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Diffusion and escape times in the open-leaky standard map
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We study the connection between transport phenomenon and escape rate statistics in two-dimensional standard
map. For the purpose of having an open phase space, we let the momentum coordinate vary freely and restrict
only angle with periodic boundary condition. We also define a pair of artificial holes placed symmetrically along
the momentum axis where the particles might leave the system. As a consequence of the leaks the diffusion can
be analyzed making use of only the ensemble of survived particles. We present how the diffusion coefficient
depends on the size and position of the escape regions. Since the accelerator modes and, thus, the diffusion
are strongly related to the system’s control parameter, we also investigate effects of the perturbation strength.
Numerical simulations show that the short-time escape statistics do not follow the well-known exponential decay
especially for large values of perturbation parameters. The analysis of the escape direction also supports this
picture as a significant amount of particles skip the leaks and leave the system just after a longtime excursion in
the remote zones of the phase space.

DOI: 10.1103/PhysRevE.102.042202

I. INTRODUCTION

Fermi acceleration (FA) has been known since Fermi intro-
duced [1] the concept to describe the high-energy cosmic rays.
In brief, particles gaining kinetic energy in unlimited amount
caused by oscillating magnetic fields undergo different kind
of diffusion in phase space [2–7].

Since then numerous studies dealt with accelerator modes
(AM) identified as regular islands in simple conservative dy-
namical systems as the motive of anomalous transport [2,8–
15]. The paradigmatic example of these investigations is the
two-dimensional (2D) standard map (SM) [16] wherein one
or both state variables are unbounded. That is, the system is
open, thus regular and irregular motion can take place to in-
finity along that direction(s). In general case, normal diffusion
describes the spreading of (initially nearby) particles in the
phase space. Accelerator modes (usually quite tiny subsets of
phase space) can keep chaotic orbits around themselves for
shorter or longer times. As an impact these orbits seem to
be regular during the trapping time. This effect of the AMs
is called stickiness, one of the backbones of conservative
dynamics [9,17–19]. If stickiness is present, determining the
transport phenomenon might be problematic. Recently, global
and local diffusion have been studied in standard map with
and without AMs [13]. The authors report that the global
diffusion is normal when no accelerator modes show up in
the phase space and anomalous when they exist. However,
the local diffusion strongly depends on the initial conditions.
They also claim that the diffusion turns to be normal after a
finite but very long time even for initial conditions that come
from the extreme sticky regions.

One of the possible physical consequences of FA is that
the particle takes so much kinetic energy that it can leave
the system. One experimental realization of this action is to

set a maximum value of a coordinate above which particles
are considered to be outside the system. Livorati et al. [20]
applied this framework for the bouncing ball model in order
to scrutinize the normal-to-ballistic diffusion transition in one
dimension. Other mainstream implementation of the particle
escape is by defining artificial hole(s) in the phase space of an
originally closed system [21–23]. In this scheme as soon as a
particle reaches the area of the leak, it is forced to leave the
system and additional iterations will not be taken with that.
Both aspects have profound theoretical background in the lit-
erature and widespread application among many disciplines.

The motivation of present work is to understand the role of
vanishing particles in calculation of diffusion coefficient. To
integrate these two concepts we use the unbounded or open
SM in combination with finite-size leaks in the phase space.
We refer to this setup as open-leaky SM. Since the diffusion
is strongly related to the nonlinearity in SM, we focus on the
escape statistics in open-leaky system that is also connected
to the strength of the periodic perturbation.

The paper is organized as follows. In Sec. II, we present
the model and details of the simulations, also the parameter
choices. Section III is devoted to results about the transport
and escape dynamics. In last section, Sec. IV, we summarize
what we have learned about the behavior of the open-leaky
standard map.

II. MODEL AND SIMULATIONS

The model we investigate is the well-known 2D chaotic
standard map [16]. It is simple in a way that the phase space
is only two dimensional but complex because of reach dy-
namics that might appear. SM is a special case of the general
separatrix map [24], which is used to describe the nonlinear
pendulum. As its name suggests, this mapping is suitable for
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FIG. 1. Trajectories of 100 particles for 100 iteration steps in
open (left) and open-leaky (right) standard map with K = 28. Note
the asymmetry of the distribution in the right panel as a consequence
of disappearing particles.

characterizing the dynamics near the resonances in the phase
space. The separatrix map with a power-law phase increment
is the following:

xi+1 = xi + sin(yi )

yi+1 = yi + λ|xi+1|−γ ,
(1)

where the two coordinates are denoted by xi and yi at time
i, λ, and γ are the two parameters of the described system.
Different γ values lead to various systems:

(i) γ = 0.5 L̂ map: motion of a nonrelativistic particle in
the field of a wave packet;

(ii) γ = 1 Fermi map: for the Fermi acceleration mecha-
nism for cosmic rays;

(iii) γ = 1.5 Kepler map: chaotic dynamics of the comets
on highly eccentric orbits;

(iv) γ = −1 standard map: classical kicked rotator.
Let us concentrate on the more familiar form of the stan-

dard map

pn+1 = pn + K

2 π
sin(2 π �n),

�n+1 = �n + pn+1 (mod 1),
(2)

where p and � are the momentum and the angle coordinates,
K is the nonlinearity parameter, n refers to the number of
iterations. In present study, we only have (mod 1) restriction
of the angular coordinate, which implies that the map is open
along the p axis letting the momentum reaches arbitrary large
values.

Figure 1 demonstrates a representative phase portrait of the
open standard map with K = 28 and the open-leaky layout
with a pair of leaks (horizontal red lines) at p = [10, 10.5]

FIG. 2. Diffusion coefficients in the open system (yellow), in
the open-leaky system (black) the difference (�D, brown) between
them. Two holes are placed at p = [10, 10.5] and [−10.5, −10].

and [−10.5,−10]. Here, the simulation includes only 100
particles up to 100 iteration steps in order to avoid overcrowd-
ing the plot. Colors refer to positions of the same particle at
different time instant.

Accelerator modes, as special kind of initial conditions
belonging to regular islands, can appear in the system [25]
at certain K values. These orbits look like leap frogs in phase
space as they jump by integer values along the p axis as iter-
ation goes on. Nevertheless, the appearance of period-1 AMs
as a function of the nonlinearity parameter can be defined with
the inequality [16]

2π l � K �
√

(2π l )2 + 16, (3)

here l denotes a positive integer number, K is as the same as
in Eq. (2). One can also obtain that the width of the successive
�K intervals decreases by ∼9/K [13].

The diffusion coefficient is the expectation value of the
squared distance for an ensemble of trajectories. It is deter-
mined numerically by the equation1 [13]

D(K ) = 〈(p − p0)2〉
n

, (4)

where D is the diffusion coefficient for a given K value, p0

denotes the initial momenta, and 〈. . . 〉 refers to the average
over the ensemble of trajectories. For completeness we note
that n should be large enough in order to get a saturation in D.

The K dependence on the right-hand side of Eq. (4) is included
in the calculation of the momentum according to Eq. (2). To
demonstrate the facts above, we reproduce the classical spike
structure of the D(K ) curve [13,15] in Fig. 2 (yellow line).

1In case of general 2D normal diffusion both coordinates have to
be take into account. However, the difference in our simulations was
less than 10−3 %. Consequently we used Eq. (4) to determine the
coefficient.
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It is also known that accelerator mode islands help the
particles to take larger steps in one iteration. Therefore,
these particles can travel further in the phase space following
anomalous diffusion rather than normal for long timescale
[14,15,26–28]. Furthermore, orbits inside the AMs are ballis-
tically transported in both directions p → ±∞.

In physical systems when the total mechanical energy be-
comes positive, the equipotential surfaces open up, particles’
orbit becomes unbounded and they can escape a predefined
region. Similar phenomenon can be observed in open standard
map at critical value of KC ≈ 0.976 wherein the cylinderlike
phase space is extended to infinity. Beyond this value the last
KAM-torus destroys and trajectories originating from chaotic
sea can visit the entire phase space.

In order to be able to observe escape in open standard map
we have two choices. First, by defining a maximum value
of momentum pmax. In this case particles leave the system,
and do not contribute to the dynamics at all, if the condition
|p| > pmax is fulfilled. This setup can be thought of as an open
flow in the phase space with a bounded region (±pmax in our
case) where irregular motion appears before they quit this do-
main and complexity ceases. We recall that this phenomenon
has been extensively studied and can be described by chaotic
scattering [19,29,30].

Second, closed systems can be opened up artificially by
placing a hole in the phase space and letting the particles
leave the system through this hole, see the thorough review by
Ref. [21]. It can also be shown that the Poincaré recurrences
in closed chaotic systems corresponds to escape through a
leak provided the leak is positioned exactly to the recurrence
region [31].

Both cases above show paradigmatic escape statistics
of survived particles either through the predefined border
[18,32,33] of the system or through a leak [22,34–37]. That is,
escape of particles in fully hyperbolic dynamics and for short
times in weakly chaotic systems shows exponential decay.
While the number of surviving trajectories in weakly chaotic
systems for long timescales follows a power-law distribution.

In order to examine transport and escape in the extended
standard map we place two holes at predefined positions in
the phase space. In terms of the size, we utilize the pair of
leaks along the whole θ = [0, 1] interval with varying height
along p. We are basically interested in the diffusion along the
p direction.

In most of our simulations scrutinizing the diffusion co-
efficient we put 400 particles initially on a lattice at p =
[−0.5, 0.5] and � = [0, 1] intervals. The length of iteration
is 500.

III. RESULTS

A. Diffusion

Let us begin to explore the difference between the open
and the open-leaky system’s diffusion coefficient D. To do
this two holes are symmetrically defined in the interval of
p = [10, 10.5] and p = [−10.5,−10]. Figure 2 depicts D(K )
curves for 500 different values in the interval K = [5, 50].
As one can see, the diffusion coefficient can have very
large values. The spiky structure, discussed thoroughly in the

literature, is associated with accelerator modes in the phase
space. According to the value of K in Eq. (3) the particles
are pulled far away from their origin along the p direction. It
is worth mentioning that the shape of the D(K ) curve does
not depend on the length of the iteration. Taking 500 time
steps is sufficient to calculate D(K ). The only change that
appears with longer simulation is that the spikes are getting
higher because the accelerator modes take particles farther
and farther. We can notice the similarity of the D(K ) curves
for the open system (D), the open-leaky system (Dleaky), and
also the difference between them (�D = D − Dleaky). In case
of a leaky system, Dleaky consists of those particles only that
survived even the last iteration step of the simulation. Conse-
quently, negative values of �D mean that after 500 iterations
the particles still in the system are farther in the phase space
on average. In other words, trajectories fallen out thorough the
leak do not contribute to the diffusion coefficient, resulting in
a positive shift to the D(K ) curve. That is, we can point out
that the main difference arises from the fact that the size of
the ensemble is not constant during the simulation.

The question then naturally arises as to what does the �D
depend on.

(i) Initial conditions. The uniformly distributed initial con-
ditions as well as randomly chosen (�0, p0) pairs in the
domain � = [0; 1], p = [0; 1] lead to the same result.

(ii) Leak size. It turns out that the size largely contribute
to the difference quantitatively, however, in a trivial manner.
We checked �D with several different leak size in p direction,
from 0.1 to 1 and found that the larger the leak, the bigger the
difference �D. The reason behind this observation is simple:
if we have a more elongated domain of escape, more particles
run into it, thus, they enhance the contrast between the open
and open-leaky diffusion.

(iii) Leak position. Repeating the previous simulation with
leaks same in size (�p = 0.5) but at different positions along
the p axis: p = 20,−20, or 30,−30 we obtain �D(K ) in
Fig. 3. The brown curve coincides with �D in Fig. 2. The
upper two curves belong to leaks at p = ±20 and ±30, re-
spectively. The further the leaks to the initial conditions, the
smaller the difference between diffusion coefficients. The ex-
planation of this finding can be understood by examining the
relative position and the initial ensemble position.

We can also investigate the effect of leaks’ positions to the
diffusion coefficient from a different aspect. Figure 4 depicts
�D for a fixed K as a function of the leaks’ positions along
the p axis. The two curves stand for K = 31.55 and 35, the
former one belongs to an accelerator mode in the phase space.

The right tail of �D(K ) corresponds to distant leaks. Here
the difference of the two diffusion coefficients, D − Dleaky,

tends to zero because most of the particles experience normal
diffusion and could not reach the leaks during the integration
time. There are only a few of them stuck with AM islands.
If these trajectories enter the leaks, the almost periodic spikes
are appearing on top of the (blue) curve yielding a significant
difference in �D. On the other hand, for closer leaks, left
side in Fig. 4, we have negative values according to Fig. 3
as described above.

There is also a special leak position for every K being
in harmony with the expectation value of squared distance
〈(p − p0)2〉. That is, the intersection with horizontal axis, i.e.,

042202-3



L. LUGOSI AND T. KOVÁCS PHYSICAL REVIEW E 102, 042202 (2020)

FIG. 3. For fixed-position holes at p = [10, 10.5] and
[−10.5, −10], the D − Dleaky follows a decreasing trend (with
peaks where the diffusion is anomalous) increasing the nonlinearity
parameter. Also further placed leak does not effect on �D as much
as if we put it closer.

where �D = 0, describes the situation when the leaks engulf
the trajectories that provide the displacement from their origin
approximately equal to D in nonleaky system. Beyond this
point, the leaks capture the faster trajectories and, therefore,
the survivors produce smaller diffusion coefficient (Dleaky)
than D resulting in a positive deviation. The maximum of
�D(K ) can be thought as a barrier when escape takes place
at the wavefront of normal diffusion removing the fastest
particles from the dynamics leaving behind the largest gap
between leaky and nonleaky scenarios.

In Fig. 4, taking a deeper look at the trend of the curves
from right to left we can recognize the similarity with the
envelope of the curves in Fig. 3. If we consider a pair of leaks

FIG. 4. Dependence of �D on the leaks absolute position along
p. At K = 31.55, the accelerator modes in the phase space cause
larger fluctuations than in the K = 35 case.

FIG. 5. Survival probability for particles in a leaky system. Ver-
tical lines mark the presence of accelerator mode for that K . The
holes are at p = 30 and −30 with height 0.5. For small K values,
accelerator modes increase the chance of leaving and the survival
probability curve has local minima (black circles) there. However, at
large K , they keep particles in the system, therefore, the possibility
of staying in the system is higher (red circles).

at fixed position and increase K (keeping the integration time
also fixed), we observe the spreading of the particles along
p axis. The relative size of the interval between the leaks and
the spanned interval by the particles movement decreases with
larger K . For fixed K , the result in the phase space is the same
if we place the leaks closer to each other.

B. Survival probability, escape rate

Up to now, we learned about diffusion coefficient in open-
leaky and its relation to the open standard map. Basically,
the surviving particles govern the �D, therefore, it is worth
investigating the escape of particles through the predefined
leaks. At this point we turn our focus of interest to the number
of particles left in the system. More precisely, the ratio of
the particles still in the system and the initial population of
the ensemble as time goes by is measured numerically. To
do this, the leaks are specified symmetrically at p = 30 and
−30 with height 0.5. Figure 5 portrays the evidence that for
small K (<10) values low amount of the particles manage
to reach the leaks. Consequently, the survival probability is
high P � 0.5. As we increase the nonlinearity parameter they
can get to the leaks more likely since the stronger diffusion
drives them further. This is how the decreasing part of the
curve is explained. The minimum of the survival probability
at Kc stands for the case when most of the particles cover the
distance to the holes and eventually escape. The ascending
trend, then, is annotated by jumping over the leak due to
the stronger diffusion yielding extended loops in p, in one
iteration step. The role of the accelerator modes appears along
the vertical gray lines as local minima (black circles) and
maxima (red circles) in the decreasing and increasing parts,
respectively. As we know, accelerator modes help particles
travel further in the same amount of time. Thus, they assist the
particles to reach the leaks in the low K < Kc regime, while
helping them jump over the leak and end up far distance for
large values, K > Kc. This is why we observe local minima
(maxima) at accelerator modes before (after) a critical Kc

value of nonlinearity parameter.
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FIG. 6. Number of survived particles for different K values for
short times does not follow exponential distribution for open-leaky
standard map (solid lines) and true exponential for closed-leaky sys-
tem (dashed lines) limited to p = [−40, 40] via periodic boundary
conditions. Different slope of the dashed lines—the escape rate—
characterizes the quality of mixing. The larger the K , the shorter the
recurrence time to the leaks.

In order to talk about escape rate, we have to fix the param-
eters of the simulations. It is clear that we need more particles
to have reliable statistics, therefore, we choose to follow 106

trajectories. We also raise the length of the iteration to 107

in order to be able to analyze the tail of the distribution. The
leaks are now settled at p = [−10.5,−10] and [10,10.5].

Let us begin with a classical simulation. Initial con-
ditions are placed uniformly in a unit square (p0,�0) =
[−0.5; 0.5] × [0; 1]. The leaks cover the area mentioned
above. The number of nonescaped trajectories vs. time is
stored. We stress that the smallest value of K is far beyond
the nonlinearity parameter that generates fully ergodic dy-
namics. Thus, without a doubt, we assume a clear exponential
trend based on the literature. The results are summarized in
Fig. 6. Solid lines correspond to leaky-open standard map and
clearly deviates from a straight line in the log-lin plot. This
observation completely contradicts our expectation, and not
only for accelerator modes (K = 12.74 and 44) but for normal
diffusion (K = 8 and 40) as well.

In our study the motion can be considered on a cylinder,
p ∈ (−∞,∞),� ∈ [0, 1]. So, periodic boundary condition
in � allows that a trajectory reenters the same domain in
the phase space frequently. This view in p direction is more
contrasting. Due to the unbounded motion in momentum the
trajectories might wander much longer times in phase space
before they come back to the same position. To check what
happens if we divert back the particles violently to the same
realm in phase space, we repeat the previous process with
periodic boundary condition, p mod (40). The resulting
dashed curves in Fig. 6 follow the desired exponential decay.
As the only difference between the two simulations is the open
or closed phase space, we conclude that the nonexponential
decay for open-leaky system can be a consequence of the
unbounded phase space in p coordinate. Periodic boundary
conditions do not let particles leave the surrounding area of

FIG. 7. For different K values the number of survived particles
until n = 107. The decays follow power law for each case. The slopes
of the curves are nearly the same σ ≈ 0.5.

the leaks, hence, the well-mixing process, which is the basic
criterion of the Poisson survival distribution for short times
[12,38,39], is violated.

Interestingly, one can observe the same behavior if p =
±40 behaves as a strict edge of the system, i.e., particles leave
the system, fall out, when their momentum exceeds |p| � 40.

This phenomenon has also been reported in Ref. [20].
The long-term dynamics in open-leaky problem fits to our

presumption. Figure 7 represents the power-law tail, N (n) ∼
n−σ , of survival distribution up to 107 iteration steps for differ-
ent K values. The tail (n > 1000) of various N (n) has nearly
the same slope, σ = 0.5. Only the cyan curve corresponding
to the AM K = 18.95 shows a deviation beyond n ≈ 3 × 105.
Moreover, the clear exponential part is also visible, especially
in the case of K = 10. From this and Fig. 6, we can point out
that the initial stage of the survival distribution (n � 200–300)
indicates exponential decay only for moderate control param-
eters. This fact reinforces the view that larger diffusion works
against the efficient mixing in phase space.

Although we found that after ca. 5000 iterations, the curves
in Fig. 7 become linear on log-log scale, it should be noted
that the escape rates are not exactly equal. Figure 8 collects
the power-law exponents, σ , for 60 different K values. The
fit has been made on straight segment of the distributions.
It turns out from the fluctuations of the σ (K ) plot that the
N (n) ∼ 1/

√
n rule does not hold for the accelerator modes,

FIG. 8. Long-time escape rate in function of parameter K. The
fit is executed after 5000 iterations where the N (n) curve is already a
straight line on log-log scale.
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FIG. 9. Left: Phase space portrait (K = 25.3) with accelerator
(decelerator) modes. Right: Momenta of 19 trajectories experiencing
AMs. The bold green curve shows a particle traveling downward then
trapped by the left accelerator channel, which acts as a decelerator
mode in lower semiplane, and finally enters backward the bottom
leak around n ≈ 1900.

for instance, 6.28 < K < 7.45 or 12.57 < K < 13.19. There
are, however, shorter sections of N (n) curves at AMs that
follow the σ = 0.5 exponent but their tail always deviates
from the straight line causing different slope. It cannot be
ruled out that for longer iteration, say, 109–1010 steps, these
curves pursue again the original slope or tend to different
value of σ. This investigation is beyond the scope of present
work.

The finite size of the leaks makes it possible for the parti-
cles to jump over them and get to larger p coordinates. Indeed,
some of them are not so lucky, mostly for small K , and their
furthest position to the origin is situated exactly in the leak.
The others, however, can enter the leaks while they change
the direction of movement and return to smaller values of p,
see Fig. 9.

As they have their momentum p larger (smaller) than the
leak’s upper (lower) border, let us call them backward par-
ticles and the former category of escaping particles forward.
Of course, there are particles that do not leave the system,
they are the survivors. In Fig. 10 we illustrated the number of
particles in the three groups for five different values of K after
106 iterations. One can see that for larger K more particles
leave the system backward.

It is not surprising since they have more chance to jump
over the leaks. Comparing the first two columns, the sig-
nificant difference in the ratio of the forward and backward
particles is remarkable. A tiny increase in K, from 6–6.75
refers to entering into the first spike segment in Fig. 2 and
it is the consequence of an accelerator mode around K = 6.5.

We have already seen that not all of the particles leave the
system while they approximate one of the leaks. In Fig. 11,
we depicted the ensemble at two particular time instants: the
absolute value of the largest p coordinate the particles reached
vs. the absolute value of p at the last iteration step before

FIG. 10. Particles classified to three categories according to the
direction of leaving for five different K values after 106 iterations.
Increasing K leads to more particles escape during backward motion.
The group of survivors is not visible on top of the bars.

leaving. Whenever a particle escapes, its final momentum is
set to the last position in p (it belongs obviously to either
leaks). The vertical blue/orange lines at ≈10 indicates the
position of the escaped particles right before falling into the
leak. One can see that the remaining points are scattered
above the y = x line that means they traveled far away in
the phase space. A considerable amount of iteration increases
the number of escaped particles and might increase, with the
help of AMs and their stickiness effect, the distance from the
initial place for the survivors. If we compare the two calcu-
lations, n = 104 (orange points) and n = 106, (blue) we can
conclude that every further iteration, particles might escape
or get further in the phase space. This can be considered as

FIG. 11. For K = 50 The absolute value of the largest momen-
tum during the iteration vs. its value at last iteration step for n = 104

(orange) and n = 106 (blue). The final position differs from the leaks
position |p| ∼ 10 (vertical lines) if a particle does not leave the
system until the end of the calculation. Considering longer times
with fixed size of initial ensemble make the scale change and more
particles end up leaving through the leaks.
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the main fingerprint of power-law decay in particles long-time
distribution.

IV. SUMMARY AND CONCLUSION

In this paper, we obtained the diffusion coefficient and
escape rate in the open standard map [p ∈ (−∞,+∞)] with
two finite-size holes placed symmetrically to the origin along
the p coordinate. Our main goal was to explore the difference
between the diffusion coefficients in the presence of artificial
leaks in the system.

Based on numerical investigation of large ensembles of
particles in the phase space, we found the following. First, it
becomes clear that punching the phase space by artificial holes
results difference in diffusion coefficients in leaky and non-
leaky version of open standard map. This can be understood
from the fact that disappearing particles have direct influence
to the diffusion coefficient D via square of the displacement
in p − p0. We have also shown that for a given nonlinearity
parameter the relative position and size of the leaks influences
significantly �D = D − Dleaky. That is, leaks closer to the
initial conditions or with larger size have a remarkable impact
on the �D. These statements are strongly correlated to the
parameter K. Since either in normal or in acceleration modes
both D and Dleaky depends on K.

Since the escaping particles play an important role in dif-
fusion coefficients, we also investigated the escape dynamics
for short and long timescales. We found it surprising that
the distribution of the survived particles for short times is
not exponential as expected for strong chaos. We believe that
the reason of this is none other than that in cylindrical phase
space without periodic boundary conditions in momentum the
particles can take large excursions in the phase space before
they come back again to the vicinity of the leaks and escape.
This behavior implies that the perfect mixing is not fulfilled
although it is required to observe the Poisson distribution in
escape time statistics.

A more classical result corresponding to the long-time
escape statistics has been achieved. That is, the well-known
power-law decay of particles with nearly identical exponent
(σ = 0.5) is manifested in open-leaky SM. Nevertheless, the

escape rate also depends on whether accelerator modes are
operating in phase space.

Additionally, we presented the fact that direct escape (for-
ward particles) is common only for low values of K and
realized that quite a large amount of particles, especially for
large K values, travel far in the phase space before they fall
into one of the leaks (backward particles). As the backward
particles can reach very large distances to their origin in p
coordinates, we might have to wait for them to come back
and escape. That is why a power-law distribution describes
the escape rate. The universality of the standard map allows
us that the results established in this study can be applied in
other fields of science.

A recent paper [32] of a biophysical example shows the
typically chaotic behavior of transported particles by blood
flow in the presence of vessel wall irregularities. The authors
discuss that the advected particles stick to the vessel wall or
reside on fractal filaments, which results in a long residence
time in the observed domain. According to the study, the
long-time distribution of the particles impact the biochemical
processes such as activation and deposition of platelets.

Furthermore, the astrophysical problem of long-period
comets [40] also can be approximated by the dynamical
mappings or their modifications [41,42]. The gravitational
interaction of small bodies on elongated trajectories and giant
planets in the solar system can be described as a random walk
in momentum (energy) space. The lifetime and the distribu-
tion in phase space of these comets depends not only on direct
escape from the system but they can leave through collision
with inner planets and also with the sun. Therefore, our open-
leaky model of standard map might help to understand the still
existing discrepancy between observations [43] and numerical
simulations. The open-leaky properties of the phase space can
also be relevant in hydrodynamics, environmental flows, and
chemical reactions.
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