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Nondegenerate solitons and their collisions in Manakov systems

R. Ramakrishnan, S. Stalin , and M. Lakshmanan*

Department of Nonlinear Dynamics, School of Physics, Bharathidasan University, Tiruchirapalli 620 024, India

(Received 8 July 2020; accepted 15 September 2020; published 12 October 2020)

Recently, we have shown that the Manakov equation can admit a more general class of nondegenerate vector
solitons, which can undergo collision without any intensity redistribution in general among the modes, associated
with distinct wave numbers, besides the already-known energy exchanging solitons corresponding to identical
wave numbers. In the present comprehensive paper, we discuss in detail the various special features of the
reported nondegenerate vector solitons. To bring out these details, we derive the exact forms of such vector
one-, two-, and three-soliton solutions through Hirota bilinear method and they are rewritten in more compact
forms using Gram determinants. The presence of distinct wave numbers allows the nondegenerate fundamental
soliton to admit various profiles such as double-hump, flat-top, and single-hump structures. We explain the
formation of double-hump structure in the fundamental soliton when the relative velocity of the two modes tends
to zero. More critical analysis shows that the nondegenerate fundamental solitons can undergo shape-preserving
as well as shape-altering collisions under appropriate conditions. The shape-changing collision occurs between
the modes of nondegenerate solitons when the parameters are fixed suitably. Then we observe the coexistence
of degenerate and nondegenerate solitons when the wave numbers are restricted appropriately in the obtained
two-soliton solution. In such a situation we find the degenerate soliton induces shape-changing behavior of
nondegenerate soliton during the collision process. By performing suitable asymptotic analysis we analyze the
consequences that occur in each of the collision scenario. Finally, we point out that the previously known class
of energy-exchanging vector bright solitons, with identical wave numbers, turns out to be a special case of
nondegenerate solitons.
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I. INTRODUCTION

The propagation of light pulses in optical Kerr media is
still one of the active areas of research in nonlinear optics [1].
In particular, the fascinating dynamics of light in multimode
fibers and fiber arrays has stimulated the investigation of
temporal multicomponent or vector solitons over different as-
pects, especially from the applications point of view [2]. In the
nonlinear optics context, temporal vector solitons are formed
due to the balance between dispersion and Kerr nonlinear-
ity. Mathematically these vector solitons are nothing but the
solutions of certain integrable coupled nonlinear Schrödinger
family of equations. There exist many types of vector solitons
which have been reported so far in the literature and their
dynamics have also been investigated in various physical sit-
uations. For instance, bright-bright solitons [3–5], bright-dark
solitons [6–9], and dark-dark solitons [6,10] are some of the
solitons which have been investigated in these systems. These
vector solitons have also received considerable attention in
other areas of science including Bose-Einstein condensates
(BECs) [11,12], biophysics [13], plasma physics [14], and so
on. Apart from the above, partially coherent solitons or soli-
ton complexes have been reported in self-induced multimode
waveguide system [15,16], while polarization-locked solitons
and phase-locked solitons in fiber lasers [17] and dissipative
vector solitons in certain dissipative systems [18–20] have
also been analyzed in the literature.
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From the above studies on vector solitons we have noted
that the intensity profiles of multicomponent solitons reported,
especially in the integrable coupled nonlinear Schrödinger
systems, are defined by identical wave numbers in all the
components. We call these vector solitons as degenerate class
of solitons. As a consequence of degeneracy in the wave num-
bers, single-hump structured intensity profiles only emerge
in these systems in general [21]. In the coherently coupled
system even degenerate fundamental soliton can also admit
double-hump profile when the four wave mixing process is
taken into account [22,23]. However, in this case one cannot
expect more than a double-hump profile. Very interestingly,
our theoretical [3,4] and other experimental [24–26] stud-
ies confirm that the degenerate vector solitons undergo in
general energy redistribution among the modes during the
collision, except for the special case of polarization param-
eters satisfying specific restrictions, for example in the case

of two component Manakov systems as α
(1)
1

α
(1)
2

= α
(2)
1

α
(2)
2

, where

α
( j)
i ’s, i, j = 1, 2, are complex numbers related to the polar-

ization vectors. By exploiting the fascinating shape-changing
collision scenario of degenerate Manakov solitons, it has
been theoretically suggested that the construction of optical
logic gates is indeed possible, leading to all optical com-
puting [27,28]. We also note that logic gates have been
implemented using two stationary dissipative solitons of com-
plex Ginzburg-Landau equation [29].

Recently in Refs. [30–32] it has been reported that multi-
hump structured dispersion managed solitons or double-hump
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intensity profile of soliton molecule may be useful for appli-
cation in optical communications because they may provide
alternative coding schemes for transmitting information with
enhanced data-carrying capacity. Multihump solitons have
also been identified in the literature in various physical sit-
uations [33–39]. They have been observed experimentally
in a dispersive nonlinear medium [36]. Theoretically frozen
double-hump states have been predicted in birefringent dis-
persive nonlinear media [33,34]. These solitons have been
found in various nonlinear coupled field models also [37].
In the case of saturable nonlinear medium, stability of
double- and triple-hump optical solitons has also been investi-
gated [38]. Multihumped partially coherent solitons have also
been investigated in photorefractive medium [15]. In addition
to the above, the dynamics of double-hump solitons have also
been studied in mode-locked fiber lasers [17–20]. A double-
hump soliton has been observed during the buildup process
of soliton molecules in deployed fiber systems and fiber laser
cavities [30,40].

From the above studies, we observe that the various prop-
erties associated with the degenerate vector bright solitons of
many integrable coupled field models have been well under-
stood. However, to our knowledge, studies on fundamental
solitons with nonidentical wave numbers in all the modes
have not been considered so far and multihump structure
solitons have also not been explored in the integrable cou-
pled nonlinear Schrödinger type systems except in our recent
work [41,42] and that of Qin et al. [43] on the following
Manakov system [44,45]:

iq jz + q jtt + 2
2∑

p=1

|qp|2q j = 0, j = 1, 2, (1)

where qj , j = 1, 2, describe orthogonally polarized complex
waves in a birefringent medium. Here the subscripts z and t
represent normalized distance and retarded time, respectively.
Based on the above studies we are motivated to look for
a class of fundamental solitons that possesses nonidentical
wave numbers as well as multihump profiles, which are useful
for optical soliton-based applications. We have successfully
identified such a class of solitons in Ref. [41]. We call the
fundamental solitons with nonidentical wave numbers as non-
degenerate vector solitons [21,41]. Surprisingly, this class of
vector bright solitons exhibit multihump structure (double-
hump soliton arises in the present Manakov system and one
can also observe N-hump soliton in the case of N-coupled
Manakov type system) which may be useful for transmit-
ting information in a highly packed manner. Therefore it
is very important to investigate the role of additional wave
number(s) on this class of fundamental soliton structures and
collision scenario as well, which were briefly discussed in
Ref. [41]. In the present comprehensive version we discuss
the various properties associated with the nondegenerate soli-
tons in a detailed manner by finding their exact analytical
forms through Hirota bilinearization method. Then we discuss
how the presence of additional distinct wave numbers and
the cross phase modulation (|q1|2 + |q2|2)q j , j = 1, 2, among
the modes bring out double-hump profile in the structure
of nondegenerate fundamental soliton. We find that the
nondegenerate solitons undergo shape-preserving collision

generally, as reported by us in Ref. [41], and shape-altering
and shape-changing collisions for specific parametric values.
Further, we figured out the coexistence of degenerate and non-
degenerate solitons in the Manakov system. Such coexisting
solitons undergo shape-changing collision scenarios leading
to useful soliton-based signal amplification application. Fi-
nally, we show that the degenerate class of vector solitons
reported in Refs. [3,4] can be deduced from the obtained
nondegenerate one- and two-soliton solutions.

The structure of the paper is organized as follows: In
Sec. II, we discuss the Hirota bilinear procedure in order to
derive nondegenerate soliton solutions for Eq. (1). Using this
procedure we obtained nondegenerate one- and two-soliton
solutions in Gram-determinant forms and also identified the
coexistence of degenerate and nondegenerate solitons in
Sec. III. In Sec. IV we discuss the various collision properties
of nondegenerate solitons. Section V deals with the collision
between degenerate and nondegenerate solitons. In Sec. VI
we recovered the degenerate one- and two-soliton solutions
from the nondegenerate one- and two-soliton solutions by
suitably restricting the wave numbers and in Sec. VII we point
out the possible experimental observations of nondegenerate
solitons. In Sec. VIII we summarize the results and discuss
possible extension of this work. Finally, in Appendix A we
present the three-soliton solution in Gram-determinant forms
for completion while in Appendix B we discuss about certain
asymptotic forms of solitons. In Appendix C, we introduce
explicit forms of certain parameters appearing in the text.
Finally, in Appendix D we discuss the numerical stability
analysis of nondegenerate solitons under different strength of
white noise as perturbation.

II. BILINEARIZATION

To derive the nondegenerate soliton solutions for the Man-
akov system we adopt the same Hirota bilinear procedure
that has been already used to get degenerate vector bright
soliton solutions but with appropriate form of initial seed
solutions. We point out later how such a simple form of seed
solutions will produce a physically important class of soliton
solutions. In general, the exact soliton solutions of Eq. (1) can
be obtained by introducing the bilinearizing transformation,
which can be identified from the singularity structure analysis
of Eq. (1) [46] as

q j (z, t ) = g( j)(z, t )

f (z, t )
, j = 1, 2, (2)

to Eq. (1). This results in the following set of bilinear forms
of Eq. (1):

(
iDz + D2

t

)
g( j) f = 0, j = 1, 2, (3a)

D2
t f f = 2

2∑
n=1

g(n)g(n)∗. (3b)

Here g( j)’s are complex functions, whereas f is a
real function and ∗ denotes complex conjugation. The
Hirota’s bilinear operators Dz and Dt are defined [47]
by the expressions Dm

z Dn
t (ab) = ( ∂

∂z − ∂
∂z′ )m( ∂

∂t − ∂
∂t ′ )n

a(z, t )b(z′, t ′)|z=z′, t=t ′ . Substituting the standard expansions
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for the unknown functions g( j) and f ,

g( j) = εg( j)
1 + ε3g( j)

3 + . . . , j = 1, 2,

f = 1 + ε2 f2 + ε4 f4 + . . . , (4)

in the bilinear Eqs. (3a) and (3b) one can get a system of linear
partial differential equations (PDEs). Here ε is a formal series
expansion parameter. The set of linear PDEs arises after col-
lecting the coefficients of same powers of ε. By solving these
linear PDEs recursively (at an appropriate order of ε), the
resultant associated explicit forms of g( j)’s and f constitute
the soliton solutions to the underlying system (1). We note that
the truncation of series expansions (4) for the nondegenerate
soliton solutions is different from degenerate soliton solutions.
This is essentially due to the general form of seed solutions
assigned to the lowest order linear PDEs.

III. A NEW CLASS OF NONDEGENERATE
SOLITON SOLUTIONS

To study the role of additional wave numbers on the
structural, propagational, and collisional properties of non-
degenerate soliton, it is very important to find the exact
analytical form of it systematically. In this section by ex-
ploiting the procedure described above we intend to construct
nondegenerate one- and two-soliton solutions which can be
generalized to an arbitrary N-soliton case (for N = 3, see
Appendix A). In principle this is possible because of the
existence of a nondegenerate N-soliton solution ensured by
the complete integrability property of the Manakov equation
[Eq. (1)]. Then we point out the possibility of coexistence of
degenerate and nondegenerate solitons by imposing certain
restriction on the wave numbers in the obtained nondegen-
erate two-soliton solution. Further, we also point out the
possibility of deriving this partially nondegenerate two-soliton
solution through Hirota bilinear method. We note that to avoid
too many mathematical details we provide the final form of
solutions only since the nondegenerate soliton solution con-
struction process is a lengthy one.

A. Nondegenerate fundamental soliton solution

In order to deduce the exact form of nondegenerate one-
soliton solution we consider two different seed solutions for
the two modes as

g(1)
1 = α

(1)
1 eη1 , g(2)

1 = α
(2)
1 eξ1 , (5)

where η1 = k1t + ik2
1z and ξ1 = l1t + il2

1 z, to the following
linear PDEs:

ig( j)
1z + g( j)

1tt = 0, j = 1, 2. (6)

In (5) the complex parameters α
( j)
1 , j = 1, 2, are arbitrary.

The above equations arise in the lowest order of ε. The
presence of two distinct complex wave numbers k1 and l1
(k1 �= l1, in general) in the seed solutions (5) makes the final
solution a nondegenerate one. This construction procedure is
different from the standard one that has been followed in ear-
lier works on degenerate vector bright soliton solutions [3,4]
where identical seed solutions of Eq. (1) [solutions (5) with
k1 = l1 and distinct α

( j)
1 ’s, j = 1, 2] have been used as starting

seed solutions for Eq. (6). We note that such degenerate seed

solutions only yield degenerate class of vector bright soliton
solutions [3,4,41].

With the starting solutions (5) we allow the series ex-
pansions (4) to terminate by themselves while solving the
system of linear PDEs. From this recursive process, we find
that the expansions (4) get terminated for the nondegener-
ate fundamental soliton solution as g( j) = εg( j)

1 + ε3g( j)
3 and

f = 1 + ε2 f2 + ε4 f4. The explicit expressions of g( j)
1 , g( j)

3 , f2,
and f4 constitute a general form of fundamental one-soliton
solution to Eq. (1) as

q1 = g(1)
1 + g(1)

3

1 + f2 + f4
= [

α
(1)
1 eη1 + eη1+ξ1+ξ∗

1 +�
(1)
1

]/
D1

(7)

q2 = g(2)
1 + g(2)

3

1 + f2 + f4
= [

α
(2)
1 eξ1 + eη1+η∗

1+ξ1+�
(2)
1

]/
D1.

Here D1 = 1 + eη1+η∗
1+δ1 + eξ1+ξ∗

1 +δ2 + eη1+η∗
1+ξ1+ξ∗

1 +δ11 ,

e�
(1)
1 = (k1−l1 )α(1)

1 |α(2)
1 |2

(k1+l∗1 )(l1+l∗1 )2 , e�
(2)
1 = − (k1−l1 )|α(1)

1 |2α(2)
1

(k1+k∗
1 )2(k∗

1 +l1 ) , eδ1 = |α(1)
1 |2

(k1+k∗
1 )2 ,

eδ2 = |α(2)
1 |2

(l1+l∗1 )2 , and eδ11 = |k1−l1|2|α(1)
1 |2|α(2)

1 |2
(k1+k∗

1 )2(k∗
1 +l1 )(k1+l∗1 )(l1+l∗1 )2 . In the

above one-soliton solution two distinct complex wave
numbers, k1 and l1, occur in both the expressions of q1 and
q2 simultanously. This confirms that the obtained solution
is nondegenerate. We also note that the solution (7) can
be rewritten in a more compact form using Gram deter-
minants as

g(1) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

eη1+η∗
1

(k1+k∗
1 )

eη1+ξ∗
1

(k1+l∗1 ) 1 0 eη1

eξ1+η∗
1

(l1+k∗
1 )

eξ1+ξ∗
1

(l1+l∗1 ) 0 1 eξ1

−1 0 |α(1)
1 |2

(k1+k∗
1 ) 0 0

0 −1 0 |α(2)
1 |2

(l1+l∗1 ) 0

0 0 −α
(1)
1 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

g(2) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

eη1+η∗
1

(k1+k∗
1 )

eη1+ξ∗
1

(k1+l∗1 ) 1 0 eη1

eξ1+η∗
1

(l1+k∗
1 )

eξ1+ξ∗
1

(l1+l∗1 ) 0 1 eξ1

−1 0 |α(1)
1 |2

(k1+k∗
1 ) 0 0

0 −1 0 |α(2)
1 |2

(l1+l∗1 ) 0

0 0 0 −α
(2)
1 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, (8a)

f =

∣∣∣∣∣∣∣∣∣∣∣∣

eη1+η∗
1

(k1+k∗
1 )

eη1+ξ∗
1

(k1+l∗1 ) 1 0

eξ1+η∗
1

(l1+k∗
1 )

eξ1+ξ∗
1

(l1+l∗1 ) 0 1

−1 0 |α(1)
1 |2

(k1+k∗
1 ) 0

0 −1 0 |α(2)
1 |2

(l1+l∗1 )

∣∣∣∣∣∣∣∣∣∣∣∣
. (8b)

The above Gram-determinant forms satisfy the bilinear
Eqs. (3a) and (3b) as well as Manakov Eq. (1).

To investigate the various properties associated with the
above fundamental soliton solution, we rewrite Eq. (7) as

q1 = eiη1I e
�

(1)
1 +ρ1

2

{
cosh

(
ξ1R + φ1R

2

)
cos

(φ1I

2

)

+ i sinh
(
ξ1R + φ1R

2

)
sin

(φ1I

2

)}/
D2, (9a)
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q2 = eiξ1I e
�

(2)
1 +ρ2

2

{
cosh

(
η1R + φ2R

2

)
cos

(φ2I

2

)

+ i sinh
(
η1R + φ2R

2

)
sin

(φ2I

2

)}/
D2, (9b)

where D2 = e
δ11

2 cosh(η1R + ξ1R + δ11
2 ) + e

δ1+δ2
2 cosh(η1R −

ξ1R + δ1−δ2
2 ), η1R = k1R(t − 2k1I z), η1I = k1I t + (k2

1R − k2
1I )z,

ξ1R = l1R(t − 2l1I z), ξ1I = l1I t + (l2
1R − l2

1I )z, ρ j = log α
( j)
1 ,

j = 1, 2. Here φ1R, φ1I , φ2R, and φ2I are real and imaginary
parts of φ1 = �

(1)
1 − ρ1 and φ2 = �

(2)
1 − ρ2, respectively,

and k1R, l1R, k1I , and l1I are the real and imaginary
parts of k1 and l1, respectively. From the above, we can

write φ1R = 1
2 log |k1−l1|2|α(2)

1 |4
|k1+l∗1 |2(l1+l∗1 )4 , φ1I = 1

2 log (k1−l1 )(k∗
1 +l1 )

(k∗
1 −l∗1 )(k1+l∗1 ) ,

φ2R = 1
2 log |l1−k1|2|α(1)

1 |4
|k1+l∗1 |2(k1+k∗

1 )4 , and φ2I = 1
2 log (l1−k1 )(k1+l∗1 )

(l∗1 −k∗
1 )(k∗

1 +l1 ) . The
profile structures of solution (9a) and (9b) are described by
the four complex parameters k1, l1, and α

( j)
1 , j = 1, 2. For

the nondegenerate fundamental soliton in the first mode,
the amplitude, velocity, and central position are found from
Eq. (9a) as 2k1R, 2l1I , and φ1R

2l1R
, respectively. Similarly, for the

soliton in the second mode they are found from Eq. (9b) as
2l1R, 2k1I , and φ2R

2k1R
, respectively. Note that α

( j)
1 , j = 1, 2, are

related to the unit polarization vectors of the nondegenerate
fundamental solitons in the two modes. They constitute
different phases for the nondegenerate soliton in the two
modes as A1 = (α(1)

1 /α
(1)∗
1 )1/2 and A2 = (α(2)

1 /α
(2)∗
1 )1/2.

To explain the various properties associated with so-
lution (9a) and (9b) further we consider two physically
important special cases where the imaginary parts of the wave
numbers k1 and l1 are either identical with each other (k1I =
l1I ) or nonidentical with each other (k1I �= l1I ). Physically,
this implies that the former case corresponds to solitons in
the two modes traveling with identical velocities v1 = v2 =
2k1I but with k1 �= l1, whereas the latter case corresponds to
solitons which propagate in the two modes with nonidentical
velocities v1 �= v2. In the identical velocity case, the quantity
φ jI , j = 1, 2 becomes zero in (9a) and (9b) when k1I = l1I .
This results in the following expression for the fundamental
soliton propagating with single velocity, v1,2 = 2k1I , in the
two modes,

q1 = eiη1I e
�

(1)
1 +ρ1

2 cosh

(
ξ1R + φ1R

2

)/
D2,

(10)
q2 = eiξ1I e

�
(2)
1 +ρ2

2 cosh

(
η1R + φ2R

2

)/
D2,

where D2 = e
δ11

2 cosh(η1R + ξ1R + δ11
2 ) + e

δ1+δ2
2 cosh(η1R −

ξ1R + δ1−δ2
2 ) with η1R = k1R(t − 2k1I z), η1I = k1I t + (k2

1R −
k2

1I )z, ξ1R = l1R(t − 2k1I z), and ξ1I = k1I t + (l2
1R − k2

1I )z.
Note that the constants that appear in the above solution
becomes equivalent to the one that appears in the solution (9a)
and (9b) after imposing the condition k1I = l1I in it. The
solution (10) admits four types of symmetric profiles
(satisfying appropriate conditions on parameters, see below)
and also their corresponding asymmetric profiles. The
symmetric profiles are as follows: (i) double-humps in both
the modes (or a double-hump in q1 mode and a M-type
double-hump in q2 mode), (ii) a flat-top in one mode and a

double-hump in the other mode, (iii) a single-hump in the first
mode and a double-hump in the second mode (or vice versa),
and (iv) single-humps in both the modes. The corresponding
four types of asymmetric wave profiles can be obtained by
tuning the real parts of wave numbers k1 and l1 and the
arbitrary complex parameters α

( j)
1 ’s, j = 1, 2.

To illustrate the symmetric and asymmetric nature of the
nondegenerate soliton in the identical velocity case we fix
k1I = l1I = 0.5 in Figs. 1 and 2. The symmetric profiles are
displayed in Fig. 1. The asymmetric profiles are depicted in
Fig. 2 for the values of parameters indicated in Fig. 2. From
Figs. 1 and 2 we observe that the transition which occurs
from double-hump to single-hump is through a special flat-top
profile. The flat-top profile has been considered as an inter-
mediate soliton state. It is noted that flat-top soliton is also
observed in a complex Ginzburg-Landau equation [48]. In
Ref. [41] we have discussed symmetric and asymmetric nature
of solution (10) by incorporating the condition k1R < l1R [42].
However, to exhibit the generality of these structures, in the
present paper, we discuss these properties for k1R > l1R. It
should be pointed out here that in Ref. [43] the authors have
derived this solution in the context of multicomponent BEC
using Darboux transformation and they have classified density
profiles as we have reported in Ref. [41] for k1R < l1R in
the context of nonlinear optics. They have also studied the
stability of double-hump soliton using Bogoliubov-de Gennes
excitation spectrum.

The symmetric nature of all the four cases can be con-
firmed by finding the extremum points of the nondegenerate
one-soliton solution (10). For instance, to show that the
double-hump soliton profile displayed in Fig. 1(a) is symmet-
ric, we find the corresponding local maximum and minium
points by applying the first derivative test ({|qj |2}t = 0) and
the second derivative test ({|qj |2}tt < 0 or >0) to the expres-
sion of |q j |2, j = 1, 2, at z = 0. For the first mode, the three
extremal points are identified, namely t1 = −0.9, t2 = 5.5,
and t3 = 11.9. We find another set of three extremal points for
the second mode, namely t4 = −1.2, t5 = 5.5, and t6 = 12.2
by setting {|q2|2}t = 0. The points t1 and t3 correspond to the
maxima (at which {|q1|2}tt < 0) of the double-hump soliton,
whereas t2 corresponds to the minimum of the double-hump
soliton. Similarly, the extremal points t4 and t6 represent the
maxima and t5 corresponds to the minimum of the double-
hump soliton in the q2 mode. In the first component the two
maxima t1 and t3 are symmetrically located about the min-
imum point t2. This can be easily confirmed by finding the
difference between t2 and t1 and t3 and t2, that is, t2 − t1 =
6.4 = t3 − t2. This is true for the second component also, that
is, t5 − t4 = 6.7 = t6 − t5. This implies that the two maxima t4
and t6 are located symmetrically from the minimum point t5.
Then the magnitude (|q1|2) of each hump (of the double-hump
soliton) corresponding to the maxima t1 is equal to 0.051
and t3 is equal to 0.051. In the second mode, the magnitude
(|q2|2) corresponding to t4 is equal to 0.054 and t6 is equal
to 0.054. This confirms that the magnitude of each hump of
double-hump soliton in both the modes are equal. Therefore
it is evident that the double-hump soliton drawn in Fig. 1(a)
is symmetric. One can easily verify from Figs. 1(c) and 1(d)
that the single-hump soliton is symmetric about the local
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FIG. 1. Various symmetric intensity profiles of nondegenerate fundamental soliton: While (a) denotes double-hump solitons in both the
modes, (b) and (c) represent flat-top-double-hump solitons and single-hump-double-hump solitons, respectively. Single-hump solitons in both
the modes are illustrated in (d). The parameter values of each figures are as follows: (a) k1 = 0.333 + 0.5i, l1 = 0.315 + 0.5i, α

(1)
1 = 0.45 +

0.45i, α(2)
1 = 0.49 + 0.45i. (b) k1 = 0.425 + 0.5i, l1 = 0.3 + 0.5i, α(1)

1 = 0.44 + 0.51i, α(2)
1 = 0.43 + 0.5i. (c) k1 = 0.55 + 0.5i, l1 = 0.333 +

0.5i, α
(1)
1 = 0.5 + 0.5i, α

(2)
1 = 0.5 + 0.45i. (d) k1 = 0.333 + 0.5i, l1 = −0.316 + 0.5i, α

(1)
1 = 0.45 + 0.5i, α

(2)
1 = 0.5 + 0.5i.

maximum point (and checking the half widths as well). As far
as the flat-top soliton case is concerned, we have confirmed
that the first derivative {|q j |2}t very slowly tends to zero near

the corresponding maximum for certain number of t values.
This also confirms that the presence of almost flatness and
symmetric nature of the one-soliton.

FIG. 2. Various asymmetric intensity profiles of nondegenerate fundamental soliton: Panels (a), (b), (c), and (d) represent each of figures
asymmetric intensity profiles as against the symmetric profiles of Figs. 1(a)–1(d). The corresponding parameter values of each figures are
as follows: (a) k1 = 0.333 + 0.5i, l1 = 0.315 + 0.5i, α

(1)
1 = 0.65 + 0.45i, α

(2)
1 = 0.49 + 0.45i; (b) k1 = 0.425 + 0.5i, l1 = 0.3 + 0.5i, α

(1)
1 =

0.5 + 0.51i, α
(2)
1 = 0.43 + 0.5i; (c) k1 = 0.55 + 0.5i, l1 = 0.333 + 0.5i, α

(1)
1 = 1.2 + 0.5i, α

(2)
1 = 0.5 + 0.45i; (d) k1 = 0.333 + 0.5i, l1 =

−0.22 + 0.5i, α
(1)
1 = 0.45 + 3i, α

(2)
1 = 0.5 + 0.5i.
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We also derive the conditions analytically to corroborate
the symmetric and asymmetric nature of soliton solution (10)
in another way. For this purpose, we intend to calculate the
relative separation distance �t12 between the minima of the
two components (modes)

�t12 = t̄1 − t̄2 = (t − t1) − (t − t2), = φ1R

2l1R
− φ2R

2k1R
. (11)

If the above quantity �t12 = 0, then the solution (10) exhibits
symmetric profiles otherwise it admits asymmetric profiles.

The explicit form of relative separation distance turns out
to be

�t12 = 1

2l1R
log

(k1R − l1R)
∣∣α(2)

1

∣∣2

4l2
1R(k1R + l1R)

− 1

2k1R
log

(l1R − k1R)
∣∣α(1)

1

∣∣2

4k2
1R(k1R + l1R)

. (12)

We have explicitly calculated the relative separation dis-
tance values and confirmed the displayed profiles in Figs. 1
and 2 are symmetric and asymmetric, respectively. For in-
stance, the �t12 value corresponding to the symmetric double-
hump soliton in both the modes [Fig. 1(a)] is 0.002 (to get the
perfect zero value one has to fine tune the parameters suit-
ably) and for asymmetric double-hump solitons the value is
equal to 0.6493. The above calculated values reaffirm that the
obtained figures are symmetric in Fig. 1(a) and asymmetric in
Fig. 2(a). Similarly, one can easily confirm the symmetric and
asymmetric nature of other profiles in Figs. 1 and 2 also.

In addition to the above, for the general nonidentical ve-
locity case (k1I �= l1I ), v1 �= v2, the distinct wave numbers k1

and l1 influence drastically the propagation of nondegenerate
solitons in the two modes. If the relative velocity (�v12 =
v1 − v2) of the solitons between the two modes is large, then
there is a node created in the structure of the fundamental
solitons of both the modes [43]. This is due to the cross
phase modulation between the modes. In this situation the
intensity of the fast-moving soliton (v1 = 2l1I > 0) in the first
mode starts to decrease and it gets completely suppressed
after z = 0. At the same value of z the fast-moving soliton
reappears in the second mode after a finite time. Similarly,
this fact is true in the case of slow-moving soliton (v2 =
2k1I < 0) as well. Consequently, the intensity of solitons is
unequally distributed among the two modes. This is clearly
demonstrated in Fig. 3 and Figs. 4(a)–4(b). On the other hand,
if the relative velocity tends to zero (�v12 → 0), then the
total intensity, Itotal = |q1|2 + |q2|2, of nondegenerate solitons
starts to get distributed equally among the two components.
As a consequence of this, a double-hump profile starts to
emerge in each of the modes as displayed in Figs. 4(c)–4(d).
At perfect zero relative velocity (�v12 = 0), the double-hump
fundamental soliton emerges completely in both the modes.
As we have already pointed out in Ref. [41] the nondegenerate
soliton solution exhibits symmetric and asymmetric profiles in
the nonidentical velocity case also but the relative velocity of
the solitons should be minimum. We have not displayed their
plots here for brevity.

Recently, we found that the occurrence of multihumps
depends on the number of distinct wave numbers and

− 10 0 10
− 3

0

3

t

z

q1
2

− 10 0 10
− 3

0

3

t

z

q2
2

(a) (b)

FIG. 3. Node formation in the nonidentical velocity case. The pa-
rameter values are k1 = 1 + 1.5i, l1 = 1.5 + 0.5i, α

(1)
1 = 1.5 + 0.5i,

α
(2)
1 = 0.45 + 0.5i.

modes [49] apart from the nonlinearities. In the present two-
component case, the resultant nondegenerate fundamental
soliton solution (9a) and (9b) yields only a double-hump
soliton. However, a triple-hump soliton and a quadruple-
hump soliton are also observed in the cases of three- and
four-component Manakov system cases, respectively. For
the N-component case one may expect a more complicated
profile, as mentioned in the case of theory of incoherent
solitons [50,51], involving N-number of humps which are
characterized by 2N-complex parameters. These results will
be published elsewhere. Very recently we have also reported
the existence of nondegenerate fundamental solitons and their
various profile structures in other integrable coupled NLS
type systems [21] as well. It should be pointed out that
the multihump nature of nondegenerate fundamental soli-
ton is somewhat analogous to partially coherent solitons
or soliton complexes [15,16] where such partially coher-
ent solitons can be obtained when the number of modes
is equal to the number of degenerate vector soliton solu-
tion [3,52]. We also note here that the two-partially coherent

FIG. 4. Double-hump formation in the profile structure of nonde-
generate fundamental soliton: Panels (a) and (b) represent the node
formation in soliton profiles. Panels (c) and (d) denote the emergence
of double-hump in both the modes. The corresponding parameter
values for (a) and (b) are k1 = 0.65 − 0.85i, l1 = 0.78 − 0.5i, α(1)

1 =
1, and α

(2)
1 = 0.5. For panels (c) and (d) the values are chosen as

k1 = 0.65 − 0.8i, l1 = 0.78 − 0.8i, α
(1)
1 = 1, and α

(2)
1 = 0.5.
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soliton can be deduced from the double-humped nondegen-
erate fundamental soliton (9a) and (9b) in the Manakov
system by imposing the restrictions α

(1)
1 = eη10 , α

(2)
1 = −eη20 ,

k1 = k1R, l1 = k2R, k1I = l1I = 0, where η10 and η20 are real
constants, in solution (7) [52]. The soliton complex reported
in Ref. [53] is a special case of nondegenerate fundamental
soliton solution (7) when the parameters k1 and l1 are chosen
as real constants and α

(1)
1 = α

(2)
1 = 1.

B. Nondegenerate two-soliton solution

In order to investigate the collision dynamics of nonde-
generate soliton of the form (7), it is essential to derive the
expression for the corresponding two-soliton solution. To con-
struct it, we consider the seed solutions as g(1)

1 = α
(1)
1 eη1 +

α
(1)
2 eη2 and g(2)

1 = α
(2)
1 eξ1 + α

(2)
2 eξ2 , η j = k jt + ik2

j z and ξ j =
l jt + il2

j z, j = 1, 2, for Eqs. (6). By proceeding with the pro-
cedure given in the previous subsection along with these seed
solutions we find that the series expansions for g( j), j = 1, 2,
and f get terminated as g( j) = εg( j)

1 + ε3g( j)
3 + ε5g( j)

5 + ε7g( j)
7

and f = 1 + ε2 f2 + ε4 f4 + ε6 f6 + ε8 f8. The other unknown
functions, g( j)

9 , g( j)
11 , f10, f12, and so on, are found to be identi-

cally zero. We further note here that the termination of these
perturbation series occurs at the order of ε3 in g( j)’s and at the
level of ε4 in f for deriving the degenerate two-soliton solu-
tion. The resulting explicit forms of the unknown functions in
the truncated series expansions constitute the following non-
degenerate two-soliton solution, in Gram-determinant form,
to Eq. (1):

g(1) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

eη1+η∗
1

(k1+k∗
1 )

eη1+η∗
2

(k1+k∗
2 )

eη1+ξ∗
1

(k1+l∗1 )
eη1+ξ∗

2

(k1+l∗2 ) 1 0 0 0 eη1

eη2+η∗
1

(k2+k∗
1 )

eη2+η∗
2

(k2+k∗
2 )

eη2+ξ∗
1

(k2+l∗1 )
eη2+ξ∗

2

(k2+l∗2 ) 0 1 0 0 eη2

eξ1+η∗
1

(l1+k∗
1 )

eξ1+η∗
2

(l1+k∗
2 )

eξ1+ξ∗
1

(l1+l∗1 )
eξ1+ξ∗

2

(l1+l∗2 ) 0 0 1 0 eξ1

eξ2+η∗
1

(l2+k∗
1 )

eξ2+η∗
2

(l2+k∗
2 )

eξ2+ξ∗
1

(l2+l∗1 )
eξ2+ξ∗

2

(l2+l∗2 ) 0 0 0 1 eξ2

−1 0 0 0 |α(1)
1 |2

(k∗
1 +k1 )

α
(1)∗
1 α

(1)
2

(k∗
1 +k2 ) 0 0 0

0 −1 0 0 α
(1)
1 α

(1)∗
2

(k∗
2 +k1 )

|α(1)
2 |2

(k2+k∗
2 ) 0 0 0

0 0 −1 0 0 0 |α(2)
1 |2

(l∗1 +l1 )
α

(2)∗
1 α

(2)
2

(l∗1 +l2 ) 0

0 0 0 −1 0 0 α
(2)
1 α

(2)∗
2

(l∗2 +l1 )
|α(2)

2 |2
(l∗2 +l2 ) 0

0 0 0 0 −α
(1)
1 −α

(1)
2 0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, (13a)

g(2) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

eη1+η∗
1

(k1+k∗
1 )

eη1+η∗
2

(k1+k∗
2 )

eη1+ξ∗
1

(k1+l∗1 )
eη1+ξ∗

2

(k1+l∗2 ) 1 0 0 0 eη1

eη2+η∗
1

(k2+k∗
1 )

eη2+η∗
2

(k2+k∗
2 )

eη2+ξ∗
1

(k2+l∗1 )
eη2+ξ∗

2

(k2+l∗2 ) 0 1 0 0 eη2

eξ1+η∗
1

(l1+k∗
1 )

eξ1+η∗
2

(l1+k∗
2 )

eξ1+ξ∗
1

(l1+l∗1 )
eξ1+ξ∗

2

(l1+l∗2 ) 0 0 1 0 eξ1

eξ2+η∗
1

(l2+k∗
1 )

eξ2+η∗
2

(l2+k∗
2 )

eξ2+ξ∗
1

(l2+l∗1 )
eξ2+ξ∗

2

(l2+l∗2 ) 0 0 0 1 eξ2

−1 0 0 0 |α(1)
1 |2

(k∗
1 +k1 )

α
(1)∗
1 α

(1)
2

(k∗
1 +k2 ) 0 0 0

0 −1 0 0 α
(1)
1 α

(1)∗
2

(k∗
2 +k1 )

|α(1)
2 |2

(k2+k∗
2 ) 0 0 0

0 0 −1 0 0 0 |α(2)
1 |2

(l∗1 +l1 )
α

(2)∗
1 α

(2)
2

(l∗1 +l2 ) 0

0 0 0 −1 0 0 α
(2)
1 α

(2)∗
2

(l∗2 +l1 )
|α(2)

2 |2
(l∗2 +l2 ) 0

0 0 0 0 0 0 −α
(2)
1 −α

(2)
2 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, (13b)

f =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

eη1+η∗
1

(k1+k∗
1 )

eη1+η∗
2

(k1+k∗
2 )

eη1+ξ∗
1

(k1+l∗1 )
eη1+ξ∗

2

(k1+l∗2 ) 1 0 0 0

eη2+η∗
1

(k2+k∗
1 )

eη2+η∗
2

(k2+k∗
2 )

eη2+ξ∗
1

(k2+l∗1 )
eη2+ξ∗

2

(k2+l∗2 ) 0 1 0 0

eξ1+η∗
1

(l1+k∗
1 )

eξ1+η∗
2

(l1+k∗
2 )

eξ1+ξ∗
1

(l1+l∗1 )
eξ1+ξ∗

2

(l1+l∗2 ) 0 0 1 0

eξ2+η∗
1

(l2+k∗
1 )

eξ2+η∗
2

(l2+k∗
2 )

eξ2+ξ∗
1

(l2+l∗1 )
eξ2+ξ∗

2

(l2+l∗2 ) 0 0 0 1

−1 0 0 0 |α(1)
1 |2

(k∗
1 +k1 )

α
(1)∗
1 α

(1)
2

(k∗
1 +k2 ) 0 0

0 −1 0 0 α
(1)
1 α

(1)∗
2

(k∗
2 +k1 )

|α(1)
2 |2

(k2+k∗
2 ) 0 0

0 0 −1 0 0 0 |α(2)
1 |2

(l∗1 +l1 )
α

(2)∗
1 α

(2)
2

(l∗1 +l2 )

0 0 0 −1 0 0 α
(2)
1 α

(2)∗
2

(l∗2 +l1 )
|α(2)

2 |2
(l∗2 +l2 )

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (13c)
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In the above, the eight arbitrary complex parameters k j , l j , α
( j)
1 , and α

( j)
2 , j = 1, 2, define the profile shapes of the nonde-

generate solitons and their various interesting collision scenarios. By generalizing the above given procedure, the nondegenerate
N-soliton solution of the Manakov system can be obtained. To derive the N-nondegenerate soliton solution, the power series
expansion should be as in the following form: g( j) = ∑2N−1

n=1 ε2n−1g( j)
2n−1 and f = 1 + ∑2N

n=1 ε2n f2n. The 4N complex parameters,
which are present in the N-soliton solution, determine the shape of the N-solitons. In Appendix A, we have given the three-soliton
solution form explicitly using the Gram determinants.

C. Partially nondegenerate two-soliton solution

To show the possibility of occurrence of degenerate and nondegenerate solitons simultanously in the Manakov system (1),
we restrict the wave numbers k1 and l1 (or k2 and l2) as k1 = l1 (or k2 = l2) but k2 �= l2 (or k1 �= l1) in the obtained completely
nondegenerate two-soliton solution (13a)–(13c). As a consequence of this restriction, the wave variables η1 and ξ1 automatically
get restricted as ξ1 = η1. By imposing such a restriction in the fully nondegenerate two-soliton solution (13a)–(13c) we deduce
the following form of partially nondegenerate two-soliton solution as

g(1) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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, (14a)

g(2) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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, (14b)

f =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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. (14c)

The above class of solution (14a)–(14c) can be derived through Hirota bilinear method with the following seed solutions,
g(1)

1 = α
(1)
1 eη1 + α

(1)
2 eη2 and g(2)

1 = α
(2)
1 eη1 + α

(2)
2 eξ2 , η j = k jt + ik2

j z and ξ2 = l2t + il2
2 z, j = 1, 2, for Eqs. (6). Such coexistence
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of degenerate and nondegenerate solitons and their dynamics are characterized by seven complex parameters k j , l2, α( j)
1 , and α

( j)
2 ,

j = 1, 2. The interesting collision behavior of the coexisting degenerate and nondegenerate solitons is discussed in Sec. V.

IV. VARIOUS SHAPE-PRESERVING AND
SHAPE-CHANGING COLLISIONS OF

NONDEGENERATE SOLITONS

The several interesting collision properties associated with
the nondegenerate solitons can be explored by analyzing the
asymptotic forms of the two-soliton solution (13a)–(13c) of
Eq. (1). By doing so, we observe that the nondegenerate
solitons undergo three types of collision scenarios. For either
of the two cases (i) equal velocities (k1I = l1I , k2I = l2I ) and
(ii) unequal velocities (k1I �= l1I , k2I �= l2I ), the nondegen-
erate two solitons undergo shape-preserving, shape-altering,
and shape-changing collision behaviors. Here we present the
asymptotic analysis for the case of shape-preserving collision
only and it can be carried out for other cases also in a similar
manner.

A. Asymptotic analysis

In order to study the interaction dynamics of nondegenerate
solitons completely, we perform a careful asymptotic analysis

for the nondegenerate two-soliton solution (13a)–(13c) and
we deduce the explicit forms of individual solitons at the
limits z → ±∞. To explore this, we consider k jR, l jR > 0,
j = 1, 2, k1I > k2I , l1I > l2I , k1I = l1I , and k2I = l2I , which
corresponds to the case of a head-on collision between the
two symmetric nondegenerate solitons. In this situation the
two symmetric fundamental solitons S1 and S2 are well sepa-
rated and subsequently the asymptotic forms of the individual
solitons can be deduced from the solution (13a)–(13c) by
incorporating the asymptotic nature of the wave variables
η jR = k jR(t − 2k jI z) and ξ jR = l jR(t − 2l jI z), j = 1, 2, in it.
The wave variables η jR and ξ jR behave asymptotically as (i)
soliton 1 (S1): η1R, ξ1R � 0, η2R, ξ2R → ∓∞ as z ∓ ∞ and (ii)
soliton 2 (S2): η2R, ξ2R � 0, η1R, ξ1R → ∓∞ as z ± ∞. Cor-
respondingly, these results lead to the following asymptotic
forms of nondegenerate individual solitons.

(a) Before collision: z → −∞
Soliton 1: In this limit, the asymptotic forms of q1 and

q2 are deduced from the two-soliton solution (13a)–(13c) for
soliton 1 as follows:

q1 � 2A1−
1 k1Reiη1I cosh(ξ1R + φ−

1 )[
(k∗

1 −l∗1 )
1
2

(k∗
1 +l1 )

1
2

cosh(η1R + ξ1R + φ−
3 ) + (k1+l∗1 )

1
2

(k1−l1 )
1
2

cosh(η1R − ξ1R + φ−
4 )

] , (15a)

q2 � 2A1−
2 l1Reiξ1I cosh(η1R + φ−

2 )[
(k∗

1 −l∗1 )
1
2

(k1+l∗1 )
1
2

cosh(η1R + ξ1R + φ−
3 ) + (k∗

1 +l1 )1/2

(k1−l1 )1/2 cosh(η1R − ξ1R + φ−
4 )

] . (15b)

Here φ−
1 = 1

2 log (k1−l1 )|α(2)
1 |2

(k1+l∗1 )(l1+l∗1 )2 , φ−
2 = 1

2 log (l1−k1 )|α(1)
1 |2

(k∗
1 +l1 )(k1+k∗

1 )2 , φ−
3 = 1

2 log |k1−l1|2|α(1)
1 |2|α(2)

1 |2
|k1+l∗1 |2(k1+k∗

1 )2(l1+l∗1 )2 , φ−
4 = 1

2 log |α(1)
1 |2(l1+l∗1 )2

|α(2)
1 |2(k1+k∗

1 )2 , A1−
1 =

[α(1)
1 /α

(1)∗
1 ]1/2 and A1−

2 = i[α(2)
1 /α

(2)∗
1 ]1/2. In the latter, superscript (1−) represents soliton S1 before collision and subscripts

1 and 2 denote the two modes q1 and q2, respectively.
Soliton 2: The asymptotic expressions for soliton 2 in the two modes before collision turn out to be

q1 � 2k2RA2−
1 ei(η2I +θ−

1 ) cosh(ξ2R + ϕ−
1 )[

(k∗
2 −l∗2 )

1
2

(k∗
2 +l2 )

1
2

cosh(η2R + ξ2R + ϕ−
3 ) + (k2+l∗2 )

1
2

(k2−l2 )
1
2

cosh(η2R − ξ2R + ϕ−
4 )

] , (16a)

q2 � 2l2RA2−
2 ei(ξ2I +θ−

2 ) cosh(η2R + ϕ−
2 )[

(k∗
2 −l∗2 )

1
2

(k2+l∗2 )
1
2

cosh(η2R + ξ2R + ϕ−
3 ) + (k∗

2 +l2 )
1
2

(k2−l2 )
1
2

cosh(η2R − ξ2R + ϕ−
4 )

] . (16b)

In the above,

ϕ−
1 = 1

2
log

(k2 − l2)
∣∣α(2)

2

∣∣2

(k2 + l∗
2 )(l2 + l∗

2 )2
+ 1

2
log

|k1 − l2|2|l1 − l2|4
|k1 + l∗

2 |2|l1 + l∗
2 |4 ,

ϕ−
2 = 1

2
log

(l2 − k2)
∣∣α(1)

2

∣∣2

(k∗
2 + l2)(k2 + k∗

2 )2
+ 1

2
log

|k2 − l1|2|k1 − k2|4
|k2 + l∗

1 |2|k1 + k∗
2 |4 ,

ϕ−
3 = 1

2
log

|k2 − l2|2
∣∣α(1)

2

∣∣2∣∣α(2)
2

∣∣2

|k2 + l∗
2 |2(k2 + k∗

2 )2(l2 + l∗
2 )2

+ 1

2
log

|k1 − k2|4|l1 − l2|4|k2 − l1|2|k1 − l2|2
|k1 + k∗

2 |4|k2 + l∗
1 |2|k1 + l∗

2 |2|l1 + l∗
2 |4 ,

ϕ−
4 = 1

2
log

∣∣α(1)
2

∣∣2
(l2 + l∗

2 )2

∣∣α(2)
2

∣∣2
(k2 + k∗

2 )2
+ 1

2
log

|k1 − k2|4|l1 + l∗
2 |4|k2 − l1|2|k1 + l∗

2 |2
|k1 + k∗

2 |4|k2 + l∗
1 |2|k1 − l2|2|l1 − l2|4 ,

042212-9



RAMAKRISHNAN, STALIN, AND LAKSHMANAN PHYSICAL REVIEW E 102, 042212 (2020)

eiθ−
1 = (k1 − k2)(l1 − l2)(l∗

1 + l2)(k2 − l1)
1
2 (k1 + k∗

2 )(k∗
2 + l1)

1
2

(k∗
1 − k∗

2 )(l1 + l∗
2 )(l∗

1 − l∗
2 )(k∗

2 − l∗
1 )

1
2 (k∗

1 + k2)(k2 + l∗
1 )

1
2

, A2−
1 = [

α
(1)
2 /α

(1)∗
2

]1/2
,

eiθ−
2 = (l1 − l2)(k1 − l2)

1
2 (k1 + l∗

2 )
1
2 (l1 + l∗

2 )

(k∗
1 − l∗

2 )
1
2 (l∗

1 − l∗
2 )(k∗

1 + l2)
1
2 (l∗

1 + l2)
, A2−

2 = [
α

(2)
2 /α

(2)∗
2

]1/2
.

Here superscript (2−) refers to soliton S2 before collision.
(b) After collision: z → +∞
Soliton 1: The asymptotic forms for soliton 1 after collision deduced as

q1 � 2k1RA1+
1 ei(η1I +θ+

1 ) cosh(ξ1R + φ+
1 )[

(k∗
1 −l∗1 )

1
2

(k∗
1 +l1 )

1
2

cosh
(
η1R + ξ1R + δ18−ς22

2

) + (k1+l∗1 )
1
2

(k1−l1 )
1
2

cosh
(
η1R − ξ1R + φ22−δ16

2

)] , (17a)

q2 � 2l1RA2+
1 ei(ξ1I +θ+

2 ) cosh(η1R + φ+
2 )[

(k∗
1 −l∗1 )

1
2

(k1+l∗1 )
1
2

cosh
(
η1R + ξ1R + δ18−ς22

2

) + (k∗
1 +l1 )

1
2

(k1−l1 )
1
2

cosh
(
η1R − ξ1R + φ22−δ16

2

)] . (17b)

Here

φ+
1 = φ−

1 + 1

2
log

|k2 − l1|2|l1 − l2|4
|k2 + l∗

1 |2|l1 + l∗
2 |4 , φ+

3 = φ−
3 + 1

2
log

|k1 − k2|4|k2 − l1|2|k1 − l2|2|l1 − l2|4
|k1 + k∗

2 |4|k2 + l∗
1 |2|k1 + l∗

2 |2|l1 + l∗
2 |4 ,

φ+
2 = φ−

2 + 1

2
log

|k1 − l2|2|k1 − k2|4
|k1 + l∗

2 |2|k1 + k∗
2 |4 , φ+

4 = φ−
4 + 1

2
log

|k1 − k2|4|k2 + l∗
1 |2|k1 − l2|2|l1 + l∗

2 |4
|k1 + k∗

2 |4|k2 − l1|2|k1 + l∗
2 |2|l1 − l2|4 ,

eiθ+
1 = (k1 − k2)(k1 − l2)

1
2 (k∗

1 + k2)(k∗
1 + l2)

1
2

(k∗
1 − k∗

2 )(k∗
1 − l∗

2 )
1
2 (k1 + k∗

2 )(k1 + l∗
2 )

1
2

, eiθ+
2 = (l1 − l2)(k2 − l1)

1
2 (k2 + l∗

1 )
1
2 (l∗

1 + l2)

(k∗
2 − l∗

1 )
1
2 (l∗

1 − l∗
2 )(k∗

2 + l1)
1
2 (l1 + l∗

2 )
,

A1+
1 = [α(1)

1 /α
(1)∗
1 ]1/2 and A1+

2 = [α(2)
1 /α

(2)∗
1 ]1/2, in which superscript (1+) denotes soliton S1 after collision.

Soliton 2: The expression for soliton 2 after collision deduced from the two-soliton solution is

q1 � 2A1+
2 k2Reiη2I cosh(ξ2R + ϕ+

1 )[
(k∗

2 −l∗2 )
1
2

(k∗
2 +l2 )

1
2

cosh(η2R + ξ2R + ϕ+
3 ) + (k2+l∗2 )

1
2

(k2−l2 )
1
2

cosh(η2R − ξ2R + ϕ+
4 )

] , (18a)

q2 � 2A2+
2 l2Reiξ2I cosh(η2R + ϕ+

2 )[
i(k∗

2 −l∗2 )
1
2

(k2+l∗2 )
1
2

cosh(η2R + ξ2R + ϕ+
3 ) + (k∗

2 +l2 )
1
2

(l2−k2 )
1
2

cosh(η2R − ξ2R + ϕ+
4 )

] , (18b)

where ϕ+
1 = 1

2 log (k2−l2 )|α(2)
2 |2

(k2+l∗2 )(l2+l∗2 )2 , ϕ+
2 = 1

2 log (l2−k2 )|α(1)
2 |2

(k∗
2 +l2 )(k2+k∗

2 )2 ,

ϕ+
3 = 1

2 log |k2−l2|2|α(1)
2 |2|α(2)

2 |2
|k2+l∗2 |2(k2+k∗

2 )2(l2+l∗2 )2 , ϕ+
4 = 1

2 log |α(1)
2 |2(l2+l∗2 )2

|α(2)
2 |2(k2+k∗

2 )2 ,

A2+
1 = [α(1)

2 /α
(1)∗
2 ]1/2, and A2+

2 = i[α(2)
2 /α

(2)∗
2 ]1/2. In the

latter, superscript (2+) represents soliton S2 after collision.
In the above, η jR = k jR(t − 2k jI z), η jI = k jIt +

(k2
jR − k2

jI )z, ξ jR = l jR(t − 2l jI z), ξ jI = l jI t + (l2
jR − l2

jI )z,
j = 1, 2, and that the phase terms ϕ−

j , j = 1, 2, 3, 4

can also be rewritten as ϕ−
1 = ϕ+

1 + 1
2 log |k1−l2|2|l1−l2|4

|k1+l∗2 |2|l1+l∗2 |4 ,

ϕ−
4 = ϕ+

4 + 1
2 log |k1−k2|4|l1+l∗2 |4|k2−l1|2|k1+l∗2 |2

|k1+k∗
2 |4|k2+l∗1 |2|k1−l2|2|l1−l2|4 , ϕ−

2 = ϕ+
2 + 1

2 log
|k2−l1|2|k1−k2|4
|k2+l∗1 |2|k1+k∗

2 |4 , ϕ−
3 = ϕ+

3 + 1
2 log |k1−k2|4|l1−l2|4|k2−l1|2|k1−l2|2

|k1+k∗
2 |4|k2+l∗1 |2|k1+l∗2 |2|l1+l∗2 |4 .

The above asymptotic analysis clearly shows that the
shape-preserving collision always occurs among the
nondegenerate solitons whenever the phase terms obey
the conditions

φ−
j = φ+

j , ϕ−
j = ϕ+

j , j = 1, 2, 3, 4. (19)

B. Shape-preserving and -altering collisions: Elastic collision

From the above analysis, we observe that the intensities of
nondegenerate solitons S1 and S2 in the two modes are the
same before and after collision whenever the phase condi-
tions (19) are satisfied. This implies that the initial amplitudes
do not get altered after collision j = 1, 2. It is also evident

from the transition amplitude calculations, T l
j = Al+

j

Al−
j

, j, l =
1, 2, where the subscript j represents the modes and the super-
script l± denotes the nondegenerate soliton numbers 1 and 2
in the asymptotic regimes z → ±∞. Again to confirm that the
intensities of the nondegenerate solitons are preserved during
the collision process, we calculate the transition intensities
as well, |T l

j |2, l, j = 1, 2, which can be obtained by taking
the absolute squares of the transition amplitudes T l

j ’s. The
transition intensities turn out to be unimodular, that is, |T l

j |2 =
1, l, j = 1, 2. Physically this implies that the nondegenerate
solitons, for k1I = l1I , k2I = l2I , k1 �= l1, corresponding to two
distinct wave numbers undergo elastic collision without any
intensity redistribution between the modes q1 and q2 except
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for a finite phase shift. The latter confirms that the polariza-
tion vectors associated with the nondegenerate fundamental
solitons do not contribute to the energy redistribution among
the modes. Consequently the nondegenerate solitons in each
mode exhibit elastic collision. The total intensity of each soli-
ton is conserved which can be verfied from |Al−

j |2 = |Al+
j |2,

j, l = 1, 2. In addition to this, the total intensity in each
of the modes is also conserved |A1−

j |2 + |A2−
j |2 = |A1+

j |2 +
|A2+

j |2 = const.
During the collision process, the initial phase of each of

the soliton is also changed. The phase shift of soliton S1 in the
two modes gets modified after collision as

�1
1 = φ+

1 − φ−
1 = log

|k2 − l1||l1 − l2|2
|k2 + l∗

1 ||l1 + l∗
2 |2 ,

�1
2 = φ+

2 − φ−
2 = log

|k1 − l2||k1 − k2|2
|k1 + l∗

2 ||k1 + k∗
2 |2 .

(20)

Similarly, the phase shift suffered by soliton S2 in the two
modes are given by

�2
1 = ϕ+

1 − ϕ−
1 = log

|k1 + l∗
2 ||l1 + l∗

2 |2
|k1 − l2||l1 − l2|2 ,

�2
2 = ϕ+

2 − ϕ−
2 = log

|k2 + l∗
1 ||k1 + k∗

2 |2
|k2 − l1||k1 − k2|2 . (21)

From the above expressions we conclude that the phases of
all the solitons are mainly influenced by the wave numbers
k j and l j , j = 1, 2, and not by the complex parameters α

( j)
1 ’s

and α
( j)
2 ’s, j = 1, 2. This peculiar property of nondegenerate

solitons is different in the case of degenerate vector bright
solitons (see Sec. V below) where the complex parameters
α

( j)
1 ’s and α

( j)
2 ’s, associated with polarization constants, play a

crucial role in shifting the position of solitons after collision.
Further, to confirm that the profile shapes of the nonde-

generate solitons S1 and S2 are invariant under the above
elastic collision, we explicitly deduce the relative separation
distance between the modes of the solitons. This is similar
to the analysis which we have already discussed for the one-
soliton solution to confirm the symmetric and asymmetric
profile natures of the fundamental soliton. As a consequence
of this analysis, one would expect that the relative separation
distance values corresponding to solitons S1 and S2 before
collision should be equal to the values after collision in order
to ensure the shape-preserving nature of the collision. For this
purpose, first we deduce the following expressions for relative
separation distance for the solitons S1 and S2 before and after
collisions from the asymptotic forms as

�t1−
12 = 1

l1R
log

∣∣α(2)
1

∣∣(k1 − l1)1/2

2l1R(k1 + l∗
1 )1/2

− 1

k1R
log

(l1 − k1)1/2
∣∣α(1)

1

∣∣
2k1R(k∗

1 + l1)1/2
, (22a)

�t2−
12 = 1

l2R
log

∣∣α(2)
2

∣∣|k1 − l2|(k2 − l2)1/2|l1 − l2|2
2l2R|k1 + l∗

2 |(k2 + l∗
2 )1/2|l1 + l∗

2 |2 − 1

k2R
log

∣∣α(1)
2

∣∣|k1 − k2|2|k2 − l1|(l2 − k2)1/2

2k2R|k1 + k∗
2 |2|k2 + l∗

1 |(k∗
2 + l2)1/2

, (22b)

�t1+
12 = 1

l1R
log

∣∣α(2)
1

∣∣|k2 − l1|(k1 − l1)1/2|l1 − l2|2
2l1R|k2 + l∗

1 |(k1 + l∗
1 )1/2|l1 + l∗

2 |2 − 1

k1R
log

∣∣α(1)
1

∣∣|k1 − k2|2|k1 − l2|(l1 − k1)1/2

2k1R|k1 + k∗
2 |2|k1 + l∗

2 |(k∗
1 + l1)1/2

, (23a)

�t2+
12 = 1

l2R
log

∣∣α(2)
2

∣∣(k2 − l2)1/2

2l2R(k2 + l∗
2 )1/2

− 1

k2R
log

(l2 − k2)1/2
∣∣α(1)

2

∣∣
2k2R(k∗

2 + l2)1/2
. (23b)

To identify the profile change of a given soliton S1 (or S2) during the collision, we analytically find the total change in
relative separation distance by subtracting the quantity �t n−

12 from �t n+
12 , n = 1, 2. This results in the following expressions for

soliton S1:

�t1 = �t1+
12 − �t1−

12 = 1

l1R
log

|k2 − l1||l1 − l2|2
|k2 + l∗

1 ||l1 + l∗
2 |2 − 1

k1R
log

|k1 − l2||k1 − k2|2
|k1 + l∗

2 ||k1 + k∗
2 |2 , (24)

and for soliton S2,

�t2 = �t2+
12 − �t2−

12 = 1

l2R
log

|k1 − l2||l1 − l2|2
|k1 + l∗

2 ||l1 + l∗
2 |2 − 1

k2R
log

|k2 − l1||k1 − k2|2
|k2 + l∗

1 ||k1 + k∗
2 |2 . (25)

To demonstrate the shape-preserving collision property of
nondegenerate solitons, for the case k1I = l1I , k2I = l2I , we
start with various symmetric profiles as initial conditions.
In Figs. 5(a) and 5(b) we set two well-separated symmetric
double-hump soliton profiles as initial profiles in both the
modes. From these figures, we observe that the symmetric
nature of double-hump soliton S1 is preserved in both the
modes after collision while interacting with another symmet-
ric double-hump soliton S2 except for a finite phase shift,
which is already deduced in Eqs. (20) and (21). This can be

easily verified from the asymptotic analysis itself. Further,
in order to ensure the shape-preserving collision scenario of
symmetric double-hump solitons we explicitly compute the
numerical value of relative separation distance between the
modes of each double-hump solitons by substituting all the
parameter values in Eqs. (24) and (25). This action yields
the final values as �t1 = −0.0051 and �t2 = −0.0051 (here
we provide the values with two decimal accuracy, to get
perfect zero, one has to fine tune the parameters suitably).
The values reaffirm that symmetric profile struture of double-
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FIG. 5. Shape-preserving collision of symmetric nondegenerate
solitons. The energy does not get exchanged among the nonde-
generate solitons during the shape-preserving collision process:
Panels (a) and (b) represent collision between two symmet-
ric double-hump solitons. Panels (c) and (d) denote interaction
among flat-top and symmetric double-hump soliton. The param-
eter values: [(a) and (b)] k1 = 0.333 + 0.5i, l1 = 0.315 + 0.5i,
k2 = 0.315 − 2.2i, l2 = 0.333 − 2.2i, α

(1)
1 = 0.45 + 0.45i, α

(1)
2 =

0.49 + 0.45i, α
(2)
1 = 0.49 + 0.45i, and α

(2)
2 = 0.45 + 0.45i. [(c) and

(d)] k1 = 0.43 + 0.5i, l1 = 0.3 + 0.5i, k2 = 0.3 − 2.2i, l2 = 0.43 −
2.2i, α

(1)
1 = 0.45 + 0.5i, α

(1)
2 = 0.43 + 0.5i, α

(2)
1 = 0.43 + 0.5i, and

α
(2)
2 = 0.45 + 0.5i.

hump solitons are indeed preserved during the collision. This
ensures further that the relative separation distance values
are consistent with the shape-preserving collision condition
φ−

j = φ+
j and ϕ−

j = ϕ+
j , j = 1, 2, 3, 4, given by Eq. (19).

We also show the shape-preserving collision between flat-top
soliton and double-hump soliton occurs in Figs. 5(c) and 5(d).
The same type of collision behavior is also observed while
the symmetric single-hump soliton collides with the symmet-
ric double-hump soliton, which is illustrated in Figs. 6(a)
and 6(b). In Figs. 6(c) and 6(d) we depict the elastic collision
between two symmetric single-hump solitons. From Fig. 6, we
find that each soliton retains its structure during the collision
scenario.

Next, we illustrate the shape-preserving collision among
the asymmetric solitons. As we pointed out earlier, the nonde-
generate fundamental soliton also admits asymmetric profiles
for k1I = l1I . To bring out one more asymmetric soliton
we set k2I = l2I in the two-soliton solution (13a)–(13c). In
order to study the shape-preserving collision of such two
asymmetric solitons, first we locate asymmetric double-hump
soliton S1 along the line η1R = k1R(t − 2k1I z) � 0, ξ1R =
l1R(t − 2k1I z) � 0 and another similar kind of soliton S2 along
the line η2R = k2R(t − 2k2I z) � 0, ξ2R = l2R(t − 2k2I z) � 0.
These asymmetric structured double-hump solitons also pre-
serve their structure after collision. This is clearly depicted
in Figs. 7(a) and 7(b). To ensure the shape-preserving na-
ture of asymmetric solitons, we again explicitly calculate the
relative separation distance values for both the asymmetric
solitons S1 and S2 as �t1 = �t2 = −0.0093. These values
again confirm the shape-preserving property of the asymmet-
ric double-hump solitons and they are indeed compatible with
the shape-preserving collision condition (19). As displayed

FIG. 6. Shape-preserving collision of symmetric nondegenerate
solitons. Panels (a) and (b) denote collision between single-hump
and double-hump solitons: The values corresponding to this colli-
sion scenario are k1 = 0.55 + 0.5i, l1 = 0.333 + 0.5i, k2 = 0.333 −
2.2i, l2 = 0.55 − 2.2i, α(1)

1 = 0.45 + 0.5i, α(1)
2 = 0.43 + 0.5i, α(2)

1 =
0.43 + 0.5i, and α

(2)
2 = 0.45 + 0.5i. Panels (c) and (d) denote two

single-hump solitons interaction: The corresponding parameter val-
ues are chosen as k1 = 0.333 + 0.5i, l1 = −0.316 + 0.5i, k2 =
−0.316 − 2.2i, l2 = 0.333 − 2.2i, α(1)

1 = 0.45 + 0.51i, α(1)
2 = 0.5 +

0.5i, α
(2)
1 = 0.5 + 0.5i, and α

(2)
2 = 0.45 + 0.51i.

in Figs. 7(c) and 7(d), the asymmetric flat-top soliton also
preserves its structure when it collides with an asymmetric
double-hump soliton. In other cases also asymmetric solitons
preserve their profiles. This can be confirmed from Fig. 8.
Very interestingly, the shape-preserving collision also occurs
even when the asymmetric double-hump soliton interacts with
the symmetric double-hump soliton. This is illustrated in
Fig. 9. During this collision also the standard position shift
only occurs as a final outcome.

FIG. 7. Shape-preserving collision of asymmetric nondegener-
ate solitons. Panels (a) and (b) represent two asymmetric soliton
collision: k1 = 0.333 − 0.5i, l1 = 0.315 − 0.5i, k2 = 0.315 + 1.5i,
l2 = 0.333 + 1.5i, α

(1)
1 = 0.65 + 0.45i, α

(1)
2 = 0.49 + 0.5i, α

(2)
1 =

0.49 + 0.5i and α
(2)
2 = 0.65 + 0.45i. Panels (c) and (d) denote

asymmetric flat-top-double-hump soliton: The corresponding pa-
rameter values are chosen as (a): k1 = 0.425 − 0.5i, l1 = 0.3 −
0.5i, k2 = 0.3 + 1.5i, l2 = 0.425 + 1.5i, α

(1)
1 = 0.5 + 0.51i, α

(1)
2 =

0.43 + 0.5i, α
(2)
1 = 0.43 + 0.5i, and α

(2)
2 = 0.5 + 0.51i.
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FIG. 8. Shape-preserving collision of asymmetric nondegenerate
solitons. Panels (a) and (b) represent asymmetric single-hump and
double-hump soliton collision: k1 = 0.55 − 0.5i, l1 = 0.333 − 0.5i,
k2 = 0.333 + 1.5i, l2 = 0.55 + 1.5i, α

(1)
1 = 1.2 + 0.5i, α

(1)
2 = 0.5 +

0.45i, α
(2)
1 = 0.5 + 0.45i, and α

(2)
2 = 1.2 + 0.5i. Panels (c) and

(d) denote collision of two asymmetric single-hump solitons: The
parameter values of each figure are chosen as k1 = 0.333 − 0.5i, l1 =
−0.2 − 0.5i, k2 = −0.2 + 1.5i, l2 = 0.333 + 1.5i, α

(1)
1 = 0.45 +

3.0i, α
(1)
2 = 0.5 + 0.5i, α

(2)
1 = 0.5 + 0.5i, and α

(2)
2 = 0.45 + 3.0i.

Then, we also come across another type of elastic collision,
namely shape-altering collision for certain set of paramet-
ric choices again with k1I = l1I and k2I = l2I . We illustrate
such collision scenario in Fig. 10. We explain the pro-
file alteration in the head-on collision between slow-moving
symmetric double-hump soliton and fast-moving asymmetric
double-hump soliton as displayed in Figs. 10(a) and 10(b). To
draw this figure we fix the parametric choice as k1 = 0.41 +
0.5i, l1 = 0.305 + 0.5i, k2 = 0.305 − 2.2i, l2 = 0.41 − 2.2i,
α

(1)
1 = α

(2)
2 = 0.44 + 0.499i, and α

(1)
2 = α

(2)
1 = 0.44 + 0.5i

in solution (13a)–(13c). From this figure, we find that while
symmetric double-hump soliton S−

1 in the first mode slightly
changes into an asymmetric structure, the asymmetric double-
hump soliton S−

2 becomes symmetric. For this kind of
shape-altering collision the parameter values corresponding to
Figs. 10(a) and 10(b) are inconsistent with the condition (19),
even though the unimodular condition of transition amplitudes
is still preserved. A similar kind of profile alteration occurs
in the second mode also. This is due to the incoherent inter-
action between the modes q1 and q2. Again, a similar type
of collision property has been observed when a symmetric

FIG. 9. Shape-preserving collision between symmetric double-
hump soliton and asymmetric double-hump soliton: The parameter
values are k1 = 0.333 + 0.5i, l1 = 0.315 + 0.5i, k2 = 0.315 − 2.2i,
l2 = 0.333 − 2.2i, α

(1)
1 = 0.45 + 0.45i, α

(1)
2 = 2.49 + 2.45i, α

(2)
1 =

0.49 + 0.45i, and α
(2)
2 = 0.45 + 0.45i.

FIG. 10. Shape-altering collision: Panels (a) and (b) denote
shape-altering collision between symmetric double-hump soliton and
asymmetric double-hump soliton. Panels (c) and (d) refer to collision
between symmetric flat-top and asymmetric double-hump soliton.
Panels (e) and (f) represent interaction between single-hump and
asymmetric double-hump soliton.

(or asymmetric) flat-top soliton collides with an asymmetric
(or symmetric) double-hump soliton in the q1 (or q2) compo-
nent, which is demonstrated in Figs. 10(c) and 10(d) for k1 =
0.425 + 0.5i, l1 = 0.3 + 0.5i, k2 = 0.3 − 2.2i, l2 = 0.425 −
2.2i, α

(1)
1 = α

(2)
2 = 0.5 + 0.5i and α

(1)
2 = α

(2)
1 = 0.45 + 0.5i.

In Figs. 10(e) and 10(f), we illustrate shape alteration collision
between symmetric single-hump and double-hump solitons
in both the components by fixing the parameter values
as k1 = 0.55 − 0.5i, l1 = 0.333 − 0.5i, k2 = 0.333 + 1.5i,
l2 = 0.55 + 1.5i, α

(1)
1 = α

(2)
2 = 0.5 + 0.5i, and α

(1)
2 = α

(2)
1 =

0.45 + 0.5i. In each of the modes, the collision transforms
the symmetric double-hump soliton into a slightly asymmet-
ric double-hump soliton leaving the symmetric single-hump
soliton unaltered. However, in all the above cases the energy
does not get redistributed among the modes even though the
shape of the solitons gets altered during the collision. One
can prove the unimodular nature of the transition amplitudes
in these cases by following the procedure mentioned earlier
in this section. As we pointed out earlier, the similar kind
of shape-preserving and shape-altering collisions are also ob-
served in the case of k1I �= l1I and k2I �= l2I . Here we have
not displayed their plots and their corresponding asymptotic
analysis for brevity.

Additionally, in Fig. 11, we display another type of col-
lision scenario for the velocity condition k1I = l1I , k2I �= l2I .
In this collision scenario the asymmetric double-hump soli-
tons that are present in the two modes change dramatically.
However, the single-hump solitons undergo collision without
any change in their intensity profiles. Due to the incoherent
coupling between the modes, the change occurred only in
the profile of the double-hump soliton. One can carry out an
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FIG. 11. Shape-changing collision between asymmetric double-
hump soliton and single-hump soliton: k1 = 0.333 + 0.5i, l1 =
0.315 + 0.5i, k2 = 0.315 + 2.2i, l2 = 0.433 − 2.2i, α

(1)
1 = α

(2)
2 =

0.5 + 0.5i, and α
(1)
2 = α

(2)
1 = 0.45 + 0.5i.

appropriate asymptotic analysis for this kind of collision pro-
cess also. We also note here that this kind of shape-changing
collision is not observed in the degenerate case. We remark
that elastic collision is also noticed in the case of dissipative
solitons where a new soliton pair (doublet) is formed when the
single soliton state (singlet) destroys the initial doublet state.
During this interaction, energy or momentum is not conserved
in the fiber laser cavity [54–56]. But the elastic collision ob-
served in the present conservative system is entirely different
from the above collision which has been observed in the
dissipative system. The vector solitons in dissipative systems
exhibit several interesting dynamical features, especially in
fiber lasers. Fiber lasers are very useful nonlinear systems to
study the formation and dynamics of temporal optical soli-
tons experimentally. In fact several types of solitons were
observed experimentally in fiber lasers. For instance, vector
multisoliton operation and vector soliton interaction in an
erbium-doped fiber laser [57] and a vector dark domain wall
soliton has been observed in a fiber ring laser [19]. Also vec-
tor dissipative soliton operation of erbium-doped fiber lasers
mode locked with atomic layer graphene was experimentally
investigated [58] and the coexistence of polarization-locked
and polarization rotating vector solitons in a fiber laser with a
semiconductor saturable absorber mirror have been observed
experimentally [59].

C. Shape-changing collision

Further, here we demonstrate the shape-changing collision
scenario of nondegenerate solitons for unequal velocities, that
is, k1I �= l1I and k2I �= l2I (we also note here that for appro-
priate choices of parameters for this unequal velocity case as
pointed out above both shape-preserving and shape-altering
cases do occur). During this interaction, we observe that an
intensity redistribution occurs among the modes of nonde-
generate fundamental solitons along with profile change. We
display such a collision dynamics in Figs. 12 and 13. A typ-
ical intensity redistribution phenomenon is demonstrated in
Fig. 12 when two asymmetric double-hump solitons collide
with each other. To bring out this nonlinear phenomenon we
choose the parameter values as k1 = 1.2 − 0.5i, l1 = 0.8 +
0.5i, k2 = 1.0 + 0.5i, l2 = 1.5 − 0.5i, α

(1)
1 = α

(2)
2 = 0.5 +

0.51i, and α
(1)
2 = α

(2)
1 = 0.45 + 0.5i. From Fig. 12, one can

easily observe that the profiles of asymmetric double-hump
solitons S1 and S2 change dramatically after collision, where
the initial asymmetric solitons S1 and S2 lose their identities
and reemerge with another set of asymmetric profiles. In

FIG. 12. Shape-changing collision between two asymmetric
double-hump solitons: k1 = 1.2 − 0.5i, l1 = 0.8 + 0.5i k2 = 1.0 +
0.5i, l2 = 1.5 − 0.5i, α

(1)
1 = α

(2)
2 = 0.5 + 0.5i, and α

(1)
2 = α

(2)
1 =

0.45 + 0.5i.

addition to the profile changes, there is also a finite intensity
redistribution which takes place between the two modes of the
solitons. However, the total energy of the individual solitons
as well as modes is conserved in order to hold the energy
conservation of system (1). A similar kind of collision is also
depicted in Fig. 13, where a drastic change only occurs in
the profile of asymmetric double-hump soliton but without
any change in the asymmetric single-hump soliton. This can
be witnessed in Fig. 13 by setting the values of the param-
eters as k1 = 0.36 + 0.5i, l1 = 0.3 − 0.5i, k2 = 0.5 − 2.1i,
l2 = 0.45 − 2.2i, α

(1)
1 = α

(2)
2 = 0.5 + 0.5i, and α

(1)
2 = 1.7 +

0.45i, α
(2)
1 = 0.45 + 0.5i in the solution (13a)–(13c). From

this figure one can confirm that the intensity redistribution
only occurs among the modes of the asymmetric double-hump
soliton. A detailed asymptotic analysis has been carried out in
order to ensure this peculiar intensity redistribution, which we
have given in Appendix B. We remark that the nondegenerate
solitons also exhibit shape-changing collision for the equal ve-
locity case as well with k1I = l1I and k2I = l2I for appropriate
choice of parameters, which are inconsistent with Eq. (19).

FIG. 13. Shape-changing collision between asymmetric single-
hump and double-hump solitons: k1 = 0.36 + 0.5i, l1 = 0.3 −
0.5i k2 = 0.5 − 2.1i, l2 = 0.45 − 2.2i, α

(1)
1 = α

(2)
2 = 0.5 − 0.5i,

α
(1)
2 = 1.7 + 0.45i, and α

(2)
1 = 0.45 + 0.5i.
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V. COLLISION BETWEEN NONDEGENERATE AND
DEGENERATE SOLITONS

In this section, we discuss the collision among degener-
ate and nondegenerate solitons admitted by the two-soliton
solution (13a)–(13c) of Manakov system (1) in the par-
tial nondegenerate limit k1 = l1 and k2 �= l2. The following
asymptotic analysis assures that there is a definite energy
redistribution occurs among the modes q1 and q2.

A. Asymptotic analysis

To elucidate this kind of collision behavior, we analyze
the partial nondegenerate two-soliton solution (14a)–(14c) in
the asymptotic limits z → ±∞. The resultant action yields
the asymptotic forms corresponding to degenerate and nonde-
generate solitons. As we pointed out in the shape-preserving
collision case, to obtain the asymptotic forms for the present
case we incorporate the asymptotic nature of the wave vari-
ables η jR = k jR(t − 2k jI z) and ξ2R = l2R(t − 2l2I z), j = 1, 2,
in the solution (14a)–(14c). Here the wave variable η1R corre-
sponds to the degenerate soliton and η2R, ξ2R correspond to the
nondegenerate soliton. In order to find the asymptotic behav-
ior of these wave variables we consider the parametric choice

as k1R, k2R, l2R > 0, k1I > 0, k2I , l2I < 0, k1I > k2I , k1I > l2I .
For this choice, the wave variables behave asymptotically
as follows: (i) degenerate soliton S1: η1R � 0, η2R, ξ2R →
∓∞ as z → ∓∞ (ii) nondegenerate soliton S2: η2R, ξ2R � 0,
η1R → ±∞ as z → ±∞. By incorporating these asymptotic
behaviors of wave variables in the solution (14a)–(14c), we
deduce the following asymptotic expressions for degenerate
and nondegenerate solitons.

(a) Before collision: z → −∞
Soliton 1: In this limit, the asymptotic form for the de-

generate soliton deduced from the partially nondegenerate
two-soliton solution (14a)–(14c) is

qj �
⎛
⎝A1−

1

A1−
2

⎞
⎠k1Reiη1I sech

(
η1R + R

2

)
, j = 1, 2, (26)

where A1−
j = α

( j)
1 /(|α(1)

1 |2 + |α(2)
1 |2)1/2, j = 1, 2, R =

ln (|α(1)
1 |2+|α(2)

1 |2 )
(k1+k∗

1 )2 . Here in A1−
j the superscript 1− denotes

soliton S1 before collision and subscript j refers to the mode
number.

Soliton 2: The asymptotic expressions for the nondegen-
erate soliton S2 which is present in the two modes before
collision are obtained as

q1 � 2k2RA2−
1

D

[
eiξ2I +�1 cosh

(
η2R + �21 − �21

2

)
+ eiη2I +�2 cosh

(
ξ2R + λ2 − λ1

2

)]
, (27a)

q2 � 2l2RA2−
2

D

[
eiη2I +�7 cosh

(
ξ2R + �21 − γ21

2

)
+ eiξ2I +�6 cosh

(
η2R + λ7 − λ6

2

)]
, (27b)

D = e�5 cosh

(
η2R − ξ2R + λ3 − λ4

2

)
+ e�3 cosh

[
i(η2I − ξ2I ) + ϑ12 − ϕ21

2

]

+e�4 cosh

(
η2R + η3R + λ5 − R

2

)
.

Here A2−
1 = [α(1)

2 /α
(1)∗
2 ]1/2 and A2−

2 = [α(2)
2 /α

(2)∗
2 ]1/2. In the latter the superscript 2− denote nondegenerate soliton S2 before

collision.
(b) After collision: z → +∞
Soliton 1: The asymptotic forms for degenerate soliton S1 after collision deduced from the solution (14a)–(14c) as

q j �
⎛
⎝A1+

1

A1+
2

⎞
⎠ei(η1I +θ+

j )k1R sech

(
η1R + R′ − ς22

2

)
, j = 1, 2, (28)

where A1+
1 = α

(1)
1 /(|α(1)

1 |2 + χ |α(2)
1 |2)1/2, A1+

2 = α
(1)
1 /(|α(1)

1 |2χ−1 + |α(2)
1 |2)1/2, χ = (|k1 − l2|2|k1 + k∗

2 |2)/(|k1 − k2|2|k1 +
l∗
2 |2), eiθ+

1 = (k1−k2 )(k∗
1 +k2 )(k1−l2 )

1
2 (k∗

1 +l2 )
1
2

(k∗
1 −k∗

2 )(k1+k∗
2 )(k∗

1 −l∗2 )
1
2 (k1+l∗2 )

1
2

, eiθ+
2 = (k1−k2 )

1
2 (k∗

1 +k2 )
1
2 (k1−l2 )(k∗

1 +l2 )

(k∗
1 −k∗

2 )
1
2 (k1+k∗

2 )
1
2 (k∗

1 −l∗2 )(k1+l∗2 )
. Here 1+ in A1+

1 refers to degenerate soliton S1 after

collision.
Soliton 2: Similarly the expression for the nondegenerate soliton, S2, after collision deduced from the two-soliton solu-

tion (14a)–(14c) is

q1 � 2k2RA2+
1 eiη2I cosh

(
ξ2R + �22−ρ1

2

)
[

(k∗
2 −l∗2 )

1
2

(k∗
2 +l2 )

1
2

cosh
(
η2R + ξ2R + ς22

2

) + (k2+l∗2 )
1
2

(k2−l2 )
1
2

cosh
(
η2R − ξ2R + R3−R6

2

)] , (29)

q2 � 2l2RA2+
2 eiξ2I cosh

(
η2R + μ22−ρ2

2

)
[

(k∗
2 −l∗2 )

1
2

(k2+l∗2 )
1
2

cosh
(
η2R + ξ2R + ς22

2

) + (k∗
2 +l2 )

1
2

(k2−l2 )
1
2

cosh
(
η2R − ξ2R + R3−R6

2

)] . (30)
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FIG. 14. Energy-sharing collision between degenerate and non-
degenerate soliton: k1 = l1 = 1 + i, k2 = 1 − i, l2 = 1.5 − 0.5i,
α

(1)
1 = 0.8 + 0.8i, α(2)

2 = 0.6 + 0.6i, α(1)
2 = 0.25 + 0.25i, and α

(2)
1 =

1 + i.

where ρ j = log α
( j)
2 , j = 1, 2, A2+

1 = [α(1)
2 /α

(1)∗
2 ]1/2, and

A2+
2 = i[α(2)

2 /α
(2)∗
2 ]1/2. The explicit expressions of all the con-

stants are given in Appendix C.

B. Degenerate soliton collision-induced shape-changing
scenario of nondegenerate soliton

The coexistence of nondegenerate and degenerate solitons
can be brought out from the partially nondegenerate soliton
solution (14a)–(14c). Such coexisting solitons undergo a col-
lision property that has been illustrated in Fig. 14. From this
figure, one can observe that the intensity of the degenerate
soliton S1 is enhanced after collision in the first mode and
it gets suppressed in the second mode. As we expected the
degenerate soliton undergoes energy redistribution among the
modes q1 and q2. In the degenerate soliton case, the polariza-
tion vectors, Al

j = α
( j)
l /(|α(1)

1 |2 + |α(2)
1 |2)1/2, l, j = 1, 2, play

crucial role in changing the shape of the degenerate solitons
under collision, where the intensity or energy redistribution
happens between the modes q1 and q2. As we point out in
the next section, the shape-preserving collision arises in the
pure degenerate case when the polarization parameters obey

the condition α
(1)
1

α
(1)
2

= α
(2)
1

α
(2)
2

, where α
( j)
i ’s, i, j = 1, 2, are complex

numbers related to the polarization vectors as given above.
The above collision is similar to the one which occurs in the
completely degenerate case [3,4]. However, this is not true in
the case of nondegenerate solitons. The nondegenerate asym-
metric double-hump soliton S2 exhibits a collision property
depicted in Fig. 14. In both the modes, the nondegenerate
soliton S2 experiences strong effect when it interacts with
a degenerate soliton. As a result the nondegenerate soliton
switches its asymmetric double-hump profile into single-
hump profile with an enhancement of intensity along with a
phase shift. In addition to the latter case, we also noticed that
the nondegenerate soliton loses its asymmetric double-hump
profile into another form of asymmetric double-hump profile
when it interacts with a degenerate soliton. In the nonde-
generate case, the relative separation distances (or phases)
are in general not preserved during the collision. These col-
lision properties can be understood from the corresponding
asymptotic analysis given in the previous subsection. The
asymptotic analysis reveals that energy redistribution occurs
between modes q1 and q2. In order to confirm the shape-
changing nature of this interesting collision process we obtain

the following expression for the transition amplitudes:

T 1
1 =

[∣∣α(1)
1

∣∣2 + |α(2)
1 |2]1/2

[∣∣α(1)
1

∣∣2 + χ
∣∣α(2)

1

∣∣2]1/2 ,

(31)

T 1
2 =

[∣∣α(1)
1

∣∣2 + ∣∣α(2)
1

∣∣2]1/2

[∣∣α(1)
1

∣∣2
χ−1 + ∣∣α(2)

1

∣∣2]1/2 .

In general, the transition amplitudes are not equal to unity.
If the quantity T l

j is not unimodular (for this case the con-
stant χ �= 1), then the degenerate and nondegenerate solitons
always exhibit shape-changing collision. The standard elastic
collision can be recovered when χ = 1. One can calculate the
shift in the positions of both degenerate and nondegenerate
solitons after collision from the asymptotic analysis. This kind
of collision property has not been observed in the degener-
ate vector bright solitons of the Manakov system [3,4]. The
property of enhancement of intensity in both the components
of nondegenerate soliton is similar to the one observed ear-
lier in the mixed coupled nonlinear Schrödinger system [60].
The amplification process of a single-humped nondegenerate
soliton in both the modes can be viewed as an application
for signal amplification where the degenerate soliton acts as
a pumping wave.

VI. DEGENERATE VECTOR BRIGHT SOLITON
SOLUTIONS AND THEIR COLLISION DYNAMICS

The already reported degenerate vector one-bright soliton
solution of Manakov system (1) can be deduced from the one-
soliton solution (7) by imposing k1 = l1 in it. The forms of q j

given in Eq. (7) degenerates into the standard bright soliton
form [3,44]

q j = α
( j)
1 eη1

1 + eη1+η∗
1+R

, j = 1, 2, (32)

which can be rewritten as

qj = k1RÂ je
iη1I sech

(
η1R + R

2

)
, (33)

where η1R = k1R(t − 2k1I z), η1I = k1I t + (k2
1R − k2

1I )z, Â j =
α

( j)
1√

(|α(1)
1 |2+|α(2)

1 |2 )
, eR = (|α(1)

1 |2+|α(2)
1 |2 )

(k1+k∗
1 )2 , and j = 1, 2. Note that the

above fundamental bright soliton always propagates in both
the modes q1 and q2 with the same velocity 2k1I . The polariza-
tion vectors (Â1, Â2)† have different amplitudes and phases,
unlike the case of nondegenerate solitons where they have
only different phases. The presence of single wave number
k1 in the solution (33) restricts the degenerate soliton to have
a single-hump form only. A typical profile of the degener-
ate soliton is shown in Fig. 15. As already pointed out in
Refs. [3,4] the amplitude and central position of the degen-
erate vector bright soliton are obtained as 2k1RÂ j , j = 1, 2,
and R

2k1R
, respectively.

Further, the degenerate two-soliton solution can be de-
duced from the nondegenerate two-soliton solution (13a)–
(13c) by applying the degenerate limits k1 = l1 and k2 = l2.
This results in the following standard degenerate two-soliton
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solution [3], that is,

q j (t, z) = α
( j)
1 eη1 + α

( j)
2 eη2 + eη1+η∗

1+η2+δ1 j + eη1+η2+η∗
2+δ2 j

1 + eη1+η∗
1+R1 + eη1+η∗

2+δ0 + eη∗
1+η2+δ∗

0 + eη2+η∗
2+R2 + eη1+η∗

1+η2+η∗
2+R3

, (34)

where j = 1, 2, η j = k j (t + ik jz), eδ0 = k12
k1+k∗

2
, eR1 =

k11
k1+k∗

1
, eR2 = k22

k2+k∗
2
, eδ1 j = (k1−k2 )(α( j)

1 k21−α
( j)
2 k11 )

(k1+k∗
1 )(k∗

1 +k2 ) , eδ2 j =
(k2−k1 )(α( j)

2 k12−α
( j)
1 k22 )

(k2+k∗
2 )(k1+k∗

2 ) , eR3 = |k1−k2|2
(k1+k∗

1 )(k2+k∗
2 )|k1+k∗

2 |2 (k11k22 −
k12k21), and kil = μ

∑2
n=1 α

(n)
i α

(n)∗
i

(ki+k∗
l ) , i, l = 1, 2, μ = +1. The N

degenerate vector bright soliton solution can be recovered
from the nondegenerate N-soliton solutions by fixing the
wave numbers as ki = li, i = 1, 2, . . . , N . In passing we also
note that the nondegenerate fundamental soliton solution
(7) can arise when we fix the parameters α

(1)
2 = α

(2)
1 = 0

in Eq. (34) and rename the constants k2 as l1 and α
(2)
2 as

α
(2)
1 in the resultant solution. We also note that the above

degenerate two-soliton solution (34) can also be rewritten
using Gram determinants from the Gram-determinant forms
of nondegenerate two-soliton solution (13a)–(13c).

As reported in Refs. [3,4], the degenerate fundamental
solitons (ki = li, i = 1, 2) in the Manakov system un-
dergo shape-changing collision due to intensity redistribution
among the modes. The energy redistribution occurs in the
degenerate case because of the polarization vectors of the two
modes combine with each other. This shape-changing colli-
sion illustrated in Fig. 16 where the intensity redistribution
occurs because of the enhancement of soliton S1 in the first
mode and the corresponding intensity of the same soliton is
suppressed in the second mode. To hold the conservation of
energy between the modes the intensity of the solitons S2

gets suppressed in the first mode and it is enhanced in the
second mode. The standard elastic collision has already been
brought out in the degenerate case for the very special case
α

(1)
1

α
(1)
2

= α
(2)
1

α
(2)
2

[4,52].

VII. POSSIBLE EXPERIMENTAL OBSERVATIONS OF
NONDEGENERATE SOLITONS

To experimentally observe the nondegenerate vector soli-
tons (single-hump or double-hump solitons) one may adopt

FIG. 15. Degenerate one-soliton: The values are k1 = 0.3 + 0.5i,
α

(1)
1 = 1.5 + 1.5i, and α

(2)
1 = 0.5 + 0.5i.

the mutual-incoherence method which has been used to
observe the multihump multimode solitons experimentally
(see Ref. [36]). The Manakov solitons (degenerate solitons)
can also be observed by the same experimental procedure
with appropriate modifications (see Ref. [24]). In the fol-
lowing, we briefly envisage how the procedure given in
Ref. [36] can be modified to generate the single-hump or
double-hump soliton (nondegenerate soliton) discussed in
our work.

To generate the nondegenerate vector solitons it is essential
to consider two laser sources of different characters, so that
the wavelength of the first laser beam is different from the sec-
ond one. Using polarizing beam splitters, each one of the laser
beams can be split into ordinary and extraordinary beams. The
extraordinary beam coming out from the first source can be
further split into two individual fields F11 and F12 by allowing
it to fall on a beam splitter. These two fields are nothing but
the reflected and transmitted extraordinary beams coming out
from the beam splitter. The intensities of these two fields are
different. Similarly, the second beam which is coming out
from the second source can also be split into two fields F21 and
F22 by passing through another beam splitter. The intensities
of these two fields are also different. As a result one can
generate four fields that are incoherent to each other. To set
the incoherence in phase among these four fields one should
allow them to travel sufficient distance before coupling is
performed. The fields F11 and F12 now become nondegenerate
two individual solitons in the first mode whereas F21 and F22

form another set of two nondegenerate solitons in the second
mode. The coupling between the fields F11 and F21 can be
performed by combining them using another beam splitter.
Similarly, by suitably locating another beam splitter, one can
combine the fields F12 and F22, respectively. After appropriate
coupling is performed the resultant optical field beams can
now be focused through two individual cylindrical lenses and
the output may be recorded in an imaging system, which
consists of a crystal and charge-coupled device camera. The
collision between the nondegenerate two solitons in both the
modes can now be seen from the recorded images.

To observe the elastic collision between nondegenerate
solitons (single-hump or double-hump solitons), one must
make arrangements to vanish the mutual coherence property

FIG. 16. Shape-changing collision of degenerate two-solitons:
k1 = l1 = 1 + i, k2 = l2 = 1.51 − 1.51i, α

(1)
1 = 0.5 + 0.5i, and

α
(1)
2 = α

(2)
1 = α

(2)
2 = 1.
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between the solitons F11 and F12 in the first mode q1 and F21

and F22 in the second mode q2 (see Ref. [24]). The four optical
beams are now completely independent and incoherent with
one another. The collision angle at which the nondegenerate
solitons interact should be sufficiently large enough. Under
this situation, no energy exchange is expected to occur be-
tween the nondegenerate solitons of the two modes.

VIII. CONCLUSION

From the present study, we point out a few applications
of our above reported soliton solutions. The shape-preserving
collision property of the nondegenerate solitons can be used
for optical communication applications. The nondegenerate
solitons of Manakov system can be seen as a soliton molecule
when k1I ≈ k2I and l1I ≈ l2I . Therefore, as explained in
the context of soliton molecule, the double-hump (or
multihump) structure of the nondegenerate solitons can
be useful for sending information of densely packed
data [30]. Degenerate soliton collision-induced enhancement
of intensity property of nondegenerate soliton is considered
as signal amplification application. Recently the various
properties associated with soliton molecule have been
explored in the literature [30,31,40,61,62]. Also a breather
wave molecule has been identified in Ref. [63]. The
interesting collision property of degenerate soliton has already
been shown that it is useful for optical computing [28,52]. Our
results provide the possibility to investigate nondegenerate
type solitons in both integrable and nonintegrable systems.
The present study can also be extended to fiber arrays and
multimode fibers where Manakov-type equations describe
the pulse propagation. Recently we have investigated the
dynamics of nondegenerate solitons in the N-coupled system
and the results will be published elsewhere.

We have derived a general form of nondegenerate one-,
two-, and three-soliton solutions for the Manakov model
through the Hirota bilinear method. This class of solitons
admits various interesting profile structures. The double-
hump formation is elucidated by analyzing the relative
velocities of the modes of the solitons. Then we have
pointed out the coexistence of degenerate and nonde-
generate solitons in the Manakov system by imposing a
wave-number restriction on the obtained two-soliton solu-
tion. We have found that nondegenerate solitons undergo
shape-preserving, shape-altering, and shape-changing col-
lision scenarios for both equal velocities and unequal
velocities cases. However, for the partially equal veloc-
ity case, we have demonstrated shape-changing collision.
By performing appropriate asymptotic analysis, the shape-
changing collision has been explained while the degenerate
soliton interacts with the nondegenerate soliton. Finally,
we recovered the well-known energy exchanging collision
exhibiting degenerate soliton solutions from these non-
degenerate one- and two-soliton solutions. We have also
verified the stability nature of double-hump solitons even
during collision using the Crank-Nicolson method as ex-
plained in Appendix D. It is also very interesting to
investigate many possibilities of collision dynamics us-
ing a three-soliton solution as deduced in Appendix A.

Now we are investigating what will happen when (i) two
degenerate solitons interact with a nondegenerate soliton
and (ii) two nondegenerate solitons collide with a degen-
erate soliton, and so on. The results will be published
elsewhere.
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APPENDIX A: THREE-SOLITON SOLUTION

The explicit form of nondegenerate three-soliton solution
of Eq. (1) can be deduced by proceeding with the Eqs. (4)
using the series representation up to orders ε11 for g(N ) and
ε12 for f . Then the solution can be expressed using Gram
determinant in the following way:

g(N ) =
∣∣∣∣∣∣

A I φ

−I B 0T

0 CN 0

∣∣∣∣∣∣, f =
∣∣∣ A I
−I B

∣∣∣, N = 1, 2.

(A1a)

Here the matrices A and B are of the order (6 × 6) defined as

A =
(Amm′ Amn

Anm Ann′

)
,

B =
(
κmm′ κmn

κnm κnn′

)
, m, m′, n, n′ = 1, 2, 3. (A1b)

The various elements of matrix A are obtained from the fol-
lowing,

Amm′ = eηm+η∗
m′

(km + k∗
m′ )

, Amn = eηm+ξ∗
n

(km + l∗
n )

, (A1c)

Ann′ = eξn+ξ∗
n′

(ln + l∗
n′ )

, Anm = eη∗
n+ξm

(k∗
n + lm)

, m, m′, n, n′ = 1, 2, 3.

(A1d)

The elements of matrix B is defined as

κmm′ = ψ†
mσψm′

(k∗
m + km′ )

, κmn = ψ†
mσψ ′

n

(k∗
m + ln)

,

κnm = ψ ′†
n σψm

(l∗
n + km)

, κnn′ = ψ ′†
n σψ ′

n′

(l∗
n + ln′ )

. (A1e)

In (A1e) the column matrices are ψ j = (α
(1)
j
0

), ψ ′
j =

(
0

α
(2)
j

), j = m, m′, n, n′ = 1, 2, 3, η j = k jt + ik2
j z, and ξ j =

l jt + il2
j z, j = 1, 2, 3. The other matrices in Eq. (A1a) are

defined below:
φ = (eη1 eη2 eη3 eξ1 eξ2 eξ3 )T , C1 = −(α(1)

1 α
(1)
2 α

(1)
3

0 0 0), C2 = −(0 0 0 α
(2)
1 α

(2)
2 α

(2)
3 ), 0 = (0 0 0 0 0 0), and

σ = I is a (6 × 6) identity matrix.
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APPENDIX B: ASYMPTOTIC ANALYSIS OF SHAPE-CHANGING COLLISION OF NONDEGENERATE SOLITONS IN THE
UNEQUAL VELOCITY CASE: k1I �= l1I AND k2I �= l2I

To carry out the asymptotic analysis for the shape-changing collision we fix the parameters as k1I < k2I , l1I > l2I , k jR, l jR > 0,
j = 1, 2, and k1I �= l1I , k2I �= l2I . For this choice the nondegenerate two-soliton solution (13a)–(13c) reduces to the following
asymptotic forms:

(a) Before collision: z → −∞
Soliton 1: (η1R, ξ1R � 0, η2R → +∞, ξ2R → −∞)

q1 � 2A1−
1 k1Rei(η1I +θ1−

1 ) cosh(ξ1R + ψ−
1 )[

(k∗
1 −l∗1 )

1
2

(k∗
1 +l1 )

1
2

cosh(η1R + ξ1R + ψ−
3 ) + (k1+l∗1 )

1
2

(k1−l1 )
1
2

cosh(η1R − ξ1R + ψ−
4 )

] , (B1a)

q2 � 2A1−
2 l1Rei(ξ1I +θ1−

2 ) cosh(η1R + ψ−
2 )[

(k∗
1 −l∗1 )

1
2

(k1+l∗1 )
1
2

cosh(η1R + ξ1R + ψ−
3 ) + (k∗

1 +l1 )1/2

(k1−l1 )1/2 cosh(η1R − ξ1R + ψ−
4 )

] . (B1b)

Here ψ−
1 = 1

2 log (k1−l1 )|k2−l1|2|α(2)
1 |2

(k1+l∗1 )|k2+l∗1 |2(l1+l∗1 )2 , ψ−
2 = 1

2 log (l1−k1 )|k1−k2|4|α(1)
1 |2

(k∗
1 +l1 )|k1+k∗

2 |4(k1+k∗
1 )2 , eiθ1−

1 = (k1−k2 )(k∗
1 +k2 )

(k∗
1 −k∗

2 )(k1+k∗
2 ) , ψ−

4 =
1
2 log |k1−k2|4|k2+l∗1 |2|α(1)

1 |2(l1+l∗1 )2

|α(2)
1 |2|k1+k∗

2 |4|k2−l1|2(k1+k∗
1 )2 , ψ−

3 = 1
2 log |k1−k2|4|k1−l1|2|k2−l1|2|α(2)

1 |2|α(1)
1 |2

|k1+k∗
2 |4|k1+l∗1 |2|k2+l∗1 |2(k1+k∗

1 )2(l1+l∗1 )2 , eiθ1−
2 = (k2−l1 )

1
2 (k∗

2 +l1 )
1
2

(k∗
2 −l∗1 )

1
2 (k2+l∗1 )

1
2

, A1−
1 = [α(1)

1 /α
(1)∗
1 ]1/2,

and A1−
2 = i[α(2)

1 /α
(2)∗
1 ]1/2.

Soliton 2: (η2R, ξ2R � 0, η1R → −∞, ξ1R → +∞)

q1 � 2k2RA2−
1 ei(η2I +θ2−

1 ) cosh(ξ2R + χ−
1 )[

(k∗
2 −l∗2 )

1
2

(k∗
2 +l2 )

1
2

cosh(η2R + ξ2R + χ−
3 ) + (k2+l∗2 )

1
2

(k2−l2 )
1
2

cosh(η2R − ξ2R + χ−
4 )

] , (B2a)

q2 � 2l2RA2−
2 ei(ξ2I +θ2−

2 ) cosh(η2R + χ−
2 )[

(k∗
2 −l∗2 )

1
2

(k2+l∗2 )
1
2

cosh(η2R + ξ2R + χ−
3 ) + (k∗

2 +l2 )
1
2

(k2−l2 )
1
2

cosh(η2R − ξ2R + χ−
4 )

] . (B2b)

In the above,

χ−
1 = 1

2
log

|l1 − l2|4(k2 − l2)
∣∣α(2)

2

∣∣2

|l1 + l∗
2 |4(k2 + l∗

2 )(l2 + l∗
2 )2

, χ−
2 = 1

2
log

|k2 − l1|2(l2 − k2)(l2 + l∗
1 )2

∣∣α(1)
2

∣∣2

|k2 + l∗
1 |2(k∗

2 + l2)(k2 + k∗
1 )2(k2 + k∗

2 )2
,

eiθ2−
1 = (k2 − l1)

1
2 (k∗

2 + l1)
1
2

(k∗
2 − l∗

1 )
1
2 (k2 + l∗

1 )
1
2

, eiθ2−
2 = (l1 − l2)(l1 + l∗

2 )

(l∗
1 − l∗

2 )(l∗
1 + l2)

, A2−
1 = [

α
(1)
2

/
α

(1)∗
2

]1/2
,

χ−
3 = 1

2
log

|l1 − l2|4|k2 − l1|2|k2 − l2|2
∣∣α(1)

2

∣∣2∣∣α(2)
2

∣∣2

|l1 + l∗
2 |4|k2 + l∗

1 |2|k2 + l∗
2 |2(k2 + k∗

2 )2(l2 + l∗
2 )2

, A2−
2 = [

α
(2)
2

/
α

(2)∗
2

]1/2
,

χ−
4 = 1

2
log

|k2 − l1|2|l1 + l∗
2 |4∣∣α(1)

2

∣∣2
(l2 + l∗

2 )2

∣∣α(2)
2

∣∣2|k2 + l∗
1 |2|l1 − l2|4(k2 + k∗

2 )2
.

(b) After collision: z → +∞
Soliton 1: (η1R, ξ1R � 0, η2R → −∞, ξ2R → +∞)

q1 � 2k1RA1+
1 ei(η1I +θ1+

1 ) cosh(ξ1R + ψ+
1 )[

(k∗
1 −l∗1 )

1
2

(k∗
1 +l1 )

1
2

cosh(η1R + ξ1R + ψ+
3 ) + (k1+l∗1 )

1
2

(k1−l1 )
1
2

cosh(η1R − ξ1R + ψ+
4 )

] , (B3a)

q2 � 2l1RA2+
1 ei(ξ1I +θ1+

2 ) cosh(η1R + ψ+
2 )[

(k∗
1 −l∗1 )

1
2

(k1+l∗1 )
1
2

cosh(η1R + ξ1R + ψ+
3 ) + (k∗

1 +l1 )
1
2

(k1−l1 )
1
2

cosh(η1R − ξ1R + ψ+
4 )

] . (B3b)

Here

ψ+
1 = 1

2
log

|l1 − l2|4(k1 − l1)
∣∣α(2)

1

∣∣2

|l1 + l∗
2 |4(k1 + l∗

1 )(l1 + l∗
1 )2

, ψ+
2 = 1

2
log

|k1 − l2|2(l1 − k1)
∣∣α(1)

1

∣∣2

|k1 + l∗
2 |2(k∗

1 + l1)(k1 + k∗
1 )2

,

eiθ1+
1 = (k1 − l2)

1
2 (k∗

1 + l2)
1
2

(k∗
1 − l∗

2 )
1
2 (k1 + l∗

2 )
1
2

, eiθ1+
2 = (l1 − l2)(l∗

1 + l2)

(l∗
1 − l∗

2 )(l1 + l∗
2 )

, A1+
1 = [

α
(1)
1

/
α

(1)∗
1

]1/2
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ψ+
3 = 1

2
log

|k1 − l1|2|k1 − l2|2|l1 − l2|4
∣∣α(1)

1

∣∣2∣∣α(2)
1

∣∣2

|k1 + l∗
1 |2|k1 + l∗

2 |2|l1 + l∗
2 |4(k1 + k∗

1 )2(l1 + l∗
1 )2

, A1+
2 = [

α
(2)
1

/
α

(2)∗
1

]1/2

ψ+
4 = 1

2
log

|k1 − l2|2|l1 + l∗
2 |4∣∣α(1)

1

∣∣2
(l1 + l∗

1 )2

∣∣α(2)
1

∣∣2|k1 + l∗
2 |2|l1 − l2|4(k1 + k∗

1 )2
.

Soliton 2: (η2R, ξ2R � 0, η1R → +∞, ξ1R → −∞)

q1 � 2A1+
2 k2Rei(η2I +θ2+

1 ) cosh(ξ2R + χ+
1 )[

(k∗
2 −l∗2 )

1
2

(k∗
2 +l2 )

1
2

cosh(η2R + ξ2R + χ+
3 ) + (k2+l∗2 )

1
2

(k2−l2 )
1
2

cosh(η2R − ξ2R + χ+
4 )

] , (B4a)

q2 � 2A2+
2 l2Rei(ξ2I +θ2+

2 ) cosh(η2R + χ+
2 )[

i(k∗
2 −l∗2 )

1
2

(k2+l∗2 )
1
2

cosh(η2R + ξ2R + χ+
3 ) + (k∗

2 +l2 )
1
2

(l2−k2 )
1
2

cosh(η2R − ξ2R + χ+
4 )

] , (B4b)

where χ+
1 = 1

2 log (k2−l2 )|k1−l2|2|α(2)
2 |2

(k2+l∗2 )|k1+l∗2 |2(l2+l∗2 )2 , χ+
2 = 1

2 log α
(2)
1 |k1−k2|4(k1−l1 )(k2−l1 )(k∗

1 +l2 )|α(1)
2 |2

α
(2)
2 |k1+k∗

2 |4(k∗
1 +l1 )(k∗

2 +l1 )(l2−k1 )(k2+k∗
2 )2 , eiθ2+

1 = (k1−k2 )(k1+k∗
2 )

(k∗
1 −k∗

2 )(k∗
1 +k2 ) , eiθ2+

2 =
(k1−l2 )

1
2 (k1+l∗2 )

1
2

(k∗
1 −l∗2 )

1
2 (k∗

1 +l2 )
1
2

, χ+
3 = 1

2 log |k1−k2|4|k1−l2|2|k2−l2|2|α(1)
2 |2|α(2)

2 |2
|k1+k∗

2 |4|k1+l∗2 |2|k2+l∗2 |2(k2+k∗
2 )2(l2+l∗2 )2 , A2+

1 = [α(1)
2 /α

(1)∗
2 ]1/2, χ+

4 = 1
2 log |k1−k2|4|k1+l∗2 |2|α(1)

2 |2(l2+l∗2 )2

|α(2)
2 |2|k1+k∗

2 |4|k1−l2|2(k2+k∗
2 )2 , and

A2+
2 = i[α(2)

2 /α
(2)∗
2 ]1/2.

From the above analysis, we find that the structures of individual solitons are invariant before and after collisions except for
the terms corresponding to the various phases ψ−

j , χ−
j , ψ+

j , χ+
j , j = 1, 2, 3, 4. For instance, from Eqs. (B1a) and (B3a), the

phase terms ψ−
j , j = 1, 2, 3, 4 corresponding to the first soliton in the q1 mode change into ψ+

j , j = 1, 2, 3, 4, respectively.
Similar phase changes take place in the second component of the first soliton and in the structure of the second soliton as well.
Consequently, the phase changes leads to the occurrence of shape-changing collision in the unequal velocity case. Therefore, in
general, the shape-preserving collision does not occur in the unequal velocity case. However, it can arise when the phase terms
obey the following conditions:

ψ−
j = ψ+

j , χ−
j = χ+

j , j = 1, 2, 3, 4. (B5)

Using the complicated shape-changing collision property of nondegenerate solitons we could not identify a linear fractional
transformation (as in the case of the degenerate case) in order to construct optical logic gates.

APPENDIX C: CONSTANTS WHICH APPEAR IN THE ASYMPTOTIC EXPRESSIONS IN SEC. V

The various constants which arise in the asymptotic analysis of collision between degenerate and nondegenerate solitons in
Sec. V are as follows:

e�1 = iα(1)
1 (k1 − k2)

1
2 (k1 − l2)

1
2 (k∗

1 + k2)
1
2 (k1 + k∗

1 )(k2 + l∗
2 )

1
2 |k1 + l∗

2 |2
α

(1)
2 (k∗

1 − l∗
2 )

1
2 (k∗

2 − l∗
2 )

1
2

eR∗
5+ R3−R6

2 ,

e�2 = (k1 − k2)
1
2 (k∗

2 + l2)
1
2 (k1 + k∗

2 )�̂1�̂2

(k∗
1 − k∗

2 )
1
2 (k∗

2 − l∗
2 )

1
2 (k∗

1 + k2)
, e�3 = |α(1)

1 ||α(2)
1 |(k1 + k∗

1 )(k2 + k∗
2 )(l2 + l∗

2 )

|k2 − l2| ,

e�4 = [∣∣α(1)
1

∣∣2 + ∣∣α(2)
1

∣∣2]1/2[∣∣α(1)
1

∣∣2|k1 − k2|2|k1 + l∗
2 |2 + |α(2)

1 |2|k1 − l2|2|k1 + k∗
2 |2]1/2

,

e�5 = |k2 + l∗
2 |

|k2 − l2|
[∣∣α(1)

1

∣∣2|k1 + l∗
2 |2 + ∣∣α(2)

1

∣∣2|k1 − l2|2
)1/2(∣∣α(1)

1

∣∣2|k1 − k2|2 + ∣∣α(2)
1

∣∣2|k1 + k∗
2 |2]1/2

,

e�6 = (k1 − l2)
1
2 (k2 + l∗

2 )
1
2 (k1 + l∗

2 )�̂3�̂4

(k∗
1 − l∗

2 )
1
2 (k∗

2 − l∗
2 )

1
2 (k∗
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APPENDIX D: NUMERICAL STABILITY ANALYSIS
CORRESPONDING TO FIGS. 5(a) AND 5(b) UNDER

PERTURBATION

In this Appendix, we wish to point out the stability nature
of the obtained nondegenerate soliton solutions numerically
using Crank-Nicolson procedure [64] even under the addition
of suitable white noise or Gaussian noise to the initial condi-
tions. Specifically, we consider the shape-preserving collision
of symmetric double-hump solitons discussed in Fig. 5. For
this purpose, we have considered the Manakov system (1)
with the initial conditions,

q j (−10, t ) = [1 + Aζ (t )]qj,−10(t ), j = 1, 2. (D1)

In the above, qj,−10’s, j = 1, 2, are the initial profile obtained
from the nondegenerate two-soliton solution Eqs. (13a)–
(13c) at z = −10. Here A is the amplitude of the white
noise and ζ (t ) represents the noise or fluctuation function.
The white noise was created by generating random num-
bers in the interval [−1, 1]. To fix the initial profile in the
numerical algorithm, we consider the same complex param-
eter values which are given for the Figs. 5(a) and 5(b) in
Sec. IV. We also consider the space and time step sizes,
respectively, as dz = 0.1 and dt = 0.001 in the numerical
algorithm. To study the collision scenario of double-hump
solitons [Figs. 17(a) and 17(b)] under perturbation we fix
the domain ranges for t and z as [−45, 45] and [−10, 10],
respectively.

First, we consider 10% (A = 0.1) of random perturbation
on the intial solution of the Manakov system. For this strength
of perturbation, we observe no significant change in the profile
as well as in the dynamics of the nondegenerate solitons apart

from a slight change, which is insignificant, in the amplitudes
of double-hump solitons after the collision. This is illustrated
in Figs. 17(c) and 17(d). Then we study the stability with
20% white noise (A = 0.2), which is a stronger perturbation,
for the double-hump solitons. Such a study is demonstrated

FIG. 17. Numerical plots of shape-preserving collision of nonde-
generate symmetric double-hump solitons with 10% and 20% white
noise as perturbations. Panels (a) and (b) denote the elastic collision
of two symmetric double-hump solitons without perturbation. Pan-
els (c) and (d) denote the collision with 10% white noise. Panels
(e) and (f) represent the collision with 20% strong white noise as
perturbation.
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in Figs. 17(e) and 17(f). The numerical analysis shows that
the double-hump soliton profiles still survive after the colli-
sion under as strong as 20% perturbation apart from a slight
distortion in the amplitudes. This ensures the stability of non-

degenerate solitons against perturbations of the above type of
noise.

Similarly, we have also verified the stability of nondegen-
erate solitons with Gaussian noise perturbation as well.
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