are therefore

ω1 � 2π

T
, β1 � 1

3.43

[
1 +

(
T

2πθ
− 2πτ

T

)2] 1
2

. (20)

Hence, from the above analysis, we anticipate that a first
Hopf bifurcation will emerge close to β1 � 0.35, and lead
to the emergence of a limit cycle of frequency ω1 � 2π ×
5 MHz, which corresponds to T -periodic oscillations. when
the regime changes, the frequency of oscillations becomes
smaller, hence the approximation tan(ω2T ) � ω2T . From
solving Eqs. (18) and (19), we find that the critical frequency
and gain corresponding to that second Hopf bifurcation are

ω2 � 1√
θ (T + τ )

, β2 � 1

3.43

[
1 + (T + τ )

θ

] 1
2

. (21)

Therefore, when β is increased and reaches the value β2 �
0.38, the limit cycle of frequency ω2 � 2π × 612 kHz
emerges and becomes another stable attractor.

(3) For α2 < x � α3, the fixed point is (x0, y0) =
(0, 7.74θβ ) and the characteristic equation in this region is

τλ2 + [1 + 1.12βe−λT ]λ + 1

θ
= 0. (22)

The Hopf bifurcation occurs when λ = iω; then we solve it to
obtain

ω3 � 2π

T
, β3 � 1

1.12

[
1 +

(
T

2πθ
− 2πτ

T

)2] 1
2

(23)

and

ω4 � 1√
θ (T + τ )

, β4 � 1

1.12

[
1 + (T + τ )

θ

] 1
2

. (24)

(a)

(b)

FIG. 3. (a) Numerical plots of the bifurcation diagram for the
variable x (maxima). (b) Lyapunov exponent � of the system. The
labels (a)–(f) indicate the dynamical regimes corresponding to the
phase portraits of Fig. 4.

As the control parameter β is varied, the previous state
loses its stability and two new branches of solutions emerge
at the value β3 � 1.08 with the limit cycle of frequency ω2 �
2π × 612 kHz. These branches, in turn, lose their stability
beyond a secondary bifurcation point β4 � 1.17, at the limit
cycle of frequency ω2 � 2π × 612 kHz.

(4) For x > α3, the fixed point is (x0, y0) = (0, 2θβ ) and
the characteristic equation in this region is the same as that
obtained in (i). Then the fixed point is stable.

IV. NUMERICAL AND EXPERIMENTAL RESULTS

A. Chaotic dynamic

The full bifurcation behavior of the system is displayed in
the bifurcation diagram of Fig. 3(a). The bifurcation diagram
is obtained by plotting the maxima of the variable x(t ) as a
function of the control parameter β. In order to unambigu-
ously quantify the occurrence of chaos, the main Lyapunov
exponent of the system has been computed as

� = lim
t→+∞

1

t
ln

[ |δx(t )|
|δx(t0)|

]
, (25)

where |δx(t )| is the linear perturbation around the solution
x(t ). It is known that a positive Lyapunov exponent is an
indication of chaos, and the variations of � as a function of
the gain β are displayed in Fig. 3(b). It can then be noted
that in Fig. 3 both the bifurcation diagram and the Lyapunov
exponent indicate the same window of chaotic behavior for the
chosen parameters. A period doubling bifurcation sequence to

042217-4



NONLINEAR DYNAMICS IN AN OPTOELECTRONIC … PHYSICAL REVIEW E 102, 042217 (2020)

FIG. 4. Numerical simulations of Eqs. (6) and (7) for various
gain values β in phase space. These phase portraits in the (x, y)
plane correspond to the operating points highlighted in bifurcation
diagram of Fig. 3(a): (a) period-limit cycle, β = 0.35, (b) β = 0.5,
(c) β = 0.8, (d) β = 1.2, (e) β = 1.5, (f) chaotic attractor, β = 1.7.

chaos is observed for an initial range of β values. For instance,
it is clear that for 0.35 < β < 0.38 there is a limit-cycle attrac-
tor of period T . Many bifurcation changes in the dynamics
take place at different critical values of β, particularly for
β > 0.38, by a slow-scale limit cycle which appears when
the feedback gain increased. We are interested in the complex
regime of the system, when the control β > 1.4 the system
exhibits a more complex chaotic motion as in Fig. 4(f).

B. Comparison between numerical and experimental results

Figure 5 shows an example of a complex wave-form signal
when the bias parameter is tuned. In this figure we have dis-
played the experimental time traces along with the numerical
ones obtained from the simulation of Eqs. (6) and (7). From
the experimental viewpoint, the gain is varied through the
control voltage Vcr of the VVA, while it is varied through
β (which is proportional to G) for numerical simulations.

FIG. 5. Experimental (on the left) and numerical (on the right)
time traces of the OEO. For the experimental results we set the
polarization voltage at Vpol = −2.5 V, and the control voltage was set
to (a) Vcr = 26.6 V, (c) Vcr = 40 V, (e) Vcr = 45 V. For the numerical
simulations of Eqs. (7) and (6) we set τ = 25 ns, θ = 0.3 μs, T =
0.2 μs, and the feedback gain was set to (b) β = 0.71, (d) β = 1.1,
(f) β = 1.6.

The polarization voltage is taken to allow the laser to reach
the region of linear increase (note that, experimentally, the
polarization voltages for the laser are negative in our setup).
Figure 5(b) illustrates the fast T -periodic oscillations, which
are observed for β = 0.71. This condition experimentally cor-
responds to Vcr = 26.6 V of Fig. 5(a). We slowly increased
the control voltage, to obtain another wave-form signal. Fig-
ure 5(d) illustrates the slow-fast periodic oscillations, which
are numerically observed for β = 1.1. This condition experi-
mentally corresponds to Vcr = 40 V of Fig. 5(c). Figure 5(f)
corresponds to the situation observed when β is further in-
creased and has passed the bifurcation point β = 1.6. This
signal typically indicates a state lacking order or predictabil-
ity, that we call a chaotic signal. This condition experimentally
corresponds to Vcr = 45 V of Fig. 5(e).
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C. Discussion

When the delayed-feedback control parameter is included,
we obtain a simple way to switch between stable and chaotic
states. The good agreement between the experimental results
and the numerical simulations validates the theoretical analy-
sis. Optoelectronic feedback schemes have also found a lot of
interest for the study of complex dynamics. They benefit from
the possibility that the pump current of semiconductors lasers
can be directly modulated with MHz or GHz bandwidths. In
this simplest configuration, we have not used any modulator,
such as a Mach-Zehnder modulator, and we have worked
into the intermediate frequency range (10–100 MHz). The
nonlinearity of the scheme is provided by the interactions
of the nonlinear diode and the nonlinear photodetector. The
system exhibit a rich variety of complex behavior, fast T -
periodic oscillations with a frequency of ω1 � 2π × 5 MHz,
slow-fast periodic oscillations with a frequency of ω2 �
2π × 612 kHz, and chaotic wave oscillations. The frequency
in this slow-scale oscillation also depends in a nontrivial
fashion on the three typical time constants of the system,
namely τ , θ , and T . The critical values corresponding to these

Hopf bifurcations depend on these three time constants as
well.

V. CONCLUSION

In conclusion, we have proposed a dynamical model for
the study of nonlinear dynamics of the simplest laser-based
optoelectronic oscillator with a nonlinear photodiode. The
model shows that the interaction between the nonlinear trans-
fer function of the laser diode and the time delay generates
rich and complex dynamical regimes including fast-slow and
chaotic oscillations that can be controlled by the feedback
gain β. Finally, we expect this oscillator to be an interesting
alternative for many other potential applications, including
the synchronization and control of chaos. This OEO provides
attractive and controllable dynamical features, of interest not
only in chaos encryption, but also in real time and fast opti-
cal processing systems, such as random number generation,
photonic ultrawideband signal generators, and reservoir com-
puting taking advantage of the intrinsic multiple time scale of
our OEO systems.
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