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Semiclassical quantization of neutrino billiards
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The impact of the classical dynamic on the fluctuation properties in the eigenvalue spectrum of nonrelativistic
quantum billiards (QBs) are now well understood based on the semiclassical approach which provides an
approximation for the fluctuating part ρfluc(k) of the spectral density in terms of a trace formula, that is, a
sum over classical periodic orbits of its classical counterpart, abbreviated as CB. This connection between the
eigenvalue spectrum of a quantum system and the classical periodic orbits is discernible in the Fourier transform
of ρfluc(k) from eigenwave number k to length, which exhibits peaks at the lengths of the periodic orbits. The
uprise of interest in properties of graphene related to their relativistic Dirac spectrum implicated the emergence
of intensive studies of relativistic neutrino billiards (NBs), consisting of a spin-1/2 particle governed by the
Dirac equation and confined to a bounded planar domain. In distinction to QBs, NBs do not have a well-defined
classical limit. Yet comparison of their length spectra showed that for massless spin-1/2 particles those of the
NB exhibit peaks at positions corresponding to the lengths of periodic orbits with an even number of reflections
at the boundary of the CB associated with the corresponding QB. In order to understand the transition from the
relativistic to the nonrelativistic regime, we derive an exact quantization condition for massive NBs and use it to
obtain a trace formula. This trace formula provides a direct link between the spectral density of a NB and the
classical dynamic of the corresponding QB through the periodic orbits of the associated CB.
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I. INTRODUCTION

Billiards are particularly suited for theoretical, numerical,
and experimental investigations within quantum chaos [1–3].
They consist of a bounded two-dimensional domain �, in
which a point particle moves freely and is reflected specularly
at the boundary ∂� and are referred to as classical billiards
(CBs). Billiards have the nice feature that their dynamic
is determined by their shape. The associated nonrelativis-
tic quantum billiard (QB) is governed by the Schrödinger
equation for a free particle which is confined to the billiard
domain by imposing on the wave functions ψ (r) the Dirich-
let boundary condition (BC) ψ (r) = 0 along the boundary
r ∈ ∂� [4–7]. Numerous numerical and also experimental
studies have been performed [5,8–13] with billiards validat-
ing the Bohigas-Giannoni-Schmit conjecture [14–17] and the
Berry-Tabor conjecture [18] concerning the universality of
the spectral properties of quantum systems with fully chaotic
and integrable classical counterpart, respectively, and their
descriptiveness by random matrix theory for sufficiently large
energies. Criteria for the applicability of random matrix theory
could be finally identified within the periodic orbit (PO) the-
ory employable to the semiclassical limit h̄ → 0, which was
pioneered by Gutzwiller [19,20]. It provides an approximation
for the fluctuating part of the spectral density of a quantum
system in terms of a sum over the POs of the associated
classical dynamic, e.g., Gutzwiller’s trace formula for chaotic
systems [21].
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Yet there also exist billiards with certain shapes which
do not comply with these conjectures. Examples are billiards
with a threefold-symmetric shape [22–24] or a unidirectional
classical dynamic [25–28]. If the shape of such billiards has
no further geometric symmetry, then the spectral properties
coincide with those of generic chaotic systems with violated
time-reversal invariance even though it is preserved. The de-
viations from the expected results could be explained in terms
of semiclassical trace formulas [26,29–31]. In 1987 Berry and
Mondragon proposed another example with these properties,
neutrino billiards [32] (NBs). They are governed by the Dirac
equation for a spin-1/2 particle which is confined to the
billiard area by imposing the BC that there is no outward
current. In Ref. [32] massless NBs, that is, massless spin-1/2
particles, were considered. It was shown in Ref. [32] that the
associated Hamiltonian is not invariant under time reversal.
Furthermore, the length spectra, i.e., the Fourier transform
of the fluctuating part of the spectral density, exhibits peaks
at the lengths of POs of the corresponding CB; however, in
distinction to the corresponding QB, those with an odd num-
ber of reflections at the boundary are missing. These features
were shown in Ref. [32] to have their origin in the chirality of
such POs and they indicate that the spectral density of NBs
can be written in terms of a trace formula over POs with
an even number of reflections of the associated CB. Inter-
est in NBs reemerged recently [33–44] with the pioneering
fabrication of graphene [45–50] which entailed an increasing
interest in the spectral properties of graphene billiards (GBs)
[33,35,36,38,39,43,44,46,47], that is, finite-size sheets of
(artificial) graphene.
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In distinction to QBs, NBs do not have a well-defined
classical limit. Therefore, the question arises whether their
spectral properties are related to the classical dynamic of the
CB of corresponding shape, as is the case for QBs. A direct
link between a QB and its classical counterpart is provided
by Gutzwiller’s trace formula for systems with a chaotic clas-
sical dynamic and by a trace formula of Berry and Tabor
for integrable systems [18]. The objective of the present ar-
ticle is to understand within such a semiclassical approach
how the transition from a relativistic NB to a nonrelativis-
tic QB of corresponding shape takes place. In Refs. [51,52]
a semiclassical trace formula and semiclassical quantization
rules were derived on the basis of Gutzwiller’s method [4,19]
for the Dirac equation of a charged relativistic particle with
spin-1/2 exposed to an external static electromagnetic field.
Furthermore, trace formulas were derived for GBs [39,53]
subject to various BCs using a multiple reflection expansion.
In Ref. [54] a trace formula was obtained for massless circular
and elliptical NBs, i.e., for the ultrarelativistic case, follow-
ing the procedure of Refs. [55–57] for QBs which uses a
boundary-integral equation (BIE) as starting point, yielding
a secular equation in terms of a spectral determinant [58–60].
We derive a trace formula for massive NBs which also makes
use of the results of Refs. [55–57]. For this we derive an exact
BIE of which the solutions yield the eigenstates of massive
NBs. They render possible the derivation of a semiclassical
quantization condition for NBs which then is used to obtain
the trace formula. In Ref. [61] the features of quantum scars
and spectral properties of massive NBs were investigated.
The eigenvalues were obtained with a numerical procedure
yielding eigenstates which do not fully comply with the BC
for NBs. The BIE has the advantage that it originates from the
Green’s theorem and, therefore, incorporates the BC, which is
crucial for the derivation of the trace formula.

In Sec. II we briefly review the Dirac equation for NBs,
that is, of a spin-1/2 particle of mass m confined to the billiard
domain by imposing a BC on the spinor wave function which
links its components. In order to enable the analytical study of
the transition from relativistic NBs to nonrelativistic QBs we
turn this BC into BCs imposed on each spinor wave-function
component separately. Then we introduce in Sec. III the BIEs
for massive neutrino billiards. In Sec. IV we consider the
nonrelativistic limit, where the energy is close to the rest
energy, E � mc2, which is reached in the limit β = mc

h̄k → ∞
for fixed, nonzero h̄k with k denoting the free-space wave
vector, i.e., for mc → ∞. We verify that the nonrelativistic
limit complies with the BCs for massive NBs yielding that
the spinor components decouple in that limit and their wave
equations coincide with those of QBs subject to Robin bound-
ary conditions. In Sec. V we derive the trace formula attained
for a given value of mc in the semiclassical limit h̄ → 0
while keeping h̄k, that is, β fixed, using similar methods as
in Ref. [54]. A fundamental problem of trace formulas in
general is their convergence. They can, for example, arise due
to POs which move nearly tangential to the boundary [62,63].
We will address the convergence problem and test it for the
trace formula of a massive circle NB, which we derive in
Sec. VI. In Sec. VII we compare our results to those for a
constant-width NB. Using the fact that NBs and QBs are scale
invariant, we fix the range of β by choosing for all realizations

the same range of k values, where the minimum value is set
equal to that of the smallest eigenvalue taken into account,
and consider neutrino billiards of increasing mass. That is, we
increase β̃ until the trace formula coincides with that of the
corresponding QB. For both NBs we come to the result that
the nonrelativistic limit is reached for a finite value of β.

II. THE DIRAC EQUATION FOR NBS

The Dirac equation of a free spin-1/2 particle of mass m
moving with momentum p̂ = −ih̄∇ in the r = (x, y) plane
reads

cσ̂ · p̂ψ = [E1 − mc2σ̂z]ψ, ψ =
(
ψ1

ψ2

)
. (1)

Here 1 is the 2×2 unit matrix, σ̂ = (σ̂x, σ̂y) and σ̂q, q =
x, y, z denote the Pauli matrices. Furthermore, E = h̄ckE =
h̄ck

√
1 + β2 is the energy of the particle where k is the

free-space wave vector and β = mc
h̄k denotes the ratio of the

rest-energy momentum and free-space momentum.
We are interested in the properties of the eigenstates of

massive NBs with a smooth boundary and no diffractive
corners. For massless spin-1/2 particles confinement of the
particle to the billiard domain � is achieved [32] by requiring
that the Hamiltionian of a closed system should preserve self-
adjointness, implying that it is Hermitian. This property is
not destroyed when introducing the mass term in Eq. (1). Ac-
cordingly, the BCs are independent of the size of m. Defining
the boundary ∂� of the NB by r(s) = [x(s), y(s)] in coordi-
nate space or by w(s) = x(s) + iy(s) in the complex plane
through the arc-length parameter s ∈ [0,L] with L denoting
the perimeter, the BC reads

ψ2(s) = ieiα(s)ψ1(s). (2)

Here α(s) is the angle of the outward-pointing normal vector
n(s) = [cos α(s), sin α(s)] with respect to the x axis at r(s).
The BC links the wave-function components ψ1,2(s) at ∂�.
For the derivation of separate BCs we introduce local coordi-
nates (n, s) along the boundary (n = 0, s) in the directions of
n(s) and of the tangential vector t (s) = [− sin α(s), cos α(s)]
to ∂� at r(s). Denoting the normal and tangential derivatives
along ∂� by ∂n = n · ∇ and ∂s = t · ∇, respectively, yielding
∂x ± i∂y = e±iα(s)(∂n ± i∂s) and applying Eq. (2), we obtain
from Eq. (1) for the BCs of the wave-function components
along ∂�

(∂n + i∂s)ψ1(n, s)|n→0− = −kK−1ψ1(s),

(∂n − i∂s)ψ2(n, s)|n→0− = kKψ2(s), (3)

where n → 0− means that the boundary is approached in
direction of n(s) from the interior. Note that we suppress in
the boundary wave functions the first argument of ψ1,2(n =
0, s) = ψ1,2(s). Furthermore, we introduced

K =
√√√√√

1 + β2 − β√
1 + β2 + β

=
√

1 − sin θβ

1 + sin θβ

, (4)

cos θβ = 1√
1 + β2

, sin θβ = β√
1 + β2

. (5)
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For massless particles K = 1 and θβ = 0, whereas in the non-
relativistic limit β → ∞ [64] K � 1

2β
→ 0, and θβ → π/2.

We use the variable θβ instead of β in order to facilitate
a well-defined nonrelativistic limit as outlined in following
sections. Introducing in the vicinity of the boundary the wave
functions


1(n, s) = {ψ1(n, s) + [−ie−iα(s)]ψ2(n, s)}/2,


2(n, s) = {ψ2(n, s) + [ieiα(s)]ψ1(n, s)}/2, (6)

with 
1,2(n, s)
n→0−−−−→ ψ1,2(s), that are used below for the

evaluation of the BIEs, the BCs [Eq. (3)] become[
β̃ + 1

2κ (s)
]

 j (s) + ∂n
 j (n, s)|n→0− = 0, j = 1, 2, (7)

with β̃ = mc
h̄ corresponding to the rest-energy momentum in

units of h̄ and κ (s) = d
dsα(s) denoting the curvature of the

boundary at r(s). Here we use the BC Eq. (2) which implies
that

i∂sψ2(s) = −κ (s)ψ1(s) + ieiα(s)i∂sψ1(s). (8)

According to Eq. (7) 
1,2(s) obey Robin BCs [65–67]; how-
ever, they are linked by Eq. (2).

III. BOUNDARY-INTEGRAL EQUATIONS
FOR MASSIVE NBS

In order to derive a BIE for massive neutrino billiards,
we divide ψ1,2(r) in Eq. (1) by the amplitudes of the corre-
sponding free-space wave-function components [64], that is,
introduce the two-component spinor ψ̃(r) through

ψ =
⎛
⎝

√
E+mc2

2E ψ̃1√
E−mc2

2E ψ̃2

⎞
⎠ =

⎛
⎝

√
1+sin θβ

2 ψ̃1√
1−sin θβ

2 ψ̃2

⎞
⎠, (9)

yielding for the Dirac equation of a massive NB

kψ̃(r) + iσ̂ · ∇ψ̃(r) = 0, (10)

ψ̃2(s) = ieiα(s)K−1ψ̃1(s). (11)

For β → 0 Eq. (10) together with the BC Eq. (11) approaches
the Dirac equation for a massless NB.

The Dirac equation (10) has the same form as that for a
massless spin-1/2 particle, except for modified BCs. Accord-
ingly, we may proceed as in Refs. [32,67] to derive BIEs
for the wave-function components and then as in Ref. [54]
to obtain a semiclassical approximation for the fluctuating
part ρfluc(k; β̃ ) of the spectral density. After applying the BC
Eq. (10) the BIEs become

ψ̃∗
1 (s′) = ik

2

∮
∂�

dsψ̃∗
1 (s)

{−K−1H (1)
0 [kρ(s, s′)]

+ e−iα(s)eiξ (s,s′ )H (1)
1 [kρ(s, s′)]

}
, (12)

ψ̃∗
2 (s′) = ik

2

∮
∂�

dsψ̃∗
2 (s)

×{
KH (1)

0 [kρ(s, s′)] + eiα(s)e−iξ (s,s′ )H (1)
1 [kρ(s, s′)]

}
,

(13)

FIG. 1. Illustration of the quantities entering Eqs. (12) and (13).
Here x̂ denotes the x axis. The billiard has the shape of the constant-
width NB considered in Sec. VII.

with (see Fig. 1)

eiξ (s,s′ ) = r(s) − r(s′)
|r(s) − r(s′)| , ρ(s, s′) = |r(s) − r(s′)|. (14)

Here H (1)
m (kρ) = Jm(kρ) + iYm(kρ) refers to the Hankel func-

tion of the first kind of order m. We show in Sec. A of
the Appendix that these BIEs yield the analytically known
eigenstates of a massive circle NB. In Sec. B of the
Appendix we outline how it can be shown that these equa-
tions indeed fulfill the boundary conditions Eq. (3) and thus
Eq. (7).

We note that, independently of the value of β, the BIEs
(12) and (13) can be brought to the form of the BIE for QBs
by applying the BCs Eq. (3) and using that∮

∂�

dsH0[kρ(s, s′)]∂sψ̃
∗
j (s) = −

∮
∂�

dsψ̃∗
j (s)∂sH0[kρ(s, s′)]

and

∂sH
(1)
0 [kρ(s, s′)] = −k sin(ξ − α)H (1)

1 [kρ(s, s′)], (15)

yielding

1

2
ψ̃∗

j (s′) =
∮

∂�

ds{ψ̃∗
j (s)∂nG0[s′, s; k] − G0[s′, s; k]∂nψ̃

∗
j (s)},

(16)

for j = 1, 2. Here

G0[s′, s; k] = − i

4
H (1)

0 [kρ(s, s′)] (17)

is the free-space Green’s function in the plane. This is the
BIE for the nonrelativistic Schrödinger equation [68] of a QB
of corresponding shape. Actually, applying −ih̄σ̂ · ∇ to the
Dirac equation (1) yields for both wave-function components
the Schrödinger equation of a free particle. However, they are
linked through the BC Eq. (2).

At ρ = 0 H0(kρ) and H1(kρ) have a logarithmic and 1/ρ

singularity, respectively. The latter is removed by switching
from the wave-function components ψ∗

1,2 to their combina-
tions 
∗

1,2 given in Eq. (6) and using the BC Eq. (2), leading
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to the BIE

cos θβψ̃∗
1 (s′)

= ik

4

∮
∂�

ds2ei 

(s,s′ )
2 ψ̃∗

1 (s)

×
({

i sin

[


(s, s′)

2

]
− sin θβ cos

[


(s, s′)

2

]}

× H (1)
0 (kρ)

+ cos θβ cos

[
α(s′) + α(s)

2
− ξ (s, s′)

]
H (1)

1 (kρ)

)
, (18)

where 

(s, s′) = α(s′ )−α(s)
2 . Furthermore, in the remainder

of the paper we suppress the argument of ρ = ρ(s, s′). The
corresponding equation for ψ̃∗

2 (s′) is obtained with Eq. (11) by
multiplying the integrand with e−i

(s,s′ ). The ultrarelativistic
and nonrelativistic cases are attained for θβ = 0 and θβ = π

2 ,
respectively. For s → s′, i.e., ρ → 0 all terms in the integrand
vanish [67] except for the one proportional to sin θβH (1)

0 (kρ),
which vanishes for massless particles and otherwise contains a
logarithmic singularity that can be dealt with for billiards with
a smooth boundary and no diffractive corners [69]. This sin-
gularity can be removed by using relation Eq. (B1) obtained
by imposing on ψ̃1(s′) and ψ̃2(s′) the BC Eq. (11) using the
right-hand sides of Eqs. (12) and (13). Then the BIE Eq. (18)
becomes

ψ̃∗
1 (s′) = ik

4

∮
∂�

dsei 

(s,s′ )
2 2ψ̃∗

1 (s)

×
{

i cos θβ sin

[


(s, s′)

2

]
H (1)

0 (kρ)

+ i sin θβ sin

[
α(s′) + α(s)

2
− ξ (s, s′)

]
H (1)

1 (kρ)

+ cos

[
α(s′) + α(s)

2
− ξ (s, s′)

]
H (1)

1 (kρ)

}
. (19)

For s → s′ the first and the last terms vanish [67], whereas the
second term approaches

2iei 

(s,s′ )
2 sin θβ sin

[
α(s′) + α(s)

2
− ξ (s, s′)

]
ik

4
H (1)

1 (kρ)

s→s′−−→ sin θβ

2π

[
−κ (s) + i

d

ds

1

r′(s)

]
, (20)

where r′(s) = d
ds |r|. Equation (19) is of particular usefulness

for the high-precision computation of the eigenvalues of mas-
sive NBs.

The correponding BIEs for the wave-function components
ψ1,2 are obtained by multiplying them with the prefactors
defined in Eq. (9) that relate them to ψ̃1,2, that is, their BIEs
are given by Eqs. (12) and (13) with ψ̃1,2 replaced by ψ1,2.

IV. THE NONRELATIVISTIC LIMIT

The nonrelativistic limit is attained by increasing β at a
fixed, nonzero value of h̄k until the energy is close to the rest
energy, and it is reached when E � mc2 + (h̄k)2/(2m). Then,
the equation for the second wave-function component in (1)
becomes

ψ2(r) � − i

2β̃
(∂x + i∂y)ψ1(r), (21)

yielding for the first one when inserting this relation

(
− h̄2

2m

 + k2

)
ψ1(r) = 0. (22)

To check whether this functional dependence of ψ2(r) on
ψ1(r) complies with the BCs Eq. (3), we consider Eq. (21)
along the boundary ∂�,

ψ2(s) = − i

2β̃
eiα(s)(∂n + i∂s)ψ1(n, s)|n→0− , (23)

!= i

2β
eiα(s)K−1ψ1(s), (24)

= K−1

2β
ψ2(s), (25)

where we used Eqs. (2) and (3) for the second and third
equalities, respectively. This implies that K−1 � 2β must
hold, which is the case for sufficiently large β. Then ψ1(r)
decouples from ψ2(r) and the boundary wave functions 
 j (s)
coincide with the wave-function components, 
 j (n, s) ≡
ψ j (n, s). Accordingly, ψ1(r) may be determined by solving
the Schrödinger equation of a QB subject to the Robin BC
[Eq. (7)], which turns into the Dirichlet BC for β̃ → ∞
[43,70]. A trace formula, that is, a semiclassical approxi-
mation, has been derived for the spectral density of such
QBs [65].

V. A SEMICLASSICAL QUANTIZATION RULE FOR NBS

In the rest of the paper we will consider the semiclassical
limit h̄ → 0 for fixed E = h̄ckE and h̄k, i.e., for fixed β

and thus mc, which is equivalent to taking the limit of kE

or of k to ∞ while leaving β and mc unchanged. In the
derivation we assume that the NB has the shape of a CB
with chaotic classical dynamics. To obtain a semiclassical
quantization condition which is well defined for all values 0 �
m < ∞, i.e., 0 � θβ � π/2, and yields a trace formula with
convergence properties similar to those of Gutzwiller’s trace
formula, we use as starting point a combination of Eq. (18)
and a BIE resulting from the BC [Eq. (7)],

[
sin θβ + κ (s′)

2k

]
ψ̃∗

1 (s′) = ik

4

∮
∂�

ds2ei 

(s,s′ )
2 ψ̃∗

1 (s) cos [ξ (s, s′) − α(s′)] (26)

×
(

cos θβ cos

[
α(s′) + α(s)

2
− ξ (s, s′)

]
H (1)

0 (kρ)
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−
{

i sin

[


(s, s′)

2

]
− sin θβ cos

[


(s, s′)

2

]}
H (1)

1 (kρ)

)

− cos θβ

ik

4

∮
∂�

dsψ̃∗
1 (s)

{
ei[2ξ (s,s′ )−α(s′ )−α(s)] + e2i[α(s′ )−ξ (s,s′ )]}H (1)

1 (kρ)

kρ
. (27)

More details are provided in Sec. B of the Appendix. Again,
the corresponding equation for ψ̃∗

2 (s′) is obtained with
Eq. (11) by multiplying the integrand with e−i

(s,s′ ). For bil-
liard shapes with no diffractive corners κ (s)

k and also the term
(27) become negligible in the semiclassical limit k → ∞.
Note that the left-hand side of Eq. (18) vanishes in the
nonrelativistic limit θβ = π/2, whereas that of Eq. (26) is zero
in the ultrarelativistic limit θβ = 0. However, the derivation of
a trace formula based on a BIE requires that it is nonvanishing.
Since both BIEs apply in the semiclassical limit, we may
use the sum of Eq. (18) multiplied with cos θβ and Eq. (26)
multiplied with sin θβ to overcome this problem. The resulting
quantization condition can be cast to the form [54,56]

ψ̃
†
[r(s′)] =

∮
∂�

dsQ[r(s′), r(s); k]ψ̃
†
[r(s)]

= Q̂(k)ψ̃
†
[r(s)], (28)

with Q̂i j (k) = Q̂ j j (k)δi j denoting the integral operator which
is applied to ψ̃∗

j (s) to obtain ψ̃∗
j (s′). This equation has

nontrivial solutions at the zeros of the spectral determinant,
leading to the quantization condition

det[1 − Q̂(k)] = 0. (29)

Thus, the fluctuating part of the spectral density is related to
the trace of Q̂p(k) through [56,57]

ρfluc(k; β̃ ) = − 1

π
Im

d

dk
ln det[1 − Q̂(k)], (30)

= 1

π
Im

∞∑
p=1

1

p

d

dk
[TrQ̂

p
(k)], (31)

where

TrQ̂
p
(k) =

∮
∂�

ds1

∮
∂�

ds2 · · ·
∮

∂�

dspPp. (32)

Here

Pp = 2 cos

[
p∑

r=1



(sr+1, sr )

2

]
p∏

r=1

Q[r(sr ), r(sr+1); k] (33)

with sp+1 = s1, s0 = sp, and Q[r(sr ), r(sr+1); k] can be read
off the terms in round brackets in Eq. (18) multiplied with
cos θβ and in Eq. (26) multiplied with sin θβ . To solve the p
integrals we use the results obtained for the corresponding QB
in the semiclassical limit (see the Appendix of Ref. [56]). For
this we extract from Q[r(sr ), r(sr+1); k], that is, from Eqs. (18)
and (26) the Hankel functions, where we use the relation
Eq. (17) and the following approximations valid for k → ∞,

G0[r(s), r(s′); k] � − i

4

√
2

πρ
eikρ− i

4 π , (34)

H1(kρ) � 1

i
H0(kρ), (35)

and

∂n′G0[r(s), r(s′); k]

� i cos [α(s′) − ξ (s, s′)] · (−k) · G0[r(s), r(s′); k], (36)

to cast Eq. (32) to the form

TrQ̂
p
(k)

� (−2)p ×
∮

∂�

ds1 · · ·
∮

∂�

dsp

p∏
r=1

∂nr G0[r(sr ), r(sr+1); k]

×
( i

2

)p P̃p∏p
r=1 cos [αr − ξr+1,r]

. (37)

We used the short cuts αr = α(sr ) and ξr+1,r = ξ (sr+1, sr )
which denote the angles of the outward-pointing normal
vector at sr and of the trajectory segment connecting the
reflection points at sr and sr+1 with respect to the x axis,
respectively. The difference between this term and that
evaluated in Ref. [56] is that it has an additional factor
given in the last line. Here P̃p results from Eq. (33) after
extraction of the Hankel functions [54]. The p integrals were
performed in Ref. [56] by replacing the Green’s functions
by their asymptotic expressions Eq. (34) and applying the
stationary phase approximation. Since the additional factor
does not oscillate rapidly with k, it does not contribute
to the stationary phase and we can adopt these results. In
the semiclassical limit, the nonvanishing contributions to
TrQ̂

p
(k) thus come from the POs of order p. Furthermore,

the leading-k contribution to the derivative with respect to k
in Eq. (32) comes from the phase factor resulting from the
integrals over the normal derivatives of G0. Accordingly, to
leading order in k the saddle point approximation yields

Im
1

p

d

dk
[TrQ̂

p
(k)]

� Re
∑
γp

Aγpe
i�γp

P̃∗
p∏p

r=1(−2i) cos[αr − ξr+1,r]
, (38)

with

Aγp = l (p)
PO

rPO

√∣∣TrM (p)
PO − 2

∣∣ , �γp = kl (p)
PO − π

2
μ

(p)
PO. (39)

The ∗ in P̃∗
p indicates that the product should be evaluated

along the POs. These are subject to the condition for specular
reflection [32],

ξr+1,r − αr = αr − ξr,r−1 + π. (40)

Furthermore, M (p)
PO denotes the monodromy matrix, l (p)

PO the
length of the PO, μ(p)

PO the Maslov index, and rPO the number of
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repetitions of the primitive PO. Gutzwiller’s trace formula for
QBs is attained when the last factor in Eq. (38) equals unity,

ρfluc
QB (k) = 1

π

∞∑
p=1

∑
γp

Aγp cos(�γp ). (41)

Note that it was shown in Ref. [54] that a trace formula is
obtained for massless NBs, i.e., for θβ = 0 in Eq. (38), with
circular and elliptic shapes, which generate a regular classical
dynamics, by replacing the amplitude Aγp and phase �γp in
Eq. (39) by those of the trace formula of the corresponding
QB. We will demonstrate in Sec. VI that thereby a trace
formula is also obtained for massive circular NBs. Introducing
the angle

χr = ξr,r−1 − αr = π − (ξr+1,r −αr ), 0 � χr < π/2, (42)

which yields ξr,r−1 with respect to the normal vector at sr , the
product P̃∗

p reads

P̃∗
p =

(2

i

)p

2 cos
(

γp − p

π

2

)

×
p∏

r=1

{cos θβ + i sin θβ cos (αr − ξr+1,r )}

×
[
cos

(χr + χr+1

2

)
− i sin θβ sin

(χr + χr+1

2

)
+ cos θβ sin

(χr − χr+1

2

)]
. (43)

Here we used the following relations deduced from Eq. (40):
αr+1 + αr

2
− ξr+1,r = (χr − χr+1)/2 − π/2, (44)

αr+1 − αr = π − (χr + χr+1), (45)

and


γp =
p∑

r=1

χr . (46)

Using the rule of specular reflection Eq. (40) 
γp can be
further evaluated,


γp − p
π

2
=

p∑
j=1

[ξ j, j−1 − α j] − p
π

2

≡
p∑

j=1

[ξ j, j−1 − ξ j+1, j]

2

= ξ1,0 − ξp+1,p

2
. (47)

Here ξp+1,p − ξ1,0 = Np2π is the complete phase accumulated
after looping the PO, which is an integer multiple of 2π [32]
denoted as Np,


γp − p
π

2
= −Npπ. (48)

Equation (38) is brought to the form

Im
1

p

d

dk
[TrQ̂

p
(k)], (49)

= Re
∑
γp

2 cos
(

γp − p

π

2

)
Bβ̃

γp
ei�β̃

γpAγpe
i�γp , (50)

where Bβ̃
γp

ei�β̃
γp is given by the product over r in Eq. (43).

The sum is over clockwise and counterclockwise propagating
POs. Reversing the rotational direction of the PO corresponds

to swapping the sign of χr in Eq. (43), turning Bβ̃
γp

ei�β̃
γp into

an, in general different term which we denote by B̃β̃
γp

ei�̃β̃
γp .

Furthermore, 
γp turns into 
̃γp = −
γp , whereas the factors
from Gutzwiller’s trace formula do not change. Consequently,
the contributions of the clockwise and counterclockwise prop-
agating orbits differ for NBs, that is, they exhibit the chirality
property. The real part of the summands in Eq. (49) becomes

2P β̃
γp

= Bβ̃
γp

cos
(

γp − p

π

2

)
cos

(
�γp + �β̃

γp

)
(51)

+ B̃β̃
γp

cos
(

γp + p

π

2

)
cos

(
�γp + �̃β̃

γp

)
= cos

(

γp − p

π

2

)
× [

Bβ̃
γp

cos
(
�γp + �β̃

γp

) + (−1)pB̃β̃
γp

cos
(
�γp + �̃β̃

γp

)]
.

(52)

We finally obtain for the trace formula of massive neutrino
billiards

ρfluc(k; β̃ ) = 1

π

∑
p

∑
γp

AγpP β̃
γp

. (53)

In the massless, i.e., the ultrarelativistic case β =0 and θβ =0

so that Bβ̃
γp

ei�β̃
γp = (−1)p and

P β̃
γp

β→0−−→ (−1)p2 cos
(

γp

)
cos

(
p
π

2

)
cos

(
�γp

)
. (54)

Thus, the trace formula for massless NBs differs from that of
QBs by the product of the first two cosine functions which
vanishes for odd p, implying that only POs with an even
number of reflections at the boundary [39,51] contribute to
it. This difference has its origin in the chirality property and
the additional spin degree of freedom. Actually, a similar
behavior was observed in Refs. [71,72] for three-dimensional
microwave resonators where it can be attributed to the vecto-
rial character of the Helmholtz equation. Generally, for β → 0
contributions of POs with odd periodicity p are negligible.
Yet, for nonzero mass, i.e., θβ 
= 0 the second term in the curly
brackets of Eq. (43) yields a nonvanishing contribution of POs
with an odd number of reflections.

In the nonrelativistic limit β → ∞, that is, θβ → π
2 ,

Eq. (43) becomes

Bβ̃
γp

ei�β̃
γp

β→∞−−−→
p∏

r=1

{ie−i
χr +χr+1

2 } = ei[p π
2 −
γp], (55)

yielding

2P β̃
γp

β→∞−−−→ cos
(

γp − p

π

2

){
cos

(
�γp −

[

γp − p

π

2

])
+ (−1)p cos

(
�γp −

[

γp + p

π

2

])}
= 2 cos

(

γp − p

π

2

)
cos

(
�γp −

[

γp − p

π

2

])
≡ 2 cos

(
�γp

)
, (56)
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where we used the fact that 
γp − pπ
2 is a multiple of π ; see

Eq. (48). Thus, in the nonrelativistic limit the trace formula for
a massive NB Eq. (53) turns into Gutzwiller’s trace formula
for the corresponding QB given in Eq. (41).

VI. TRACE FORMULA FOR A MASSIVE CIRCULAR NB

We mentioned above that we used a combination of
Eqs. (18) and (26) to obtain a trace formula with convergence
properties similar to those of Gutzwiller’s trace formula. This
is the case in the limits θβ → 0 and θβ → π/2, respectively,
where the product P̃∗

p in Eq. (43) is proportional to the denom-
inator of the last term in Eq. (38). However, in the intermediate
region 0 < θβ < π/2 convergence problems might arise due
to the cos θβ term in the curly brackets of Eq. (43) which does
not factorize into a product of cos(αr − ξr+1,r ) = − cos χr

multiplied with a term which is nonsingular at χr � π/2; see
Eq. (B13) of Appendix B. Thus it becomes large for POs
which are nearly tangential to the boundary in some parts.
Examples for such orbits are whispering-gallery-type POs in
billiards with a circular shape with lengths close to a multiple
of the circumference of the billiard [63] or in the stadium
billiard [62,73]. In order to study the convergence properties
of the trace formula Eq. (53), we first considered the massive
circular NBs, also to test whether, like in the nonrelativistic
[63] and the ultrarelativistic case [54], the derivation used to
derive the trace formula also applies to massive NBs with the
shape of an integrable CB. Another reason is that the eigen-
states are known analytically. They are obtained for a circular
NB of radius R by solving Eq. (10) with the BC Eq. (11)
in polar coordinates (r, φ) where r ∈ [0,R] and φ ∈ [0, 2π )
[67], yielding

ψ̃1,m(r, φ) = amimJm(kr)eimφ, (57)

ψ̃2,m(r, φ) = amim+1Jm+1(kr)ei(m+1)φ, (58)

and thus ψ1,m(r, φ) and ψ2,m(r, φ) with Eq. (9). Using orthog-
onality along the boundary yields with the BC Eq. (11) the
quantization condition

Jm+1(kR) = K−1Jm(kR). (59)

We set R = 1 cm in the following.
For a circular billiard the angles of reflection χr of a PO

are all equivalent and are given for a PO with p reflections at
the boundary and winding number mϕ by

χr =
[

sgn(mϕ )

2
− mϕ

p

]
π, r = 1, . . . , p, (60)

where sgn(mϕ ) = ±1 for clockwise and counterclockwise
POs, respectively, so that

Bβ̃
γp

ei�β̃
γp =

[
− cos θβ + i sin θβ sin

(
π

|mϕ|
p

)]p

×
[

1 ± i sin θβ cot

(
π

|mϕ|
p

)]p

(61)

and

cos
(

γp − p

π

2

)
= cos

([
mϕ − p

2
± p

2

]
π

)
. (62)

FIG. 2. Comparison of the length spectrum deduced from the
eigenvalues of the circular NB (black dots and line) for the ultrarel-
ativistic limit β̃ = 0 (upper part) with that obtained from the Fourier
transform of the associated trace formula Eq. (53) from k to l (red
dots and line). To illustrate cancellation of POs with odd periodicity
we compare them with those for the nonrelativistic QB (lower part).
The arrows point at the lengths of POs with an odd number of
reflections.

In the rest of the paper we restrict to mϕ > 0. Furthermore, for
the circular billiard

Aγpe
i�γp =

√
k

π
(2−δp,2mϕ

)

(
sin mϕ

p π
)3/2

√
p

ei[2kp sin(
mϕ

p π )− 3π
2 p+ π

4 ]
.

(63)

Using the quantization condition Eq. (59), we computed the
eigenstates of massive circular NBs for several values of β̃

below kR = 200 yielding ≈10 000 eigenvalues for each of
them. Here we use the fact that NBs are scale invariant, that is,
h̄ can be set, e.g., to h̄ = 1. We compared their length spectra,
that is, the modulus of the Fourier transform of ρfluc(k; β̃ )
from k to length l , to those deduced from the associated
trace formula. In the upper part of Fig. 2 we show the length
spectrum for the ultrarelativistic case β̃ = 0 obtained from
the eigenvalues (black lines) with that obtained from the cor-
responding trace formula (red dashed line) and in the lower
part those for the nonrelativistic QB. Lengths corresponding
to POs with an odd number of reflections at the boundary are
marked by arrows. It is clearly visible that these are missing
in the length spectrum of the massless NB.

The contribution of the cos θβ term to Bβ̃
γp

ei�β̃
γp in Eq. (61)

becomes large for mϕ

p � 0, that is, for whispering-gallery
modes with lengths close to 2πR after one loop of the PO
and might result in convergence problems in the numerical
analysis depending on the value of 2 sin θβ cos θβ = sin(2θβ )
beyond a certain value of p in Eq. (60) if these contri-
butions do not interfere destructively with other POs, or
the contributions for clockwise and counterclockwise POs
do not cancel each other. To control convergence we set
an upper limit on the size of | cos χr | � ε which corre-
sponds to disregarding the contributions of POs with reflection
angles above a certain value and compared the resulting
fluctuating part Nfluc(k; β̃ ) of the integrated spectral den-
sity deduced from the eigenvalues of massive NBs with
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FIG. 3. Comparison of the length spectra deduced from the
eigenvalues of massive circular NB (black lines) with those obtained
by integrating the associated trace formula Eq. (53) (see main text)
over k (red dashed lines). The values of β̃ are given in the panels. The
arrows point at the lengths of POs with an odd number of reflections.

β̃ = 0.5, 1, 2, 5, 10, 20, 50, 75, 100, 200/cm with that ob-
tained by integrating the associated trace formula over k for
lengths below l = 20 cm. Generally, more sophisticated ap-
proaches are available to achieve convergence of the trace
formula depending on the demands [63,74,75]. However, this
goes beyond the scope of the present article. It turned out,
that for kR � 200 the nonrelativistic limit is reached for
β̃ ≈ 500/cm. In Fig. 3 we show a few examples. The peaks
at l = 4, 8, 16 cm, which correspond to the diameter orbit
and repetitions of it barely change with β̃, whereas that at
l = 12 cm changes height with β̃. This may be attributed
to an interference with orbits accumulating in its vicinity.
Furthermore, the heights of peaks at lengths corresponding
to POs with an odd number of reflections at the boundary,
marked by arrows, partly increase with increasing β̃, whereas
others oscillate in height when changing θβ . Above l = 16 cm
it is difficult to distinguish these POs in the region where
POs accumulate. The evolution of the length spectrum with
increasing β̃ is illustrated in Fig. 4.

VII. TRACE FORMULA FOR A CONSTANT WIDTH NB

We computed POs up to a length of 150 cm for
the constant width (CW) billiard with the shape of the
microwave billiard studied experimentally in Ref. [28]. The
shape is illustrated in Fig. 1. The boundary coordinates
r(s) = [x(s), y(s)] are obtained as the real and imaginary
parts of w(s) = x(s) + iy(s), where

w(s) = −ia0 − i
∑
n∈Z

an

n + 1
[ei(n+1)α − 1], α ∈ [0, 2π ) (64)

and a−n = a∗
n, a1 = 0, a2n = 0 for n � 1, and a2n+1 = 0 for

n � 3. The radius equaled R = a0 = 12 cm, a3 = 3
2 i cm, and

a5 = 3 cm. It exhibits a unidirectional dynamic, that is, the
change of the rotational direction of motion from clockwise
to counterclockwise is not possible. Accordingly, its Poincaré
surface of section (PSOS) depicted in Fig. 5 consists of
two parts that are well separated by a barrier region of

FIG. 4. Evolution of the length spectrum with β̃ of the massive
circular NB obtained from the Fourier transform of the trace formula
Eq. (53) over k (red dots and line) for 3 � β̃ � 15.8/cm and 0 �
β̃ � 500/cm.

Kolmogorov-Arnold-Moser tori [26,27,76–78] around the
diameter orbit. In each part the classical dynamic is predomi-
nantly chaotic except for tiny islands of regular motion in the
PSOS corresponding to a PO with 11 reflections and length
lPO = 76.83 cm, whispering-gallery orbits and the region
around the diameter orbit. Although the transition through
the barrier is forbidden in the classical system, it occurs in the
corresponding QB due to dynamical tunneling. This becomes
manifest in the splitting of the vast majority of eigenstates into
doublets of nearly degenerate ones [28,76]. The separation
into doublet partners was not possible in the CW NB. A
similar result was found for the unidirectional Monza billiard
[67], indicating that dynamical tunneling is stronger in the
NB than in the corresponding nonrelativistic QB.

We computed 5000 eigenvalues for the massless CW NB
using Eq. (18) for θβ = 0 and for the corresponding QB using
the associated BIEs [68], that is, for kR � 12. In Fig. 6 we
compare Nfluc(k; β̃ ) for the massless NB, deduced from the
eigenvalues (black dots and lines) with that computed from
the trace formula (53) (red dots and dashed lines). It exhibits
fast fluctuations and slow oscillations where the latter are due
to the diameter orbit. The associated eigenstates correspond to
those of the circular NB of the same radius [28]. Accordingly,
their contribution to ρfluc(k; β̃ ) is obtained from the trace
formula derived in Sec. VI. For the diameter orbits we have
p = 2|mϕ| in Eqs. (61)–(63), yielding

ρdiam(k; β̃ )

=
√

kR
π

Re
∑

p

[1 + (−1)p]

2
(−1)3p/2e−ipθβ

ei[2kpR− 3π
2 p+ π

4 ]
√

p

=
√

kR
π

∑
p even

cos
(
2kpR − pθβ + π

4

)
√

p
. (65)
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FIG. 5. Poincaré surface of section for the constant-width billiard. It was generated by launching particles into the billiard in clockwise
direction. The chaotic sea is framed by a region of whispering-gallery modes around χ = ±π/2 and a region around the diameter orbit at
χ = 0. Furthermore, it contains tiny islands in the chaotic sea which correspond to a PO with 11 reflections and a length of 76.83 cm. Here χ

denotes the reflection angle with respect to the outward pointing normal at the boundary.

The fluctuating part of the integrated spectral density deduced
from it is plotted as turquoise dashed line in Fig. 6. The
agreement of the three curves is very good. Note, that this
comparison provides a stringent test for the validity of the
semiclassical quantization.

To illustrate cancellation of POs of odd periodicity we
compare in Fig. 7 length spectra of the massless CW NB
(upper part) and the corresponding QB (lower part) [28],
namely, only peaks at lengths which correspond to POs with
an even number of reflections are observed in that of the NB.
Deviations are visible especially for the length spectrum of the
QB [28] at the length l = 76.83 cm (middle arrow in Fig. 7
of the PO corresponding to the small regular islands in the
chaotic sea [28] and at the l � 69.31 cm and l � 138.63 cm
(left and right arrow in Fig. 7), respectively, corresponding
to whispering-gallery modes. These orbits are not accounted

FIG. 6. Comparison of the fluctuating part of the integrated
spectral density deduced from the eigenvalues of the massless
constant-width NB (black dots and line) with that obtained by in-
tegrating the associated trace formula Eq. (53) over k (red dots and
line) and from that for the diameter orbit Eq. (65) (turquoise).

for in Gutzwiller’s trace formula and accordingly also not in
its analog for NBs given in Eq. (53). The turquoise dashed
curves are obtained from the trace formula Eq. (65) for the
diameter orbit. At the peaks corresponding to this orbit and its
repetitions all curves lie on top of each other.

In order to check the validity of the trace formula Eq. (53)
in the intermediate region, we computed 1500 eigenvalues for
several values of β̃ using Eq. (19) and compared the resulting
fluctuating part of Nfluc(k; β̃ ) and length spectra with those
deduced from Eq. (53). The determination of the eigenvalues
becomes more and more cumbersome with increasing β̃, since

FIG. 7. Comparison of the length spectrum deduced from the
eigenvalues of the massless constant-width NB (black dots and line)
(upper part) with that obtained from the Fourier transform of the
associated trace formula Eq. (53) from k to l (red dots and line) and
from that for the diameter orbit Eq. (65) (turquoise). To illustrate
cancellation of POs with odd periodicity we compare the length
spectrum for the ultrarelativistic case β̃ = 0 with that for the non-
relativistic limit β̃ → ∞ (lower part). The left and right arrows point
at the lengths of whispering-gallery modes and the middle one at
the length of the PO corresponding to the tiny regular islands in the
chaotic sea.
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FIG. 8. Length spectrum of the massive CW NB obtained from
the Fourier transform of the trace formula Eq. (53) over k (red dots
and line) for 0 � β̃ � 60/cm.

pairs of eigenvalues approach each other. We will report on the
spectral properties of CW NB in a forthcoming publication.

Note that the trace formula applies to POs within the
chaotic sea in Fig. 5 which implies that the reflection angle
with respect to the normal vector to the boundary is χ < π/2
so that whispering-gallery-type modes do not contribute to
Eq. (43) [73]. We checked that the agreement between the
numerical and semiclassical results is as good as for the mass-
less NB and the QB. For this one needs to make sure that
whispering-gallery type POs, especially those with lengths
corresponding to a multiple of the length of the circumference,
which, actually, is close to that of the PO associated with the
small islands in the chaotic sea [28], l = 75.40 cm, are deleted
in the list of POs. In Fig. 8 we show the transition of the length
spectrum from the ultrarelativistic to the nonrelativistic limit.
The peaks corresponding to the diamater orbit at 48 cm and its
repetitions barely increase in height, and those corresponding
to POs with an odd number of reflections increase smoothly
from zero to the height they attain in the nonrelativistic limit,
which is reached for β̃ � 80/cm. On the other hand, peaks
of which the positions are close to the lengths of integrable
PO or whispering-gallery-type POs first decay rapidly when
increasing β̃ and then increase slowly. This maybe attributed
to nonchaotic POs [62], of which, in fact, the effect on the
length spectra is particularly large for the massless NB as
may be concluded from the results for the ultrarelativistic and
nonrelativistic limits.

VIII. CONCLUSIONS

We derive BIEs for massive neutrino billiards and deduce
from them a semiclassical quantization condition in terms of a
spectral determinant. The latter provides the starting point for
the derivation of a trace formula, which undergoes a transition

from that for NBs for massless spin-1/2 particles [54] to that
for nonrelativistic QBs [19,56,57] when increasing mc. In the
ultrarelativistic limit only POs with an even number of reflec-
tions at the boundary contribute to it. The relevant parameter
for the transition to the nonrelativistic case is the ratio β

of the rest-energy momentum mc and free-space momentum
h̄k, implying that the result Eq. (54) for massless NBs is
also approached for massive NBs with rest-mass momentum
mc when increasing the free-space momentum h̄k such that
β → 0, that is, in the high-energy limit. For massive NBs, that
is, 0 < θβ , the second term in Eq. (43) leads to an incomplete
cancellation of clockwise and counterclockwise contributions
for odd p, implying that also POs with an odd number of
reflections at the boundary contribute to the trace formula.

We note that a trace formula for NBs can also be obtained
by proceeding as in Ref. [39], where trace formulas were
derived for finite-size graphene nanostructures, referred to as
graphene billiards [43,50], with various edge types includ-
ing infinite-mass confinement. There, a boundary matrix was
introduced in spinor space to formulate the BC as a matrix
equation Psψ

∗ = 0, which for the BC Eq. (10) takes the form

Psr = 1

2

(
1 ieiαrK

−ie−iαrK−1 1

)
. (66)

The trace formula derived in Ref. [39] also differs
from Gutzwiller’s trace formula by an additional factor
and is obtained from Eq. (50) by replacing the factor

2 cos (
γp − pπ
2 )Bβ̃

γp
ei�β̃

γp by

Tr(Kγ ) = Tr

{∏
r

Or,r−1
−1

cos [ξr,r−1 − αr]

}
, (67)

where

Or,r−1 =
[

1 + σ̂ · r(sr ) − r(sr−1)

ρ(sr, sr−1)

]
[σ̂ · n(sr )]Psr (68)

=
(

1 eiξr,r−1

e−iξr,r−1 1

)(
0 eiαr

e−iαr 1

)

×
(

0 ieiαrK
−ie−iαrK−1 1

)

=
[

ei(ξr,r−1−αr ) − iK−1 eiαr + iKeiξr,r−1

e−iαr − iK−1e−iξr,r−1 e−i(ξr,r−1−αr ) + iK

]
. (69)

The matrix Or,r−1 coincides with that obtained from Eqs. (12)
and (13) with Eq. (35) after discretizing them,

ψ(sr ) � Or,r−1ψ(sr−1)H (1)
1 [kρ(sr, sr−1)]. (70)

It was demonstrated in Ref. [54] that the trace formulas for
infinite-mass confinement in a circular graphene billiard and
for a massless circular NB coincide. The difference between
the approach of Ref. [39] and ours is, that we start from BIEs
deduced from Eqs. (12) and (13) which do not contain sin-
gularities, and a large-k approximation of the BIEs obtained
from the BC Eq. (3). The advantage of our approach is that
the phase factor can be computed explicitly and thus the con-
vergence problems of the resulting trace formula, that might
occur for the finite-mass case, can be controlled. The result is
a closed expression in terms of the phase accumulated during
each path of a p-periodic loop and revealing the property that
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orbits with an odd periodicity are increasingly suppressed for
θβ → 0, which interpolates between the ultrarelativistic and
the nonrelativistic limits.

A motivation for the studies of the present article is the
search for boundary conditions which yield a good descrip-
tion of the length spectra and spectral properties obtained
experimentally with superconducting microwave billiards in
Refs. [43,44] emulating artificial graphene. The experimental
length spectra exhibited deviations from those deduced based
the trace formula for graphene billiards with infinite-mass
confinement [39]. Further detailed studies based on the results
for massive NBs, that is, for relativistic billiards with varying
BCs, will be performed.
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APPENDIX A: BOUNDARY INTEGRAL FOR A MASSIVE
CIRCULAR NEUTRINO BILLIARD

We compute the eigenstates based on the BIEs Eq. (18)
where the arc-length parameter is given as s = φ ∈ [0, 2π ),
r(φ) = R(cos φ, sin φ) defines the boundary and eiα = eiφ

[54] so that Eq. (18) becomes

ψ�
1 (φ′)

= i

4
k

∫ 2π

0
Rdφ

× {
Kei(φ′−φ) − K−1

}
H (1)

0

[
2kR

∣∣∣∣sin

(
φ − φ′

2

)∣∣∣∣
]
ψ�

1 (φ) .

(A1)

As in Ref. [54] we choose as ansatz for the boundary function
at r = R an expansion in terms of plane waves,

ψ�
1 (φ) =

∑
l

al i
l Jl (kR)e−ilφ, (A2)

ψ�
2 (φ) =

∑
l

al i
l+1Jl+1(kR)e−i(l+1)φ, (A3)

yielding with the notation φ̃ = φ′ − φ,∑
l

al i
l Jl (kR)e−ilφ′

=
∑

l

al i
l Jl (kR)e−ilφ′

× ik

4
R

∫ 2π

0
dφ̃{Keiφ̃ − K−1}eilφH (1)

0

(
2kR

∣∣∣∣sin
φ̃

2

∣∣∣∣
)

.

(A4)

The integral over φ can be performed,∫ 2π

0
dφ̃[Kei(l+1)φ̃ − K−1eilφ̃]H (1)

0

(
2kR

∣∣∣∣sin
φ̃

2

∣∣∣∣
)

= 2π
[
KJ2

l+1(kR) − K−1J2
l (kR)

]
+ 2π i[KJl+1(kR)Yl+1(kR) − K−1Jl (kR)Yl (kR)].

Multiplying Eq. (A4) with eimφ′
and performing the integral

over φ′ leads to component-by-component equations for the
real and imaginary part, respectively, which have solutions at
discrete values of k. We obtain for the latter

0 = KJ2
m+1(kR) − K−1J2

m(kR), (A5)

that is,

Jm(kR) = ±KJm+1(kR). (A6)

and for the real part with Eq. (A6),

1 = πkR
2

[K−1Jm(kR)Ym(kR) − KJm+1(kR)Ym+1(kR)]

= ±πkR
2

[Jm+1(kR)Ym(kR) − Jm(kR)Ym+1(kR)]

= ±1.

Here the term in rectangular brackets in the second line is
the Wronskian W {Jm(kR),Ym(kR)} = 2

πkR . Thus Eq. (A1) is
fulfilled for

Jm(knR) =
√√√√√

(h̄kn)2 + (mc)2 − h̄kn√
(h̄kn)2 + (mc)2 + h̄kn

Jm+1(knR). (A7)

This yields the eigenwave numbers kn, n = 1, 2, . . . . The
eigenvalues En = h̄ckE ,n are obtained as kE ,n =

√
k2

n + β̃2

with β̃ = mc
h̄ .

APPENDIX B: EQUATIONS RELEVANT FOR THE
DERIVATION OF THE TRACE FORMULA

The integral equation used to remove the logarithmic sin-
gulartiy in Eq. (18) is obtained by imposing on ψ̃1(s′) and
ψ̃2(s′) the BC Eq. (11) using the right-hand sides of Eqs. (12)
and (13). This leads to the integral equation∮

∂�

dsei 

(s,s′ )
2 ψ̃∗

1 (s) cos

[


(s, s′)

2

]
ik

4
H (1)

0 (kρ)

=
∮

∂�

dsei 

(s,s′ )
2 iψ̃∗

1 (s)

×
{

sin θβ sin

[


(s, s′)

2

]
ik

4
H (1)

0 (kρ)

− cos θβ sin

[
α(s′) + α(s)

2
− ξ (s, s′)

]
ik

4
H (1)

1 (kρ)

}
.

(B1)

Equation (26) is derived from the boundary condition
Eq. (11). To obtain it we used the following equations for the
normal and tangential derivatives,

∂n′H (1)
0 [kρ(s, s′)] = cos[ξ (s, s′) − α(s′)]

× kH (1)
1 [kρ(s, s′)], (B2)

∂n′H (1)
1 [kρ(s, s′)] = cos[ξ (s, s′) − α(s′)]

× k

{
H (1)

1 [kρ(s, s′)]
kρ(s, s′)

− H (1)
0 [kρ(s, s′)]

}
,

(B3)
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∂s′H (1)
0 [kρ(s, s′)] = sin[ξ (s, s′) − α(s′)]kH (1)

1 [kρ(s, s′)],

(B4)

∂s′H (1)
1 [kρ(s, s′)] = sin[ξ (s, s′) − α(s′)]

× k

{
H (1)

1 [kρ(s, s′)]
kρ(s, s′)

− H (1)
0 [kρ(s, s′)]

}
,

(B5)

∂n′eiξ (s,s′ ) = i sin[ξ (s, s′) − α(s′)]
eiξ (s,s′ )

ρ(s, s′)
, (B6)

∂s′eiξ (s,s′ ) = −i cos[ξ (s, s′) − α(s′)]
eiξ (s,s′ )

ρ(s, s′)
. (B7)

Applying these equations to Eqs. (12) and (13) yields that the
wave-function components ψ1,2(r) indeed fulfill the boundary
conditions Eq. (3).

The starting point for the derivation of the BIE Eq. (26) is
the BC Eq. (11) which provides a relation between the normal
derivatives of 
1,2 and the wave-function components, that
is, we need to determine the normal derivatives of the BIEs
Eq. (12) and Eq. (13). For this we use Eq. (3) to compute
the tangential derivatives instead of the normal derivatives
and also directly compute the normal derivatives and com-
pare results to ensure that any jump relations for the normal
derivatives [79] are accounted for. We have from Eq. (3),

−k

2

[
K−1 − K + κ (s′)

k

]
(B8)

= ∂n′ψ∗
1 (s′) + ieiα(s′ )∂n′ψ∗

1 (s′)
2

= i∂s′ψ∗
1 (s′) − ieiα(s′ )i∂s′ψ∗

1 (s′)
2

+ k
[K−1 − K]

2

= ik

4

∮
∂�

dsψ∗
1 (s)

× {
[Kei[α(s′ )−α(s)] + K−1]kH (1)

1 [kρ(s, s′)]

− [ei[ξ (s,s′ )−α(s)] + ei[α(s′ )−ξ (s,s′ )]]kH (1)
0 [kρ(s, s′)]

}
× cos[ξ (s, s′) − α(s′)]

+ ik

4

∮
∂�

dsψ∗
1 (s)

{
[ei[α(s′ )−α(s)] + 1]kH (1)

0 [kρ(s, s′)]

− [Kei[α(s′ )−α(s)] + K−1]ei[ξ (s,s′ )−α(s′ )]kH (1)
1 [kρ(s, s′)]

}
+ ik

4

∮
∂�

dsψ∗
1 (s)

× [ei[2ξ (s,s′ )−α(s′ )−α(s)] + e2i[ξ (s,s′ )−α(s′ )]]
H (1)

1 [kρ(s, s′)]
ρ(s, s′)

+ k
[K−1 − K]

2
. (B9)

Using the BIEs Eq. (12) and Eq. (13) it can be shown that the
second integral equals

ik

4

∮
∂�

dsψ∗
1 (s)

{
[ei[α(s′ )−α(s)] + 1]kH (1)

0 [kρ(s, s′)]

− [Kei[α(s′ )−α(s)] + K−1]ei[ξ (s,s′ )−α(s′ )]kH (1)
1 [kρ(s, s′)]

}

= − k
[K−1 − K]

2

− 2
ik

4

∮
∂�

dsψ∗
1 (s)K−1kH (1)

1 [kρ(s, s′)] cos[ξ (s, s′)

−α(s′)].

With cos θβK = 1 − sin θβ , cos θβK−1 = 1 + sin θβ , and
K−1−K

2 = β = sin θβ

cos θβ
Eq. (26) is recovered. The same result is

obtained when applying the normal derivatives to Eqs. (12)
and (13).

In the semiclassical limit the last term in Eq. (26) ap-
proaches

H (1)
1 [kρ(s, s′)]

kρ(s, s′)
= H (1)

0 [kρ(s, s′)] + H (1)
2 [kρ(s, s′)]

2
(B10)

k→∞−−−→ −i

√
2

πkρ
eikρ− i

4 π 2

kρ
, (B11)

which is by a factor 1
kρ

smaller than H (1)
0 [kρ(s, s′)] in Eq. (34)

and H (1)
1 [kρ(s, s′)] in Eq. (35). Since we exclude billiards

with corners, that is, ρ(s, s′) is nonzero along POs of nonzero
lengths, we may disregard this term in the derivation of the
trace formula.

The cos θβ term in the curly bracket of the product P̃∗
p in

Eq. (43) does not factorize into the denominator of Eq. (38)
and a term, which is nonsingular for χr = π/2 and thus needs
to be handled cautiously when evaulating the trace formula.
Using the relation

p∏
r=1

[
cos

(χr + χr+1

2

)
+ sin

(χr − χr+1

2

)]

=
p∏

r=1

[
cos

(χr

2

)
+ sin

(χr

2

)][
cos

(χr+1

2

)

− sin
(χr+1

2

)]

=
p∏

r=1

cos χr

=
p∏

r=1

{
2 cos

(χr

2
− π

4

)
cos

(χr+1

2
+ π

4

)}
(B12)

it can be brought to the form
p∏

r=1

[
−cos θβ

cos χr

]

×
[
cos

(χr + χr+1

2

)
− i sin θβ sin

(χr + χr+1

2

)
+ cos θβ sin

(χr − χr+1

2

)]

=
p∏

r=1

[− cos θβ]

×
{

cos θβ + 1 − cos θβ

2

[
1 − tan

(χr

2
− π

4

)
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× tan
(χr+1

2
+ π

4

)]

−i
sin θβ

2

[
tan

(χr

2
− π

4

)
+ tan

(χr+1

2
+ π

4

)]}
.

(B13)

The reflection angles χr, r = 1, . . . , p + 1 take values in χr ∈
(−π

2 , π
2 ). Thus the second and third terms in the curly brackets

become large for χr = π
2 and for χr+1 = −π

2 . Note, that the
prefactors of the terms become small in the ultrarelativistic
limit θβ → 0 and the whole term vanishes in the nonrelativis-
tic limit θβ → π
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