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Statistics of residence time for Lévy flights in unstable parabolic potentials
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We analyze the residence time problem for an arbitrary Markovian process describing nonlinear systems
without a steady state. We obtain exact analytical results for the statistical characteristics of the residence time.
For diffusion in a fully unstable potential profile in the presence of Lévy noise we get the conditional probability
density of the particle position and the average residence time. The noise-enhanced stability phenomenon is
observed in the system investigated. Results from numerical simulations are in very good agreement with
analytical ones.
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I. INTRODUCTION

In the last decade, nonlinear relaxation processes in out-of-
equilibrium condensed matter systems and complex systems
subject to Gaussian and Lévy noise sources have been largely
investigated and of increasing interest [1–6]. In particular, the
problem of the statistics of residence times has obtained more
attention recently [7–10]. Moreover, the investigation of the
stochastic dynamics in highly unstable systems has received
great attention from both the experimental [11–18] and the
theoretical [14,19–21] points of view.

The investigation of these highly unstable systems, using
as minimal models one-dimensional systems, represents a
useful first step to understand diverse phenomena such as
anomalous transport in complex systems. Free Lévy flights,
being one manifestation of anomalous diffusion, represent
a special class of discontinuous Markovian processes with
infinite mean squared displacement. They can be described
within the Langevin framework on the basis of Lévy noises
with α-stable distributions. The probability density of Lévy
flights evolves according to the fractional Smoluchowski-
Fokker-Planck [22–26]. Currently, there is a small amount
of rigorous analytical results for statistical characteristics of
confined Lévy flights in different potentials, mostly for the
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probability density functions [27–31] and spectral-correlation
characteristics [32–35] at steady state. Moreover, the transient
dynamics of this type of anomalous diffusion is insufficiently
studied from the analytical point of view. Indeed, in this area
of investigation, many papers are concerned with numerical
results [36–42]. They all relate mostly to the barrier crossing
problem for Lévy flights and indicate that the mean time
of transition is inversely proportional to the noise intensity
parameter. The main tools for investigation of the barrier
crossing problem for Lévy flights are the first passage times,
crossing times, arrival times, and residence times [35,43–46].
Investigation of the residence time and nonlinear relaxation
time in unstable and metastable potential profiles has been
done mainly for Brownian diffusion and interesting noise-
induced phenomena have been found such as stochastic
resonance, resonant activation, and noise-enhanced stability
(NES) [47–59].

In the present paper, first we analyze the residence time
statistics for an arbitrary Markovian process describing non-
linear systems without a steady state. We obtain exact results
for the statistical characteristics of the residence time. In par-
ticular, a closed integral equation for the probability density
function of the residence time is derived. Next we consider
the anomalous diffusion of a particle in the form of Lévy
flights, with an arbitrary Lévy index, in a fully unstable
inverse parabolic potential. We obtain the conditional proba-
bility density of the particle position and the average residence
time in a symmetric interval. This problem was investigated in
Refs. [60–67] in the context of Brownian motion.

In particular, here we obtain that the probability of finding
the particle in a finite region decreases exponentially and
all the moments of the residence time are finite. Moreover,
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the behavior of the mean residence time versus the scale
parameter σ and the Lévy index α is discussed in detail. We
observe the NES phenomenon [54–59] in the unstable system
investigated.

The paper is organized as follows. In the next section
(Sec. II), analytical results for the residence time statistics in
the case of an arbitrary time-homogeneous Markovian process
are derived. In Sec. III, the average residence time of a particle
in an unstable parabolic potential with Lévy noise is obtained.
The conclusions are drawn in Sec. IV.

II. STATISTICS OF RESIDENCE TIME FOR AN
ARBITRARY STATIONARY MARKOVIAN PROCESS

We consider an arbitrary time-homogeneous Marko-
vian process x(t ) with the conditional probability density
P(x, t |x0, t0) = P(x, t − t0|x0, 0). According to the definition,
if the stochastic process x(t ) initially starts from the value x0

at t = 0, the residence time T (x0) in the given domain G for
an infinite observation time reads [35]

T (x0) =
∫ ∞

0
1G(x(t ))dt, (1)

where 1G(y) is the indicator of the domain G, defined as

1G(y) =
{1, y ∈ G,

0 otherwise. (2)

Averaging Eq. (1), we find the mean residence time in domain
G,

〈T (x0)〉 =
∫ ∞

0
Pr(t, x0)dt

=
∫ ∞

0
dt

∫
G

P( x, t |x0, 0)dx, (3)

where Pr(t, x0) is the probability of finding the particle in
domain G at time t . We suppose that all the integrals in time
in Eq. (3) are convergent. This means that the probability
Pr(t, x0) and the conditional probability density P(x, t |x0, 0)
tend to 0 rapidly enough when t → ∞, and, as a result, the
Markovian process x(t ) describes a nonlinear system without
a steady state. Changing the order of integration, we can write
Eq. (3) in the form

〈T (x0)〉 =
∫

G
Y (x, x0)dx, (4)

where

Y (x, x0) =
∫ ∞

0
P( x, t |x0, 0)dt . (5)

From Eq. (1) the second moment of the residence time can
be calculated as

〈T 2(x0)〉 =
∫ ∞

0
dt

∫ ∞

0
dτ 〈1G(x(t ))1G(x(τ ))〉

=
∫ ∞

0
dt

∫ ∞

0
dτ

∫
G×G

P(x, t ; y, τ |x0, 0)dx dy. (6)

Using the Markovian property of the stochastic process
x(t ), P(x, t2; y, t1|x0, t0) = P(x, t2 − t1|y, 0)P(y, t1 − t0|x0, 0),

where t0 < t1 < t2, we have

〈T 2(x0)〉 =
∫ ∞

0
dt

∫ ∞

t
dτ

∫
G

dx
∫

G
dy P(x, t |x0, 0)

× P(y, τ − t |x, 0) +
∫ ∞

0
dτ

∫ ∞

τ

dt
∫

G
dx

×
∫

G
dy P(y, τ |x0, 0)P(x, t − τ |y, 0). (7)

Changing variables under the integrals and taking into account
Eqs. (4) and (5), we finally find

〈T 2(x0)〉 = 2
∫

G
Y (x, x0)dx

∫
G

Y (y, x)dy

= 2
∫

G
Y (x, x0)〈T (x)〉dx. (8)

The variance of the residence time can be calculated as

Var(x0) = 〈T 2(x0)〉 − 〈T (x0)〉2. (9)

Similarly, the n-th moment of the residence time, (1), can be
written as

〈T n(x0)〉 = n
∫

G
Y (x, x0)〈T n−1(x)〉dx. (10)

Now we derive a closed equation for the characteristic
function of the residence time. According to its definition we
have

φ(k, x0) = 〈eikT (x0 )〉 = 1 +
∞∑

n=1

(ik)n

n!
〈T n(x0)〉. (11)

Substitution of Eq. (10) in Eq. (11) gives

φ(k, x0) = 1 +
∞∑

n=1

(ik)n

(n − 1)!

∫
G

Y (x, x0)〈T n−1(x)〉dx

= 1 + ik
∫

G
Y (x, x0)

∞∑
m=0

(ik)m

m!
〈T m(x)〉dx. (12)

Thus, from Eqs. (11) and (12) we arrive at the following in-
tegral equation for the characteristic function of the residence
time:

φ(k, x0) = 1 + ik
∫

G
Y (x, x0)φ(k, x)dx. (13)

After Fourier transforming we get the integro-differential
equation for the probability density function Wx0 (t ) =
(1/2π )

∫ ∞
−∞ φ(k, x0)e−ikt dk of the residence time [see

Eq. (1)]:

Wx0 (t ) = δ(t ) − d

dt

∫
G

Y (x, x0)Wx(t )dx. (14)

Equations (13) and (14) describe the full statistics of the res-
idence time and are valid for an arbitrary time-homogeneous
Markovian process x(t ), which does not have a steady-state
probability distribution and whose residence time, for an in-
finity observation time, is finite. Of course, to solve Eqs. (13)
and (14), both analytically and numerically, we need to know
the conditional probability density P(x, t |x0, 0).
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Let us explain our statements through a simple example of
symmetric Lévy process L(t ) with an arbitrary index α (with
0 < α � 2), whose characteristic function is given by

ϑ (k, t ) = 〈eikL(t )〉 = exp{ikx0 − σα|k|αt}, (15)

corresponding to the conditional probability density
P(x, t |x0, 0), where σα is the noise intensity parameter
[30,41]. This Markovian random process does not have a
steady-state distribution and transforms into the Wiener
process for α = 2. Applying the inverse Fourier transform
to Eq. (15) and substituting the result in Eq. (5), we find the
function Y (x, x0) included in the integral equation, (13):

Y (x, x0) = 1

πσα

∫ ∞

0

cos k(x − x0)

kα
dk. (16)

The integral in Eq. (16) diverges for the Lévy index α � 1,
which means that for these cases, including Brownian diffu-
sion (α = 2), the residence time given by Eq. (1) is infinite.
At the same time, for α < 1 we obtain from Eq. (16) a finite
expression,

Y (x, x0) = |x − x0|α−1

2σα	(α) cos (πα/2)
, (17)

where 	(α) is the Euler gamma function. In particular, from
Eqs. (4) and (17) for domain G in the form of the interval
(−L, L) we calculate the mean residence time (compare with
formula (31) in Ref. [35]):

〈T (x0)〉 = (L − x0)α + (L + x0)α

2	(α + 1)σα cos (πα/2)
. (18)

Substituting Eq. (17) into Eq. (13), we can solve it and then,
in principle, we can find the probability density function of
the residence time. Thus, the residence time of Eq. (1), does
not exist for all Markovian processes without a steady-state
distribution.

It should be emphasized that the problem of finding the
asymptotic probability distribution, when t → ∞, of the oc-
cupation time of Markov processes with stationary transitions
was considered in Ref. [68]. The principal result of Ref. [68] is
the proof that under suitable, but quite general, conditions the
limiting distribution must be the Mittag-Leffler distribution.

III. MEAN RESIDENCE TIME OF A PARTICLE IN AN
UNSTABLE PARABOLIC POTENTIAL WITH LÉVY NOISE

In this section we investigate the statistical characteris-
tics of the residence time for Lévy flights in the unstable
parabolic potential U (x) = −bx2/2 (b > 0) (see Fig. 1). An
overdamped anomalous diffusion in the form of Lévy flights
in a potential profile U (x) can be described by the Langevin
equation for the particle coordinate x(t )

dx

dt
= −U ′(x) + ξα (t ), (19)

where ξα (t ) is the symmetric α-stable white noise, char-
acterized by only two parameters, namely, the Lévy index
α (with 0 < α � 2) and the scale parameter σ [41,69–72].
The limiting case of α = 2 corresponds to the Gaussian white
noise source in Eq. (19). The stochastic process ξα (t ) is the

FIG. 1. The unstable parabolic potential.

time derivative of the Lévy process Lα (t ): ξα (t ) = L̇α (t ), with
the characteristic function of increments

〈eik[Lα (t )−Lα (0)]〉 = e−σα |k|αt , (20)

where σα is the intensity parameter of the Lévy noise [30,41].
The fractional Smoluchowski-Fokker-Planck equation for

the probability density function of the particle coordinate,
corresponding to the Langevin equation, (19), reads

∂P

∂t
= ∂

∂x
[U ′(x)P] + σα ∂αP

∂|x|α . (21)

Substituting the parabolic potential in Eq. (19), we arrive at
the following linear differential equation:

dx

dt
= bx + ξα (t ). (22)

The solution of Eq. (22) can be written in the explicit form

x(t ) = x0ebt +
∫ t

0
eb(t−τ )ξα (τ )dτ. (23)

Using the exact solution of Eq. (23), we can find the charac-
teristic function of the particle position x by the definition

ϑ (k, t ) = 〈
eikx(t )

〉
. (24)

Substituting x(t ) from Eq. (23) in Eq. (24), we get

ϑ (k, t ) = eikx0ebt

〈
exp

{
ik

∫ t

0
eb(t−τ )ξα (τ )dτ

}〉
. (25)

To calculate the average in Eq. (25) we use the expression for
the characteristic functional of the symmetric α-stable white
noise (see formula (4) in Ref. [30] and the general result of
formula (8), in Ref. [24])〈

exp

{
i
∫ t

0
u(τ ) ξα (τ )dτ

}〉
= exp

{
−

∫ t

0
|σu(τ )|αdτ

}
.

(26)
Replacing u(τ ) with keb(t−τ ) in Eq. (26) and substituting in
Eq. (25), we finally arrive at

ϑ (k, t ) = exp
{

ikx0 ebt − σα|k|α
αb

(eαbt − 1)
}
. (27)

Further, we analyze the residence time of a particle in the
symmetric interval (−L, L), for x0 ∈ (−L, L) (see Fig. 1).
Applying the inverse Fourier transform to Eq. (27), we find
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the conditional probability density P(x, t |x0, 0) and then the
probability of finding a particle in the interval (−L, L):

Pr(t, x0) =
∫ L

−L
P(x, t |x0, 0)dx

= 2

π

∫ ∞

0

sin kL

k
cos(kx0 ebt )

× exp

{
− (σk)α (eαbt − 1)

αb

}
dk. (28)

In the limit of t → ∞ the main contribution to the integral of
Eq. (28), comes from the region close to 0 in k so that, using
the approximation sin kL 	 kL and exp(αbt ) 
 1, we obtain

Pr(t, x0) 	 2L

π

∫ ∞

0
cos

(
kx0 ebt

)
exp

{
− (σk ebt )

α

αb

}
dk

or, after setting q = kebt ,

Pr(t, x0) 	 2L

π
e−bt

∫ ∞

0
cos(qx0) exp

{
− (σq)α

αb

}
dq. (29)

Thus, the integral in Eq. (3) converges. Moreover, all the
moments of the residence time of Eq. (1) are finite.

Substituting Eq. (28) in Eq. (3), after some rearrangements
we obtain the exact formula

〈T (x0)〉 = 2

πb

∫ ∞

0

cos(qx0)

q
exp

{
− (σq)α

αb

}
dq

×
∫ q

0

sin kL

k
exp

{ (σk)α

αb

}
dk

or

〈T (x0)〉 = 2

πb

∫ ∞

0

sin kL

k
exp

{
(σk)α

αb

}
dk

×
∫ ∞

k

cos (qx0)

q
exp

{
− (σq)α

αb

}
dq, (30)

which gives the average residence time as a function of the
initial conditions, the parameters of the system, and the Lévy
noise source. This is, together with Eqs. (13) and (14), the
main result of this paper.

Let us check the result, (30), in the absence of the noise
source ξα (t ). Putting σ = 0 in Eq. (30) we arrive at

Tdyn = 2

πb

∫ ∞

0

cos (qx0)

q
dq

∫ q

0

sin kL

k
dk

= 2

πb

∫ ∞

0

cos (qx0)Si(qL)

q
dq, (31)

where Si(x) is the sine integral function [73],

Si(x) =
∫ x

0

sin t

t
dt .

Using the auxiliary integral (α, β > 0)∫ ∞

0

cos (βx)Si(αx)

x
dx =

{(π/2) ln (α/β ), α > β,

0, α < β

and taking into account that |x0| < L, we find the dynamical
(deterministic) residence time

Tdyn = 1

b
ln

L

|x0| . (32)

At the same time, the direct integration of Eq. (22) without
noise, but with separable variables,∫ L

x0

dx

x
=

∫ Tdyn

0
b dt,

gives the same result.
Let us show that for Cauchy noise (α = 1) we can write

Eq. (30) in the form of a single integral. Substituting α = 1 in
Eq. (30) and changing the order of integration we arrive at

〈T (x0)〉 = 2

πb

∫ ∞

0

sin kL

k
eσk/bdk

∫ ∞

k

cos (qx0)

q
e−σq/bdq.

(33)
Differentiating Eq. (33) with respect to the parameter x0 and
calculating the internal integral, we get

d〈T (x0)〉
dx0

= − 2

π

∫ ∞

0

(bx0 cos kx0 + σ sin kx0) sin kL

k
(
σ 2 + b2x2

0

) dk.

(34)
Using the Dirichlet formula∫ ∞

0

sin αx

x
dx = π

2
sgn(α)

and Frullani formula∫ ∞

0

cos ax − cos bx

x
dx = ln

∣∣∣b

a

∣∣∣,
where sgn(x) is the sign function, we obtain from Eq. (34)

d〈T (x0)〉
dx0

=
σ
π

ln
∣∣ L−x0

L+x0

∣∣ − bx01(L − x0)

σ 2 + b2x2
0

, (35)

where 1(x) is the step function. According to Eq. (30),

lim
x0→∞ 〈T (x0)〉 = 0.

As a consequence, we find from Eq. (35)

〈T (x0)〉 =
∫ ∞

x0

[
bz1(L − z) + σ

π
ln

∣∣∣∣L + z

L − z

∣∣∣∣
]

dz

σ 2 + b2z2

or

〈T (x0)〉 = 1

2b
ln

σ 2 + b2L2

σ 2 + b2x2
0

+ σ

π

∫ ∞

x0

ln

∣∣∣∣L + z

L − z

∣∣∣∣ dz

σ 2 + b2z2
,

(36)
where |x0| < L. Of course, in the case where σ = 0, Eq. (36)
coincides with Eq. (32).

Using Eqs. (8), (27), and (30) we find the mean squared
residence time:〈
T 2(x0)

〉 = 4

π2b2

∫ ∞

0
exp

{
(σk)α

αb

}
dk

×
∫ ∞

k

cos (qx0)

q
exp

{
− (σq)α

αb

}
dq

×
∫ ∞

0

sin (k1L)

k1
exp

{
(σk1)α

αb

}
dk1

×
∫ ∞

k1

[
sin (q1 + k)

q1 + k
+ sin (q1 − k)

q1 − k

]
e− (σq1 )α

αb
dq1

q1
.

(37)
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(a)

(b)

(c)

FIG. 2. Normalized mean residence 〈T (x0 )〉/Tdyn time as a func-
tion of the scale parameter σ for L = 1, various initial conditions,
namely, x0 = 0.01 (a), x0 = 0.1 (b), and x0 = 0.5 (c), and different
values of the Lévy index α, namely, α = 0.5, 1.0, 1.5, and 2.0. Sym-
bols are obtained by numerical integration of the Langevin equation,
(19); solid lines, by numerical calculation of the analytical formula,
(30). Error bars, which are standard deviations of the mean, are
within the symbol size.

The plot of the normalized mean residence time τ (x0) =
〈T (x0)〉/Tdyn as a function of the scale parameter σ for L = 1,
under various initial conditions, namely, x0 = 0.01 [Fig. 2(a)],
x0 = 0.1 [Fig. 2(b)], and x0 = 0.5 [Fig. 2(c)], and different
values of the Lévy index α, namely, α = 0.5, 1.0, 1.5, and
2.0, is shown in Fig. 2. Symbols are obtained by numerical
integration of the Langevin equation of Eq. (19); solid lines,
by numerical calculation of the analytical formula of Eq. (30).
The algorithm used in this work to simulate Lévy noise
sources is that proposed by Weron [74] for the implementation

of the Chambers method [75]. Monte Carlo simulations nicely
corroborate analytical results.

In all panels in Fig. 2, it is possible to see a nonmono-
tonic behavior, with a maximum of the normalized average
residence time of the particle in the interval (−L, L) as a
function of the scale parameter σ . This is a signature of
the noise-enhanced stability phenomenon because the noise
increases the average lifetime of the particle in a defined
region of the potential profile [54–59] and confirms its first
observation in metastable states of short and long Josephson
junctions [76–78]. Moreover, the order of magnitude of the
scale parameter σ for which we have the maximum is σ ≈
(U )(1/α), where U is the height of the potential barrier
from x0 and the maximum of the potential profile. This is in
agreement with that we have found for metastable systems
and Brownian diffusion (see [4,57,59] and references therein).
The NES phenomenon increases as the Lévy index increases
and the initial position of the particle approaches the boundary
of the interval. Moreover, with an increasing value of x0,
the value of the scale parameter σ for which we have the
maximum increases too. This is due to the increase in the
height of the potential barrier as the value of x0 increases.
The particle “needs” a larger noise intensity to overcome
the potential barrier during its stay in the defined interval,
that is, when x(t ) ∈ (−L, L). The decreasing NES effect with
decreasing Lévy index is due to the peculiarity of fat tails in
the distribution of Lévy noise. In fact, with low values of the
α index it is easier for the particle to overcome the barrier of
the unstable parabolic potential from one side to the other and
to reach the boundaries of the interval (−L, L) more quickly
compared to normal Brownian diffusion.

Substituting α = 2 in Eq. (27) it is easy to “inverse” it and
to find the conditional probability density in the analytical
form for Brownian diffusion

P(x, t |x0, 0) = e−bt

√
b

2πD(1 − e−2bt )

× exp

{
−b(x0 − x e−bt )2

2D(1 − e−2bt )

}
, (38)

where D = σ 2 is the intensity of the Gaussian white noise.
According to Eq. (38), this probability distribution has a Gaus-
sian form with the maximum shifted towards one of the sinks
xmax = x0ebt and exponentially decreases in time. As a result,
using Eqs. (4) and (5), we can write Eq. (30) for the mean
residence time in another form:

〈T (x0)〉 = 1√
2πbD

∫ L

−L
dx

×
∫ π/2

0
exp

{
−b(x0 − x sin y)2

2D cos2 y

}
dy. (39)

In Fig. 2, curves showing the mean residence time, in the
case of Brownian diffusion (α = 2), are depicted by inverted
triangles. For this type of unstable potential they display a
similar behavior as for Lévy flights, but the NES effect is
more pronounced. This is ascribed to the peculiarity of Lévy
flights together with the shape of the potential profile. In
fact, with Lévy flight diffusion it is easier for the particle to
overcome more quickly the barrier of the unstable parabolic
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(a)

(b)

(c)

FIG. 3. Mean squared residence time 〈T 2(x0)〉 as a function of
the scale parameter σ for L = 1 under various initial conditions—
(a) x0 = 0.01, (b) x0 = 0.1, and (c) x0 = 0.5—and different values
of the Lévy index α, namely, α = 0.5, 1.0, 1.5, and 2.0. Symbols
correspond to the Monte Carlo simulation of the Langevin equation,
(19), while lines show the theoretical values given by Eq. (37).

potential and to reach the boundaries of the interval (−L, L)
with respect to Brownian diffusion.

Figure 3 shows the dependence of the mean squared res-
idence time versus the scale parameter σ for various initial
conditions—x0 = 0.01 [Fig. 3(a)], x0 = 0.1 [Fig. 3(b)], and
x0 = 0.5 [Fig. 3(c)]—and different values of the Lévy index
α, namely, α = 0.5, 1.0, 1.5, and 2.0. Symbols correspond to
the Monte Carlo simulation of the Langevin equation, (19),
while lines show the theoretical values given by Eq. (37).
The agreement between theoretical predictions and computer
simulations is very good. Furthermore, the mean squared
residence time 〈T 2(x0)〉 shows, as a function of the scale
parameter σ , the same nonmonotonic behavior as shown by
the normalized mean residence time versus σ , with the same
peculiarities. Specifically, increasing the value of x0 also in-
creases the value of σ for which we have the maximum; with
a decreasing Lévy index, the NES effect also decreases, and,
finally, we have the same order of magnitude of σ for which
we have the maximum of 〈T 2(x0)〉.

IV. CONCLUSIONS

We study the residence time statistics for an arbitrary
time-homogeneous Markov process in nonlinear systems. We
derive a closed integral equation for the probability distribu-
tion of the residence time. In the particular case of an unstable
parabolic potential with a Lévy noise source we obtain the
conditional probability density of the particle position and
the average residence time in a symmetric interval. We ob-
serve the NES phenomenon in the system investigated.

Our theoretical study represents a contribution to the
Markov theory of stochastic processes and is the first inves-
tigation of the positive role of Lévy noise in the stochastic
dynamics of unstable systems. These results stimulate further
theoretical and experimental investigations of unstable sys-
tems, when a Lévy noise source, including the special case of
α = 2 (Gaussian thermal noise), is used as a control parameter
in nonequilibrium dynamics of classical and quantum systems
[20,79,80] or in applications such as Josephson-based noise
detection [81–85].
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