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Modulation instability in nonlinear metamaterials modeled by a cubic-quintic complex
Ginzburg-Landau equation beyond the slowly varying envelope approximation
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Considering the theory of electromagnetic waves from the Maxwell’s equations, we introduce a (3+1)-
dimensionsal cubic-quintic complex Ginzburg-Landau equation describing the dynamics of dissipative light
bullets in nonlinear metamaterials. The model equation, which is derived beyond the slowly varying envelope
approximation, includes the effects of diffraction, dispersion, loss, gain, cubic, and quintic nonlinearities, as
well as cubic and quintic self-steepening effects. The modulational instability of the plane waves is studied both
theoretically, using the linear stability analysis, and numerically, using direct simulations of the Fourier space
of the proposed nonlinear wave equation, based on the Drude model. The linear theory predicts instability for
any amplitude of the primary wave. Also, in the linear stability analysis, self-steepening effects of different
orders are confronted and one discusses their effects on the behavior of the gain spectrum under both normal
and anomalous group-velocity dispersion regimes. Analytical results are equally confronted to direct numerical
simulations and fully agree with the predictions from the gain spectra. Modulational instability is manifested by
clusters of solitons and multihump and dromion-like structures, whose emergence and features depend not only
on system parameters, such as the cubic and quintic self-steepening coefficients, but also on the propagation
distance under a suitable balance between nonlinear and dispersive effects.
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I. INTRODUCTION

The dynamics of pulses propagating in nonlinear meta-
materials (MMs) has been a major area of research given
its potential application in optical communication systems
[1–6]. Metamaterials, which are an arrangement of artifi-
cial structural elements, designed to achieve advantageous
and/or unusual (electromagnetic) properties, are often asso-
ciated with negative refraction, and sometimes they can be
called negative index materials (NIM) or left-handed mate-
rials, with simultaneous negative effective permittivity and
negative effective permeability [7–12]. The application pos-
sibilities of metamaterials are found in industrial sectors like
information and communication technologies, space, secu-
rity, and defense, but also applications in health, energy, and
environmental areas are foreseen. Examples of devices that
have been realized during the past few years are sensors,
superlensing, cloaking, and light emitting diodes or cavities
for low-threshold lasers and these were based on controlling
the wave propagation and used dynamic, reconfigurable, and
tunable materials.
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It is known that the self-modulation of waves propagating
in nonlinear magnetic metamaterials is governed by the non-
linear Schrödinger (NLS) equation [13]. This self-modulation
of the carrier wave leads to a spontaneous energy localization
via the generation of localized envelope structures (envelope
solitons). The NLS equation has exact soliton solutions that
correspond to a balance between nonlinearity and dispersion
in the case of temporal solitons or between nonlinearity and
diffraction in the case of spatial solitons. Inverse scattering
theory has been applied with great success to the NLS equa-
tion, and solutions are dark and bright solitons, with tanh
and sech profiles, respectively. Some interesting results, in-
cluding the stability conditions of electromagnetic wave and
physical conditions leading to rogue wave trains generation,
such as Akhmediev-Peregrine waves and Akhmediev wave
trains and Kuznetsov-Ma waves, when the quintic nonlinear-
ity comes into play for negative index regime and amplified
for absorption regime at a specific frequency range, have been
obtained [14–16]. At the same time, Lazarides and Tsironis
[17] have shown that for specific parameter choices, corre-
sponding to either an isotropic, homogeneous left-handed or
a right-handed medium, Maxwell’s equations with nonlinear
constitutive relations lead naturally to a system of coupled
NLS equations for the envelopes of the propagating electric
and magnetic fields, with dark and bright soliton solutions,
respectively. Another class of equations of particular inter-
est is the cubic complex Ginzburg-Landau (CGL) equation
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and its variants [18]. Such equations adequately model the
dissipative solitons generation and propagation in systems in-
cluding nanophotonics, nanoplasmonics, plasmas, and fluids,
as well as superconductivity, superfluidity, elementary par-
ticles, electrical transmission line, doped optical fiber, and
biological systems, respectively [18]. In particular, a (3+1)D
cubic-quintic CGL equation modeling dissipative spatiotem-
poral solitons in negative-refractive-index materials, as well
as positive-refractive-index materials, has been derived [19].

To enlarge the information capacity, it is necessary to
transmit ultrashort optical solitons at high bit rate in the pi-
cosecond and femtosecond regimes, and several new effects
greatly influence their propagation properties. For example,
in the picosecond regimes, the pulse propagation in non-
linear optical communication systems are usually of Kerr
type, and the dynamics of light pulses, whose description is
based on the slowly varying envelope approximation (SVEA)
or quasimonochromatic approximation leads to the NLS or
CGL equation with cubic nonlinear terms. The validity of
the NLS and CGL equations as reliable models is dependent
on the assumption that the spatial width of the soliton is
much larger than the carrier wavelength, which is equiva-
lent to the condition that the width of the soliton frequency
spectrum is much less than the carrier frequency. In other
words, the NLS and CGL equations describe the evolution
of an envelope function which is assumed to vary slowly
over an optical cycle. In the femtosecond regimes, the ma-
terials used in optical systems are of non-Kerr type. This
has been made more visible, thanks to recent developments
in ultrashort pulse generation techniques that resulted in the
production of sub-10-fs optical pulses [20–25]. It has been
shown that the SVEA breaks down for these ultrashort op-
tical pulses or even for initial pulses that are many optical
cycles long [26–30]. Indeed, Rothenberg [26] has shown that
the three-dimensional NLS equation derived in the SVEA is
not adequate for describing the self-focusing of femtosecond
pulses in dispersive media and that the breakdown of this
approximation occurs for pulses much longer than an optical
cycle. Furthermore, Oughstun and Xiao [27] have considered
an input pulse envelope propagating in the positive z direction
through a linear dielectric whose frequency dispersion is de-
scribed by the double resonance Lorentz model with complex
index of refraction. The dynamical field evolution shows that
at three, five, and seven absorption depths into the dispersive
medium, the SVEA remains accurate in its description of the
main body of the pulse that is oscillating at (or very near to)
the input carrier frequency. However, at 10 absorption depths
into the dispersive medium, the accuracy of the SVEA is seen
to have completely broken down.

A theoretical model based on a general three-dimensional
wave equation, that includes the effects of space-time fo-
cusing and self-steepening in a self-consistent fashion, was
derived by Brabec and Krausz [31], which received the name
“slowly evolving wave approximation” (SEWA) by the previ-
ous authors, that extends the NLS equation for an accurate
description of the evolution of the wave packet envelope
down to pulse durations as short as one carrier oscillation
cycle. Porras [32] has found ultrashort pulsed Gaussian beam
solutions of the three-dimensional envelope equation in dis-
persive media beyond the SVEA that represents few-cycle

pulsed light beams propagating under the joint effects ma-
terial gain (losses), phase and gain dispersion, diffraction,
with the proper inclusion of space-time focusing. Based on
what they called the generalized few-cycle envelope approx-
imation, Kinsler and New [33] presented a comprehensive
framework for treating the nonlinear interaction of few-cycle
pulses using an envelope description that goes beyond the
traditional SVEA. Then, they applied it to both optical nonde-
generate parametric amplification and the optical parametric
oscillator, where no approximations are made until the final
stage when a particular problem is considered. At the same
time, Ranka and Gaeta [34] showed theoretically that for
ultrashort pulses that were initially much longer than a single
optical cycle, the pulse-splitting dynamics could exhibit a
significant deviation from the results predicted by the NLS
equation. These predictions were found to be in excellent
agreement with experiments that they performed in bulk fused
silica. In the same context, by using the SEWA, it has been
shown, based on an extended NLS equation, coupled with the
density of electrons produced mainly by multiphoton band-to-
band transitions, that intense ultrashort infrared laser pulses
propagating through the fused silica over several Rayleigh
lengths self-organize in narrow filaments with high peak in-
tensity, and which persist over exceptionally long distances
due to a quasidynamic equilibrium between multiphoton ion-
ization and self-focusing [35]. Akozbek et al. [36] presented
numerical results on the propagation of femtosecond pulses
in air including multiphoton ionization, group velocity disper-
sion, space-time focusing, self-steepening, Raman response,
and higher-order quintic defocusing term. They showed that
a close connection exists between the self-steepening of
the pulse and white-light generation in air and white-light
generation in solids. Gaeta [37] also reported a theoretical
investigation of the nonlinear propagation of femtosecond
pulses tuned near the zero-dispersion point of a fiber waveg-
uide in which a white-light continuum was generated in a
microstructured fiber. In addition, using the Maxwell equa-
tions, a basic equation modeling the propagation of ultrashort
optical solitons in optical fiber, named the higher-order (3 + 1)
D cubic-quintic-septic CGL equation was derived by Djoko
and Kofané [38], explaining the spatiotemporal dynamics
of bell-shaped dissipative light bullets; double, triple, and
quadruple bullet complexes [38]; stable stationary and pulsat-
ing solutions, 3D stable vortex [39]; double, quadruple, 6-fold,
8-fold, and 10-fold bullet complexes [40], including also
self-trapped, necklace-ring, ring-vortex solitons, uniform-ring
beams, and spherical and rhombic distributions of light bul-
lets; and fundamental and cluster solitons [41].

Various potential applications of MM have been proposed
and studied [42–47]. First, for propagation of ultrashort pulses
in MMs with a nonlinear electric polarization, it has been
demonstrated that the linear dispersive magnetic permeability
is incorporated into the nonlinear polarization, resulting in a
controllable self-steepening (SS) effect and a series higher-
order dispersive nonlinear term in the propagation models
[42,43]. So, various generalized NLS equations, suitable for
few-cycle pulse propagation in the MMs without [44,45], and
with delayed Raman response, were reported [46]. Solitary
wave solution of the generalized NLS equation for dispersive
permittivity and permeability using a scaling transformation
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and coupled amplitude-phase formulation was presented by
Sarma [47]. Second, one of the key issues of solitary wave
theory is the universal modulation instability (MI) phenomena
which is one of the most fundamental processes in nonlin-
ear wave systems in nature. MI, which is an indispensable
mechanism for understanding pattern formation in a uniform
medium, is a process in which the amplitude and phase
modulations of a wave grow under the combined effects
of nonlinearity and diffraction or dispersion in a spatially
nonlinear field. It refers to the exponential growth of weak
perturbations through the amplification of sideband frequen-
cies. Hence, the MI provides a natural means of generating
ultrashort pulses at ultrahigh repetition rates and is thus po-
tentially useful for the development of high-speed optical
communication systems. In optics, MI has constituted a wide
field of intense theoretical and experimental research includ-
ing ultrafast pulse generation [48], supercontinuum generation
[49,50], four-wave mixing [50,51], Bragg gratings [52], para-
metric oscillators [53,54], optical fiber [55–59], and so on.
The phenomenon of MI has received a lot of attention in the
context of MM, specifically in the NIM [60–63]. Since then,
MI has been extended intensively for few-cycle optical pulses
with pulse duration as short as one carrier oscillation cycle
[64–75].

The main objective of the present work is that, motivated
by both features, that is, few-cycle regimes and MI, we fo-

cus on the issue of how MI, which is closely related to
the existence of optical solitons, may play a key role in the
generation of few-cycle pulses and their propagation through
MMs. In our contribution, we start with the Maxwell’s equa-
tions describing the response of the nonlinear medium to an
electromagnetic wave. Then we report on the derivation of
the (3+1)D cubic-quintic CGL equation, beyond the SVEA,
which is further used to discuss theoretically and numeri-
cally MI of few-cycle pulses on this equation. We examine
plane wave stability by means of both a rigorous analysis of
linearized equations for small perturbations and using direct
numerical simulations to support our analytical predictions.

The rest of the paper is organized as follows. In Sec. II, we
derive a (3+1)D cubic-quintic CGL equation describing the
dynamics of dissipative light bullets in nonlinear metamateri-
als beyond the SVEA, under the joint effects of diffraction,
dispersion, loss, gain, cubic and quintic nonlinearities, and
cubic and quintic self-steepening terms. In Sec. III, the linear
stability analysis of the MI is addressed, and instability zones
as well as the analytic expressions of the gain of MI are
obtained. Numerical simulations, based on analytical findings,
are carried out on the (3+1)D cubic-quintic CGL equa-
tion using the split-step Fourier method. Particular attention
is paid to the joint effects of the cubic and quintic self-
steepening parameters. Some concluding remarks are given
in Sec. IV.

II. THEORETICAL MODEL: THE (3+1)-DIMENSIONAL CUBIC-QUINTIC CGL EQUATION

We analyze the nonlinear propagation of ultrashort electromagnetic pulses in uniform, bulk MMs, in which there are no free
charges, and no fee currents flow, in the framework of the Maxwell’s equations, written in differential form as

∇ × E = −∂B
∂t

, ∇ × H = ∂D
∂t

, ∇ · D = 0, and ∇ · B = 0, (1)

where the quantities E and H are the electric and magnetic field vectors, respectively. The quantities D and B are the electric
and magnetic flux densities, respectively. The induced polarization P and magnetization M may be made explicit in Maxwell’s
equations via the constitutive relations

D = ε0εE + Pnl, and B = μ0μH + Mnl, (2)

were ε0 and μ0 are the permittivity and permeability of vaccum, respectively. ε and μ are dispersive complex permittivity
and permeability of a dissipative medium. Pnl is a nonlinear polarization, and Mnl is a nonlinear magnetization. E, D, B, and
H are slowly varying functions in space and time. The quasimonochromatic representation is used for the functions, namely
A(r, t ) = A exp (ikr − iωt ), where ω is the carrier frequency and k is a complex vector. The first derivatives of Eqs. (2) with
respect to time t are

∂D
∂t

= ε0(−iωεE − iωεnlE)e−iωt and
∂B
∂t

= μ0(−iωμH − iωμnlH)e−iωt . (3)

We expand the dielectric permittivity ε(ω) and magnetic permeability μ(ω) in Taylor series around the central frequency ω0 as
follows:

ωε(ω) = �∞
n=0

[
αn

n!
(ω − ω0)n

]
, ωμ(ω) = �∞

m=0

[
βm

m!
(ω − ω0)m

]
, (4)

where αn = ∂n[ωε(ω)]
∂ωn

∣∣
ω=ω0

and βm = ∂m[ωμ(ω)]
∂ωm

∣∣
ω=ω0

. Substituting Eqs. (4) into Eqs. (3) yields

∂D
∂t

≈ ε0

[
−iω0εE + α1

∂E
∂t

+ i
α2

2

∂2E
∂t2

+ ∂ (εnlE)

∂t
− iω0εnlE

]
e−iωt ,

∂B
∂t

≈ μ0

[
−iω0μH + β1

∂H
∂t

+ i
β2

2

∂2H
∂t2

+ ∂ (μnlH)

∂t
− iω0μnlH

]
e−iωt . (5)
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Furthermore, we take the curl of Eqs. (1) and neglect vectorial terms such as ∇(∇.E ) = 0, using new variables ξ = z

and τ = t − 1
vg

z, where vg is a real group velocity defined by vg = [
∂ (nω)
∂ω

]−1
and n is a negative-refractive index given by

n = −√
Re[εμ] = kr

c
ω

, with kr being the negative wave vector’s real part. This leads to

2ik
∂E
∂ξ

+ 
E −
(

2

vg

)
∂2E
∂ξ∂τ

− W

c2

∂2E
∂τ 2

+ i
ω2

0

c2
Im[εμ]E + ω2

0

c2
μεnlE + i

ω0

c2
(μ + β1)

∂ (εnlE)

∂τ

− iμ0
∂ (μnlk × H)

∂τ
− μ0ω0μnlk × H = 0, (6a)

2ik
∂H
∂ξ

+ 
H −
(

2

vg

)
∂2H
∂ξ∂τ

− W

c2

∂2H
∂τ 2

+ i
ω2

0

c2
Im[εμ]H + ω2

0

c2
μnlεH + i

ω0

c2
(ε + α1)

∂ (μnlH)

∂τ

+ iε0
∂ (εnlk × E)

∂τ
+ ε0ω0k × E = 0, (6b)

where W = −c2v−2
g + 1

2ω0(μα2 + εβ2) + α1β1 is a complex function. To construct the ultrashort electromagnetic pulses in
MMs for Eqs. (6), we assume both the electric and magnetic fields to propagate along the z direction, with the linearly polarized
fields (−→

E−→
H

)
=

(
x̂E
ŷH

)
exp[i(β0z − ω0t )] + c.c., (7)

where ω0 is the central frequency of the electromagnetic pulse, β0 is the corresponding wave number, and c.c. denotes the
complex conjugate. The nonlinear response of MMs is characterized by two different contributions. The first one is an intensity-
dependent part of the effective dielectric permittivity of the MMs. The second contribution is the effective magnetic permeability
which depends on the macroscopic magnetic field. For simplicity, the expression for the effective nonlinear dielectric permittivity
is of the Kerr type. However, in order to prevent pulse collapse, the cubic nonlinearity (Kerr type) is usually saturated by a quintic
nonlinearity with opposite sign, leading to

εnl(|E |2) = [
ε(3)

r + iε(3)
i

]|E |2 − [
ε(5)

r + iε(5)
i

]|E |4, (8)

and

μnl(|H |2) = [
μ(3)

r + iμ(3)
i

]|H |2 − [
μ(5)

r + iμ(5)
i

]|H |4. (9)

We next substitute the expressions of εnl(|E |2) and μnl(|H |2), given by Eqs. (8) and (9) into Eqs. (6), to get

i
∂E

∂z
+ 1

2n�

⊥E + 1

2n�

∂2E

∂z2
−

(
c

n�vg

)
∂2E

∂z∂t
− W

2nω

∂2E

∂τ 2
+ i

�

2n
Im[εμ]E

+ �

2

{[
χ (3)

r + iχ (3)
i

]|E |2E − (
χ (5)

r + iχ (5)
i

)|E |4E

}
+ I

2

{[
χ (3)

r + iχ (3)
i

]∂ (|E |2E )

∂t
− (

χ (5)
r + iχ (5)

i

)∂ (|E |4E )

∂t

}
= 0, (10)

in which, for the purpose of simplification, the following normalized variables have been used [19]
(

c
ωp

)2

⊥ → 
⊥, ωpτ → t ,(ωp

c

)
ξ → z,

(
ω0
ωp

) → � , where ωp is the plasma frequency. The cubic and quintic susceptibilities are given by χ (3) = ε(3)Z +
μ(3)

Z (3) and χ (5) = ε(5)Z + μ(5)

Z (5) , where Z = (
μ

ε

) 1
2 = E

H , is the medium impedance. We further calculate the first-order non-SVEA

correction terms by using Eq. (10) to evaluate ∂2E
∂z2 and ∂2E

∂z∂t , and, neglecting higher-order terms, we have

∂2E

∂z2
≈ −C2|E |4E , and

∂2E

∂z∂t
≈ iC

(|E |2E )

∂t
− iQ

∂ (|E |4E )

∂t
, (11)

where C = �
2

[
χ (3)

r + iχ (3)
i

]
, Q = �

2

[
χ (5)

r + iχ (5)
i

]
. Substituting Eqs. (11) into Eq. (10) leads to

i
∂E

∂z
+ σ⊥
⊥E + σ

∂2E

∂t2
+ δE + N3|E |2E + N5|E |4E + SS3

∂ (|E |2E )

∂t
+ SS5

∂ (|E |4E )

∂t
= 0, (12)

with the renormalization
(√

|2n� |
|Re[W ]|

)
t → t , 
⊥

2|n|� → 
⊥,
(√

|χ (3)
r |�√
2

)
E → E , where the different coefficients are given in the

Appendix. Equation (12) is the (3+1)D cubic-quintic CGL equation which models the propagation of ultrashort dissipative
optical pulses in MMs, where σ⊥ = (σr⊥ + iσi⊥) is the transverse complex coefficient, σ = (σr + iσi ) is the complex group-
velocity dispersion (GVD). δ = (δr + iδi ) is related to the linear loss(δ < 0) or gain (δ > 0), while N3 = (N3r + iN3i ) and N5 =
(N5r + iN5i ) are the cubic and quintic nonlinear complex coefficient, respectively. The complex parameters SS3 = (SS3r + iSS3i )
and SS5 = (SS5r + iSS5i ) characterize the so-called cubic and quintic SS effects due to cubic and quintic nonlinear polarizations,
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respectively. The dielectric permittivity ε and magnetic permeability μ are dispersive in MMs and their frequency dispersion is
described by the lossy Drude model of free-electron collisions (νε and νμ) [76,77],

ε(ω) = 1 − ω2
p

ω2 + iωνε

, and μ(ω) = 1 − ω2
m

ω2 + iωνμ

, (13)

where ωm is the magnetic plasma frequency [78].

III. MODULATIONAL INSTABILITY IN THE
(3+1)-DIMENSIONAL CUBIC-QUINTIC

CGL EQUATION FOR MMS

Some prototype of nonlinear evolution equations has been
derived modeling driven nonlinear systems with dissipation
and dispersion. Examples are the cubic CGL equation, which
is an amplitude or envelope equation near a forward bifurca-
tion to traveling waves, and the cubic-quintic CGL equation,
which arises near the onset of a weakly inverted bifurcation
associated with traveling waves [79–85]. Investigations of
pattern formation problems can be understood quantitatively
in terms of the Kuramoto-Sivashinsky equation, which is a
nonlinear phase equation and describe the slowly varying
phase of a plane wave well above the bifurcation, where am-
plitude equations are no longer applicable. The prototype of a
nonlinear phase equation is the Kuramoto-Sivashinsky equa-
tion [86,87]. Sometimes, there is coupling between amplitude
and phase equations. Furthermore, the Swift and Hohenberg
equation [88] is an order parameter equation that contains
a phenomenological aspect and whose use in the field of
pattern formation is constructed such that it reduces to the
appropriate envelope equation near the onset of the insta-
bility. With Benjamin-Feir-Newell phase diagram analysis,
different states such as plane waves, phase turbulence, am-
plitude turbulence, bichaos, and spatiotemporal intermittency
have been identified numerically [89–91]. Several parameters
have been proposed that allows one to distinguish between
the phase and amplitude turbulences, namely the density of
defects, the phase and amplitude correlation lengths, and the
Kaplan-Yorke dimension [92–94]. Nonetheless, the phase or
amplitude turbulence is a scenario of some interest but is
not a subject of study in this paper. Moreover, an essential
extension of the theme has been done when those prototype
of nonlinear evolution equations have been also well analyzed
by many authors from different points of view (e.g., Painleve
property, inverse scattering transform, Hirota direct method,
and conservation laws), with special attention given to the
study of soliton solutions [95–103]. As is well known, weak
perturbations in the phase and/or the amplitude of a contin-
uous wave (CW) or quasi-CW propagating in a nonlinear
medium can grow exponentially into amplitude modulated
waves at distinct modulation frequencies under certain con-
ditions. This universal phenomenon, known as modulation
instability (MI), is considered to be the precursor of soliton
formation and is also closely related to the generation of rogue
waves [104,105].

A. Linear stability analysis and gain spectrum

Physical, engineering, and biological sciences are contin-
uously generating problems of either theoretical or practical
interest. The necessary investigations of these problems in-

volve models that, very often, are mathematically expressed
as ordinary differential equations (ODEs). In this respect,
solving ODEs constitutes an important research activity which
is ever attracting a great deal of attention. For instance, ap-
proximate solutions can be obtained analytically using various
perturbation techniques for nonlinear ODEs which contain a
small parameter. Problems with two or more scales of vari-
ation can be analyzed using the method of multiple scales
[106] or the method of averaging [107]. In general, the starting
point is the motivation in the choice of the ansatz. When a
small parameter is zero, ODE has a sine or cosine periodic
solution with the amplitude and phase constants. For small
values of the small parameter, we expect the same form of
the solution to be approximately valid, but now the amplitude
and phase are expected to be slowly varying functions of time.
The natural question is how the behavior of the amplitude and
phase of the wave has been approached in PDEs.

Usually, the study of the linear stability starts by consid-
ering a plane-wave solution, especially in the case of MI. In
this framework, we assume that Eq. (12) gets the exact CW
solution

E (z, x, y, t ) = Mei(k1x+l1y+kzz−ω1t ), (14)

where |M| is positive real number representing the amplitude
of the plane wave E (z, x, y, t ). k1, l1, and kz are real numbers
representing the wave vectors. ω1 is real number representing
the natural angular frequency of the plane wave. Making use
of the above into Eq. (12) and setting both imaginary and real
parts to zero, we obtain the dispersion relations

kz − σr⊥
(
k2

1 + l2
1

) − ω2
1σr + δr

+ M2(N3r + M2N5r ) + ω1M2(SS3i + M2SS5i ) = 0,

− σi⊥
(
k2

1 + l2
1

) − ω2
1σi + δi + M2(N3i + M2N5i )

− ω1M2(SS3r + M2SS5r ) = 0. (15)

The linear stability of the CW solution can be examined by
introducing a small perturbation in the amplitude or in the
phase or in both. Nevertheless, it has been shown in several
occasions that even when amplitude and phase perturbations
are simultaneously considered, the growth rate of instability
mainly depends on the amplitude of the plane wave but it is
independent of its wave vector and its frequency [108,109].
The latter relies on the fact that in the linearization process of
the perturbed wave around the unperturbed one, there is al-
ways a possibility of finding a linear relationship between the
phase and amplitude of the perturbation, which easily allows
to control the emergence of instability around an amplitude
threshold [108,109]. Zhao et al. [110], adopting the same pro-
cedure, confirmed that the emergence of nonlinear spin waves
in an atomic chain of spinor Bose-Einstein condensates under
MI mainly depends on the amplitude perturbation, even when
both the phase and amplitude are perturbed. This finds real
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applications in the field of gravitational waves, for example,
where the carrier frequency is extremely high so that the sub-
period power cannot be measured. In such conditions, the only
measurable quantity remains the slowly varying amplitude of
modulation [111]. Interestingly, phase and frequency modu-
lation can indubitably become detectable only if converted
into amplitude modulation [111]. Therefore, in the rest of this
work, we consider an amplitude perturbation so that solution
(14) becomes

E (z, x, y, t ) = [M + a(z, x, y, t )]ei(k1x+l1y+kzz−ω1t ), (16)

where the complex field a(x, y, z, t ) is small perturbations of
the carrier waves, i.e., |a(x, y, z, t )| � |M|. Next, we substi-
tute Eq. (16) into Eq. (12) and keep only the terms that are
linear in a(x, y, z, t ), which leads to the linearized equation of
the perturbed field

i
∂a

∂z
+ σ⊥

[

⊥a + 2i

(
k1K

∂a

∂x
+ l1L

∂a

∂y

)]

+ σ
∂2a

∂t2
− 2iω1σ

∂a

∂t
+ M2(N3 + 2M2N5)(a + a∗)

+ M2(2SS3 + 3M2SS5)
∂a

∂t
+ M2(SS3 + 2M2SS5)

∂a∗

∂t

− iω1M2(SS3 + 2M2SS5)(a + a∗) = 0. (17)

Here a∗(x, y, z, t ) is the complex conjugate of the perturbed
field, assumed to be of the form

a(z, x, y, t ) = a1ei(Kx+Ly+Kzz−�t ) + a∗
2e−i(Kx+Ly+Kzz−�∗t ), (18)

where K , L, and Kz are the perturbation wave numbers; �

is the frequency of the perturbation modulating the carrier
signal; and the parameters a1 and a∗

2 are constant complex
amplitudes. The substitution of Eq. (18) into Eq. (17) gives
a linear homogeneous system of equations in terms of a1 and
a2, (

Kz + a11 a12

a21 Kz + a22

)(
a1

a2

)
=

(
0
0

)
, (19)

where

a11 = σ⊥(K2 + L2 + 2k1K + 2l1L) + σ (�2 + 2�ω1)

− M2(N3 + 2M2N5) + iM2�(2SS3 + 3M2SS5)

+ iω1M2(SS3 + 2M2SS5),

a12 = −M2(N3 + 2M2N5) + iM2�(SS3 + 2M2SS5)

+ iω1M2(SS3 + 2M2SS5),

a21 = M2(N∗
3 + 2M2N∗

5 ) − iM2�(SS∗
3 + 2M2SS∗

5 )

+ iω1M2(SS∗
3 + 2M2SS∗

5 ),

a22 = −σ ∗
⊥(K2 + L2 − 2k1K − 2l1L) − σ ∗(�2 − 2�ω1)

+ M2(N∗
3 + 2M2N∗

5 ) − iM2�(2SS∗
3 + 3M2SS∗

5 )

+ iω1M2(SS∗
3 + 2M2SS∗

5 ). (20)

The condition for the existence of nontrivial solution for the
system (19) gives rise to a second-order polynomial equation
for the wave number Kz that represents the dispersion law for

the perturbation, i.e.,

K2
z + sKz + p = 0, (21)

in which s = a11 + a22 and p = a11a22 − a12a21. We study the
sign of the imaginary part of the roots of Eq. (21) and we
investigate the gain or loss spectrum or the MI regions. This
equation has two roots given by

K±
z = 1

2 (−s ±
√

s2 − 4p). (22)

The steady-state solution becomes unstable whenever the
wave numbers K±

z have a nonzero imaginary part, since
the perturbed amplitude grows exponentially along the NIM.
The quantities K±

z depend on the values of the parameters that
make the coefficients of the dispersion relation. Therefore,
MI in NIMs, the presence of the wave numbers K and L
of the perturbed mode, the wave number of the continuous
wave k1, cubic-quintic nonlinearities, and cubic and quintic
self-steepening effects can be controlled. The regions of in-
stability are called MI gain spectrums and are regions where
the gain G+ = 2Im(K+

z ) > 0, or G− = 2Im(K−
z ) > 0, occur,

where Im(K±
z ) represents the imaginary part of K±

z .
Figure 1 displays some bounded regions of MI, with finite

gains G− > 0, and their corresponding density plots, versus
the wave number K and k1 of the perturbation and CW,
respectively. The parameters used in the calculations are
as follows: � = 0.6, ω1 = 0.8, L = −K , l1 = 0.8, k1 = 0.8,
σ⊥ = −1 + i0.005, σi = 0.19, δ = −i0.081, SS3 = −1 −
i0.1, and SS5r = 1. In regions where G− > 0, the plane wave
will be expected to break up into nonlinear patterns and soli-
tonic objects. Otherwise, the plane wave will remain stable
under modulation. Such features of instability or stability are
importantly modified by the changes in system parameters
such as the cubic and quintic self-steepening coefficients. A
good illustration of such effects is given by Fig. 2, where
the MI gain G− is plotted against the perturbation wave
number K , with changing the cubic self-steepening coeffi-
cient SS3i. In general, the MI gain spectrum is illustrated
by two identical and symmetric lobes which get expanded
when SS3i decreases. This also affects the band gap which
also grows when SS3i decreases, while the MI gain decreases
under the same effect. To remind, Fig. 2 has been plotted
for SS5i = −0.44, a value which does not give full infor-
mation on how the MI gain can be affected by the quintic
self-steepening term. This is illustrated in Fig. 3, where G− is
plotted versus K and SS5i, both under anomalous and normal
GVD regimes, with SS3i = −0.1. As in Fig. 2, the Mi gain
is characterized by two symmetric and identical lobes and,
in general, G− is a decreasing function of SS5i. However, in
the anomalous regime [see Fig. 3(a)], the band gap reduces
with SS5i increasing and solitons are not likely to exist when
SS5i = 0. On the other side, the normal GVD regime supports
solitonic structures for SS5i = 0 and the MI band gap is not
considerable affected as in the anomalous GVD case. Indeed,
this is contrary to what was already reported by Wen et al.
[43]. In fact, they showed, using a (3+1)D NLS equation
for ultrashort pulse propagation, that there was bandwidth
amplification with increasing the cubic self-steepening param-
eter, in absence of the quintic nonlinear coefficient and the
quintic self-steepening term. Moreover, the proposed model,
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FIG. 1. Modulational instabilty gain associated with the solution G− as a function of the wave number of the perturbation mode K and
the wave number of the continuous wave k1. Panels in (aj) j=1,2,3,4 show bounded gains of MI, and the corresponding density plots in panels
(bj) j=1,2,3,4, for � = 0.6, ω1 = 0.8, L = −K , l1 = 0.8, k1 = 0.8, σr⊥ = −1, σi⊥ = 0.005, σi = 1.98, δr = 0, δi = −0.081, SS3r = −0.4, SS3i =
1.2, SS5r = 0.5, and SS5i = −0.9. [(a1) and (b1)] normal GVD regime of self-focusing negative-index MMs, σr⊥ = −1, σr = 1, N3r = 1,
N3i = −0.12, N5r = −1, and N5i = 0.075; [(a2) and (b2)] anomalous GVD regime of self-defocusing negative-index MMs, σr⊥ = −1, σr = 1,
N3r = −1, N3i = 0.12, N5r = 1, and N5i = −0.075; [(a3) and (b3)] normal GVD regime of self-defocusing negative-index MMs, σr⊥ = −1,
σr = 1, N3r = −1, N3i = 0.12, N5r = 1, and N5i = −0.075; [(a4) and (b4)] anomalous GVD regime of self-defocusing positive-index MMs,
σr⊥ = 1, σr = −1, N3r = −1, N3i = 0.12, N5r = 1, and N5i = −0.075.

which contains essentially complex coefficient, is a gener-
alized case, which, when σi = σi⊥ = δI = δr = N3i = N5r =
N5i = SS3r = SS5i = SS5r = 0, is recovered. Obviously, the

FIG. 2. Plots of MI gain associated with solution G−, versus
K , for different values of SS3i for � = 0.6, ω1 = 0.8, L = −K ,
l1 = 0.8, k1 = 0.8, σr⊥ = −1, σi⊥ = 0.005, σr = −1, σi = 0.19,
δi = −0.081, N3r = −1, N3i = 0.12, N5r = 1, N5i = −0.075, δr = 0,
SS3r = −1, SS5r = 1, and SS5i = −0.44.

balance between such new effects can modify the gain and be
responsible for the emergence of more suitable patterns under
long-time evolution.

B. Numerical experiment

The linear stability analysis, which is based on the lin-
earization around the unperturbed plane wave, is valid only
when the amplitude of the perturbation is small compared
to that of the carrier wave. More precisely, the linear ap-
proximation should not be valid at large timescales, since
the amplitude of an unstable sideband grows exponentially.
Therefore, the long-time evolution of the modulated plane
wave requires full numerical simulations of the generic equa-
tion. This is, in fact, a way of confronting the analytical
predictions and, in our context, pulse propagation in NIM is
carried out via the split-step Fourier method on Eq. (12). In
order to examine the accuracy of the performed digital exper-
iment, different space and time steps are tested. Two hundred
fifty-six space Fourier modes are used with the space period of
8, and in time the number of Fourier modes is also 256, with a
similar period of 8. This corresponds to a simulation window
of 8, both in space and time. Additionally, the numbers of
grid points in space and time are 350 and 350, respectively,
with the mesh size 
x = 
y = 0.005 and 
t = 0.005. The
split-step Fourier method is then applied considering y = 0,
with z constant, with the initial signal being of the form

E (x, t, 0) = M{1 + Asin[2π (�1x + �2t )]}e−i(ω1x+ω2t ), (23)
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FIG. 3. Regions of MI illustrating gain associated with solution G− against K , the wave number of perturbation, and the quintic self-
steepening imaginary coefficient SS5i, for � = 0.6, ω1 = 0.8, L = −K , l1 = 0.8, k1 = 0.8, σr⊥ = −1, σi⊥ = 0.005, σi = 0.19, δr = 0, δi =
−0.081, N3i = 0.12, N5r = 1, N5i = −0.075, SS3r = −1, SS3i = −0.1, and SS5r = 1. (a) Anomalous GVD regime of self-defocusing negative-
index MMs, σr = −1 and N3r = −1; (b) normal GVD regime of self-defocusing negative-index MMs, σr = 1 and N3r = −1.

where A is modulation amplitude and �1 and �2 are the
frequencies of weak sinusoidal modulations imposed on the
continuous waves in the x and t directions, respectively.

According to features of Figs. 1–3, the development of MI
depends on both the wave numbers K and self-steepening
parameter values, which implies that right values of such
parameters should be chosen to expect the appearance of
soliton-like objects. While we use the parameter values
A = 0.001, �1 = �2 = 0.5, ω1 = ω2 = 0.41, σr⊥ = −2.71,
σi⊥ = 0.5, σr = 2.57, σi = 0.5, δr = 0, δi = −0.0079, N3r =
−1, N3i = .12, N5r = 1, N5i = −0.65, SS3r = −0.2, and
SS5r = 0.42, calculations are initiated for SS3i = −0.6 and
SS5i = −0.5, which results in the MI behaviors summarized
in Fig. 4, where, at distance z = 5, one clearly sees the appear-
ance of a cluster of four fundamental solitons as the result of
the interplay between nonlinear and dispersive effects. This,
indeed, shows the accuracy of our analytical predictions and
confirms that MI is a direct mechanism for soliton formation
in nonlinear media. The most interesting aspect of the present
numerical experiment is that the emerging entities are found
to be moving as z increases, and their interaction leads to a
complex molecular soliton [see Figs. 4(e) and 4(f)], which
concentrates all the energies carries by individual solitons.
Also, this brings out another main effect of MI, which is the
creation of localized pulses and energy localization. In the
past decades, different kinds of solitons have been discussed
in the literature, along with their relationship with MI, in-
cluding Bragg solitons, vortex solitons, discrete solitons, and
cavity solitons [112], just to name a few. They are, however,
few, the contributions that discuss the appearance of cluster
solitons as the consequence of MI, a phenomenon that has,
for instance, been related to azimuthal MI by Petroski et al.
[113]. However, we should stress that intensive numerical
studies have pointed out the fact that the stability of such
structures is very sensitive to noise input [114], depending
on the number of solitons composing the cluster, the an-
gular quantum number of the azimuthal instability, and the
corresponding largest growth rate of MI. Nevertheless, noise
effects being not considered in the present paper, other aspects
can be regarded as done in Fig. 5, where we have decreased
the imaginary quintic self-steepening parameter to SS5i = −2.
As previously, the initial plane wave breaks into a four-wave

cluster of moving solitons which, as distance increases, merge
into a unique structure [see Fig. 5(c)], gets more localized
from distance z = 15 [see Fig. 5(d)]. Compared to the molec-
ular structure of Fig. 4(f), which contains some humps, the
unique molecular soliton of Fig. 5(d) displays some features
of dromions that are well known in the literature [115,116].
As a whole, the numerical results discussed above show the
strengths and weaknesses of our linear stability analysis of the
MI in the (3+1)D CGL equation. It gives a correct conclusion
about the analytical predictions, at least at the onset stage of
wave evolution for a short distance of propagation. Indeed,
for a sufficiently long distance and time, the linear stability
analysis fails and the modulation can lead the system to the
formation of localized patterns, spontaneously generated via
wave-mixing processes during propagation and interaction.
Indeed, such interactions, when they are inelastic, give rise
to the complex molecular entities obtained from the model
under study. From the physical point of view, the phenomenon
displayed by Figs. 4(f) and 5(d) may result from the fact that
the cubic and quintic self-steepening terms bring about addi-
tional nonlinear effects, which, because of the well-balanced
effects between self-defocusing nonlinearity and dispersion,
cause the rapid increase of pulse intensity, leading to max-
imum peaks. There are, however, two interesting behaviors
of such maximum peak intensities, depending on the quintic
self-steepening strength, that are pulse splitting in the tem-
poral domain and compression in the spatial domain, on the
one hand, and symmetric shrinking in both temporal and
spatial domains, with the highest intensity being located at
(x = 0, t = 0) in both cases. In some other contexts, such
behaviors may predict the emergence of spatial ring solitons
that were reported in MMs by Zhang et al. [114] using a
(3+1)D NLS equation, with simultaneous cubic electric and
magnetic nonlinearity, by means of the variational method.

IV. CONCLUSION

A generalized (3+1)-dimensional cubic-quintic Ginzburg-
Landau equation with self-steepening was investigated for the
existence of MI regions. Following the standard procedure of
linear stability analysis, the expression for the MI gain has
been proposed and the effect of some keys parameters, such
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FIG. 4. Panels (a)–(f) show the structure of the beam intensity for a cluster of four fundamental solitons for different values of the
longitudinal distance z and the corresponding density plots. (a) z = 7; (b) z = 8; (c) z = 10; (d) z = 11. The other parameter values are
A = 0.001, �1 = �2 = 0.5, ω1 = ω2 = 0.41, σr⊥ = −2.71, σi⊥ = 0.5, σr = 2.57, σi = 0.5, δr = 0, δr = −0.0079, N3r = −1, N3i = 0.12,
N5r = 1, N5i = −0.65, SS3r = −0.2, SS3i = −0.6, SS5r = 0.42, and SS5i = −0.5.
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FIG. 5. Panels (a)–(d) show the structure of the beam intensity for a cluster of four fundamental solitons for different values of the
longitudinal distance z and their corresponding density plots. (a) z = 7; (b) z = 11; (c) z = 13; (d) z = 15. The other parameter values used here
are A = 0.001, �1 = �2 = 0.5, ω1 = ω2 = 0.41, σr⊥ = −2.71, σi⊥ = 0.5, σr = 2.57, σi = 0.5, δr = 0, δr = −0.0079, N3r = −1, N3i = 0.12,
N5r = 1, N5i = −0.65, SS3r = −0.2, SS3i = −0.6, SS5r = 0.42, and SS5i = −2.

as the cubic and quintic self-steepening parameters, on the
occurrence of MI has been addressed, both under anomalous
and normal GVD regimes. The gain spectrum has revealed
itself to be very sensitive to both self-steepening effects,
which has been confirmed by direct numerical simulation, on
the CQCGL equation, using the split-step Fourier method.
Initially, the MI manifested itself by cluster of four fun-
damental pulses, which, with increasing distance, displayed
some features of inelastic collision, leading to a single com-
plex solitonic object. However, with decreasing the quintic
self-steepening parameter, the resulting solitonic complex has
been found to be more coherent, with a dromion-like shape.

Wen et al. [42] obtained a system of coupled equations
which is suitable for any form of nonlinear polarization
and magnetization. To make the propagation model applica-
ble and solvable, some approximations have been made. (i)
First, the SVEAs; (ii) the nonlinear polarization and nonlin-
ear magnetization in the MM are of a Kerr-type; (iii) the
frequency-dependent properties of the third-order electric and
magnetic susceptibilities have been neglected for simplicity;
(iv) the loss of medium has been neglected for simplicity;
and, (v) finally, Wen et al. [42] obtained a system of cou-
pled NLS equations, with mth-order linear and nonlinear
dispersion terms, space-time focusing diffraction terms, cubic
nonlinearity, cross-phase modulation, and the self-steepening
effects resulting from the SVEA, respectively.

For comparison with the few-cycle pulse propagation
model in a MM obtained by Wen et al. [42], we noticed the
following points. We keep the linear dispersion coefficients to
second order. We keep the first-order time derivative of the
third- and fifth-order nonlinearities. We have considered the
nonlinear polarization and nonlinear magnetization in the MM
of a Kerr-type and of a non-Kerr quintic-type. In fact, based
on the third-order Taylor expansion of the space-time focus-
ing operator, Wen et al. [42], the second- and higher-order

nonlinear dispersions resulting from the linear dispersive per-
mittivity and permeability can be neglected when we deal with
the nonlinear propagation of few-cycle or wider pulses. At
the meantime, the loss of medium has not been neglected.
Thus, when a set of equations for the envelopes of the electric
and magnetic fields is decoupled, the obtained propagation
equation for the envelope of electric field is the cubic-quintic
CGL equation. Generally speaking, this equation is essentially
the cubic-quintic NLS equation with nonlinear gain and loss
mechanisms, where both gain and loss are frequency and
intensity dependent. This extension implies that the single
balance between nonlinearity and dispersion is replaced by
a composite balance between several effects. For instance, the
balance between gain and loss, which should be exact in order
to produce stationary localized solutions, plays a dominant
role in the dynamics. For nonlinear propagation of ultrashort
electromagnetic pulses with MMs, Wen et al. [42] have incor-
porated the linear dispersive permittivity and permeability into
the nonlinear magnetization and polarization, resulting in the
controllability of the SVEA SS parameter which is due to the
variation of the ratio of phase velocity to group velocity with
the central frequency of the pulse. The model equation that we
have derived yields a corrected expression for the SVEA SS
parameter, which essentially improves the description of the
MI predicted by the improved growth rate spectrum for re-
alistic MMs. In consequence, the obtained results, especially
the emergence of clusters of localized pulses and their fusion
over long propagation distance, make it possible to infer that
a combination of competing cubic and quintic self-steepening
terms can give rise to more complex behaviors, especially
when there exists a suitable balance between such effects
and dispersion, diffraction, loss, gain and cubic and quintic
nonlinearities, some of the consequences being the formation
of light bullets that constitute a hot topic in nonlinear optics
nowadays.

042207-10



MODULATION INSTABILITY IN NONLINEAR … PHYSICAL REVIEW E 102, 042207 (2020)

ACKNOWLEDGMENTS

The work by C.B.T. is supported by the Botswana Interna-
tional University of Science and Technology under Grant No.
DVC/RDI/2/1/16I (25). C.B.T. thanks the Kavli Institute for
Theoretical Physics (KITP) and the University of California,
Santa Barbara. The authors declare that they have no conflict
of interest.

APPENDIX

The parameters of Eq. (12) are given by:
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