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We investigate extreme value theory for physical systems with a global conservation law which describes
renewal processes, mass transport models, and long-range interacting spin models. As shown previously, a
special feature is that the distribution of the extreme value exhibits a nonanalytical point in the middle of the
support. We expose exact relationships between constrained extreme value theory and well-known quantities
of the underlying stochastic dynamics, all valid beyond the midpoint in general, i.e., even far from the thermo-
dynamic limit. For example, for renewal processes the distribution of the maximum time between two renewal
events is exactly related to the mean number of these events. In the thermodynamic limit, we show how our theory
is suitable to describe typical and rare events which deviate from classical extreme value theory. For example, for
the renewal process we unravel dual scaling of the extreme value distribution, pointing out two types of limiting
laws: a normalizable scaling function for the typical statistics and a non-normalized state describing the rare
events.
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I. INTRODUCTION

Extreme events are a large class of phenomena in natu-
ral and man-made systems which are uncommon compared
to the usual dynamics [1–5]. Despite their rare occurrence
they still can have influential consequences, e.g., the fastest
sperm in fertilization [6,7], the longest trapping time in trans-
port [8], and first passage problems in Markov processes
[9]. The original problem considers a set of N ∈ N inde-
pendent and identically distributed (IID) random variables
(x1, . . . , xN ) and describes the statistics of its maximum
xmax = max(x1, . . . , xN ). Let ψ (x) be the probability density
function (PDF) of the random variables and �(x) the cumu-
lative distribution function (CDF). When the maximum xmax

has the value m then all other random variables are less than or
equal to m. So the CDF of the maximum is Prob(xmax � m) =
�N (m) and hence the PDF of the maximum is obviously

f (m) = Nψ (m)�N−1(m). (1)

A central result of classical extreme value theory (EVT) is
that the limiting maximum PDF for large N converges to one
of three classes of distributions called Weibull, Gumbel, or
Fréchet depending on the large x behavior of ψ (x) when m
is shifted and rescaled appropriately [3,10–12]. However, for
most systems the assumption of IID random variables has to
be abandoned.

Recently EVT was studied for a wide range of different
models whose common property is the global confinement of
their dynamics; see [5] for a review. This global conservation
induces correlations among the random variables. It is a com-
mon trait shared in many models including renewal processes
(RP) [13–17], mass transport models such as zero range pro-
cesses (ZRP) [18–22], and long-range interacting spin models
such as the truncated inverse distance squared Ising model

(TIDSI) [23,24]. These three models describe numerous phys-
ical systems, including zero crossing of Brownian motion,
arrival times at a detector, and interacting systems, to name
only a few.

Particular attention was devoted to systems which loosely
speaking are scale free, such as fractal renewal theory with
diverging mean waiting time and diverging variance of the
waiting time (see below). These systems exhibit large fluctua-
tions and dominance of the extreme. It was shown previously
how the global constraint may modify completely the classical
EVT in the sense of strong deviations from Fréchet’s law.
Somewhat similarly to the classical ensembles of statistical
physics—e.g., microcanonical ensembles with fixed energy,
volume, and number of particles and canonical ensembles
where the temperature of the bath is the constraint—the dif-
ferent constraints discussed below also give rich physical
behaviors specific to the ensemble or model. For each model
there are several classes of limiting laws in the thermody-
namic limit when the global constraint diverges. These classes
depend on the model parameters, and were studied for RP
[8,25–29], ZRP [19,30], and TIDSI [31]. For example, for
RP with fat-tailed waiting times, typical fluctuations of the
maximum go through a dynamical phase transition depending
on the existence or nonexistence of the mean waiting time.
When the mean exists Fréchet’s law holds typically; when
it does not exist the behavior is completely different [27]. A
similar situation exists for TIDSI in the critical phase between
ferromagnetic and paramagnetic phases [31,32]. However, a
particular limiting law might reflect only part of the truth. For
example, Fréchet’s law predicts a diverging second moment
of the largest waiting time in a renewal process. However,
that is impossible since all waiting times are shorter than the
observation time. This does not imply that Fréchet’s law is
incorrect, only that it must be modified in its tail. To put it
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differently, the constraint yields a natural cutoff and this mod-
ifies the description of classical EVT [8,28]. In the main text
below, we discuss the thermodynamic limit for each model
and how our results help to classify limiting behaviours.

Our work addresses two main themes. First, without restor-
ing to a thermodynamic limit, we provide a complete set of
relations between constrained EVT and much simpler quan-
tifiers of the underlying stochastic dynamics. These exact
relations are valid for any value of the global constraint, i.e.,
close to and far from the thermodynamic limit. For example,
for RP we find an exact and simple relation between EVT and
the mean number of renewals 〈N〉. The relations are found
beyond the critical point m > C/2, where C > 0 is the global
constraint. It has been recognized in earlier studies [32,33]
that the analysis beyond this midpoint may be simplified
for the Brownian bridge and the tied-down renewal process
(which is essentially TIDSI). The importance of the midpoint
is easy to understand: Once we observe a value larger than
half of the global constraint it is already the maximum. No
following value can be larger.

Our second goal is to exploit the exact relations and con-
sider the thermodynamic limit. We recap known limiting laws
and describe additional ones. For example, for renewal pro-
cesses we find dual scaling, i.e., our theory describes both
types of limiting behavior. When no moment of the waiting
times exists, our theory describes typical events and rare
events. When only the first moment of the waiting times
exists, our theory describes the correction to Fréchet’s law
(considered as rare events) and its large deviations. In this
sense we go beyond previous studies of the thermodynamic
limit [5,8,27,28,30,31]. We further confirm that rare events
can be often described within the framework of infinite
densities [8,28,34–39].

The article is constructed as follows. We consider the RP
in Sec. II, the ZRP in Sec. III, and the TIDSI in Sec. IV. For
all three models we derive the maximum PDF in the second
half of the support and relate it to well-studied stochastic
quantifiers of the underlying dynamics. There we present the
analysis on the RP elaborately. Furthermore, for the RP and
TIDSI we derive limiting laws of the second half maximum
distribution in the thermodynamic limit for fat-tailed random
variables. Section V gives a summary.

II. RENEWAL PROCESS

A. Basics

RP are widely used in physics [13–17,27], for example in
describing the random arrival times of radioactive debris to a
Geiger counter. Mathematically these processes are described
with a PDF ψ (τ ) of interarrival times, sometimes called
waiting times. The process starts at time t1 = 0 considered
as the first event. To construct the process, first, sample τ1

from the PDF ψ (τ ) (this describes the timing of the sec-
ond event), then renew the process by sampling τ2 from the
same PDF so that the timing of the third event is given by
τ1 + τ2. The process is continued this way for N events, i.e.,
the ith event happens at time ti = τ1 + τ2 + · · · + τi−1 with
i ∈ {1, 2, . . .}. The waiting times τ1, τ2, . . . between events
are IID random variables all sampled from ψ (τ ). The PDF

FIG. 1. Schematic figure of the three models, renewal processes,
zero range processes, and the truncated inverse distance squared
Ising model, presented in the main text. The maximum in each model
is colored orange. The ZRP is described in Sec. IV and TIDSI in
Sec. IV.

of ψ (τ ) can be either thin tailed or fat tailed, and this has
major consequences on the behavior of the extreme events.
For example, an exponential (thin-tailed) PDF ψ (τ ) describes
arrival times of independent photons to a detector. An example
of a fat-tailed process is the zero crossing of Brownian mo-
tion where ψ (τ ) ∼ τ−3/2; similarly for blinking quantum dots
[40,41] or times between jumps in the anomalous continuous
time random walks [42,43].

The renewal process is observed at the observation time
t = T . The fixed observation time T is the sum of all waiting
times before the last event i = N added with the backward
recurrence time

T =
N−1∑
i=1

τi + τB; (2)

see Fig. 1. The backward recurrence time τB is the time in-
terval between the last event i = N and the observation time
T . It is distributed differently than the waiting times [44]. The
constraint of a fixed observation time implies that the amount
of events N is a random number. This and the cutoff of the
last time interval τN to τB make the set of all waiting times
{τ1, τ2, . . . , τN−1, τB} non-IID.

B. Overview of constrained models

Before we continue with the maximum statistics of the
waiting times {τ1, τ2, . . . , τN−1, τB}, we compare model de-
tails of RP with the two later studied models, ZRP and TIDSI.
The common trait of these models is that the sum of the
random variables

C =
N∑

i=1

xi (3)

is fixed to the global constraint C > 0. For example for the
RP, the constraint is the observation time C = T and the ran-
dom variables are xi = τi when i ∈ [1, N − 1] and xN = τB.
In Table I important characteristics are presented with the
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TABLE I. Overview of details of the three models, renewal
processes, zero range processes, and the truncated inverse distance
squared Ising model, presented in the main text. Their relevant ran-
dom variables, the constraint, and the randomness of N are shown.
The ZRP is described in Sec. IV and TIDSI in Sec. IV.

RP ZRP TIDSI

Random Waiting Number of Domain
variables xi times τi particles κi lengths λi

Values of xi Continuous Discrete Discrete

Constraint C Observation time Total number Total length

T = ∑N−1
i=1 τi + τB K = ∑N

i=1 κi L = ∑N
i=1 λi

Number N Random Fixed Random

appropriate xi and C for each model. Figure 1 shows a
schematic figure of the three models. We do not define pre-
cisely ZRP and TIDSI at this stage; we will do so later in
Secs. III and IV. For now we just want to define their global
constraint: For ZRP, C is the total number of particles in
a system where particles are distributed in boxes, while for
TIDSI, describing an interacting spin system, C is the size of
the system. In both models one can say that interactions are
local, i.e., only particles within a box interact and only spins
within a given domain.

C. Extreme value statistics

We investigate the statistics of the maximum waiting time
[8,27,28]

τmax = max(τ1, τ2, . . . , τN−1, τB). (4)

The maximum τmax is also called the extreme event of the
waiting times. The maximum PDF is defined by f (m; T ) =
dF (m; T )/dm. The maximum CDF F (m; T ) = Prob(τmax �
m) is the probability of the random variable τmax being less
than or equal to m. Clearly, the maximum is constrained by
0 < m � T . Since the number of events N is random, it is
instructive to consider

f (m; T ) =
∞∑

N=1

fN (m; T ) (5)

with fN (m; T ) = dFN (m; T )/dm being the maximum PDF
with exactly N renewal events. In this context the value of N
is a sampled value. The maximum CDF with exactly N events
is given by [27]

FN (m; T ) =
∫ m

0
· · ·

∫ m

0

∫ m

0
ψ (τ1) · · · ψ (τN−1)ϕ(τB)

× δ

[
T −

(
N−1∑
i=1

τi + τB

)]
dτ1 · · · dτN−1dτB.

(6)

This is the probability of τmax being less than or equal to
m when exactly N events have happened. Here, the survival
probability

ϕ(τB) =
∫ ∞

τB

ψ (τ )dτ (7)

is the probability that no other event than the first one at t1 = 0
occurs until time τB. Equation (6) is easy to interpret: the set
of waiting times {τ1, . . . , τB} are all less than or equal to m,
and the delta function is the constraint. Since we will use this
formula below we write the N-multiple integral shorter as

FN (m; T ) =
∫ m

0
ψ (τ1) · · · ψ (τN−1)ϕ(τN )δ(T − ‖τ‖1)dτ (8)

with the N-vector τ = (τ1, . . . , τN )T and the taxicab norm
‖τ‖1 = ∑N

i=1 τi.
Before we continue our analytical investigation, let us take

a look at simulation results with which we construct the
PDF of τmax. In Fig. 2 we simulate the process and obtain
the histograms for f (m; T ), where we used the exponential
waiting time PDF ψ (τ ) = exp(−τ ), the Pareto waiting time
PDF ψ (τ ) = ατ−1−α with τ � 1, and the one-sided Lévy
waiting time PDF ψ (τ ) = 1/(2

√
π )τ−3/2 exp[−1/(4τ )]. All

examples show a discontinuity at the midpoint of the support,

m = T

2
. (9)

The Pareto waiting time PDF also yields in an intrinsic discon-
tinuity at m = 9 because τ � 1. The importance of T/2 can be
intuitively understand: Once a waiting time is larger than T/2
it is then also the maximum waiting time. No previous and
following waiting time can be larger. Since the PDF of τmax

is nonanalytical we cannot expect to find a global solution
in the whole range 0 < m < T . Importantly, all the results in
Fig. 2 are presented for finite simulation time and far from
the thermodynamic limit. For example, for the exponential
process the mean waiting time is unity and the measurement
time is just twice as large. Usually one does not expect general
statistical laws to emerge at this limit. However, in the Fig. 2
we show a theory (derived below) that works perfectly beyond
the midpoint. Our goal is then to present this theory and only
later consider the thermodynamic limit.

D. Extreme value statistics in the second half

We now present the main result and its derivation after-
wards. In the second half T/2 < m < T , the maximum PDF
f (m; T ) is exactly related to the mean number of renewals
〈N (t )〉, namely

f (m; T ) = ϕ(m)R(T − m) + ψ (m)〈N (T − m)〉. (10)

The function R(T − m) is the rate of producing these events,
namely the derivative of 〈N〉. Both 〈N〉 and R are thoroughly
investigated in the physical and mathematical literature
[13–16]. We find also an elegant formula of the maximum
CDF,

F (m; T ) = 1 − ϕ(m)〈N (T − m)〉, (11)

again in the second half T/2 < m < T . The formulas (10)
and (11) present exact results for any m > T/2 and are very
useful, as they allow us to derive both finite-time expressions
and also the long-time limit (see below).

Both relationships yield insight into the maximum m when
it is roughly of order T . Then we need to have information on
〈N (T − m)〉, which includes R(T − m), only for very short
time. Namely, once we have 〈N (T − m)〉 for time T − m we
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FIG. 2. Histogram of the maximum PDF f (m; T ) of RP from Monte Carlo simulations (blue circles) compared with the theory of Eq. (20)
(black line) for (a) exponential ψ (τ ) = exp(−τ ) with T = 2, (b) one-sided Lévy ψ (τ ) = 1/(

√
2π )τ−3/2 exp[−1/(4τ )] with T = 10 and (c),

(d) Pareto ψ (τ ) = ατ−α , τ > 1, with T = 10. The simulations were performed with 107 realizations. The analytical expressions of 〈N〉 and R
were obtained via numerical inverse Laplace transform; see Eq. (25). The nonanalytical point T/2 is very visible in (a), (b), and (c). It is barely
visible for α = 3/2 in (d) because T is relatively large. In addition, we show the theoretical gap height, Eq. (30), and the theoretical area of the
first half, Eq. (28), exemplarily in (c); both match with their numerical estimates.

can predict EVT for m. Intuitively, to observe a large m of
order T , we need the maximum to be produced close to the
start of the process.

We will now present the derivation of this main result.
Taking the derivative of FN (m; T ) from Eq. (6) or (8) yields
two terms with each a (N − 1)-multiple integral:

fN (m; T ) = ϕ(m)
∫ m

0

N−1∏
i=1

ψ (τi )δ(T − m − ‖τ‖1)dτ︸ ︷︷ ︸
B

+ψ (m)(N − 1)
∫ m

0

N−2∏
i=1

ψ (τi )ϕ(τN−1)δ(T − m − ‖τ‖1)dτ︸ ︷︷ ︸
NB

. (12)

Here τ = (τ1, . . . , τN−1)T. The first term describes backward
and the second term nonbackward processes:

B = renewal processes with τmax = τB,

NB = renewal processes with τmax 	= τB. (13)

The two integrals in Eq. (12) are special cases of this general
integral:

IN−1(m, T ′) =
∫ m

0

N−1∏
i=1

gi(τi )δ(T ′ − ‖τ‖1)dτ. (14)

We assume general positive functions gi and an arbitrary con-
stant T ′ > 0. Compared with Eq. (12) it is T ′ = T − m and
the functions gi are either ψ or ϕ. When we restrict the regime
T ′ < m [for Eq. (12) it means T/2 < m] then this integral is

identical to the (N − 1)- fold convolution

IN−1(m, T ′) = (g1 ∗ · · · ∗ gN−1)(N−1)(T ′), (15)

which we prove rigorously in Appendix A. The twofold
convolution is defined as (g1 ∗ g2)(T ′) = ∫ T ′

0 g1(τ1)g2(T ′ −
τ1)dτ1, and higher-order convolutions are obtained succes-
sively. Equation (15) means that the upper limit of the
integration m is reduced to T ′ < m. That is because the con-
straint T = ‖τ‖1 forces all individual τi to be less than T ′.
Therefore the integration from T ′ to m yields zero. Hence we
remain with the convolution. In Appendix A we show Eq. (15)
in detail. Importantly, we realize that this decoupling trick,
valid whenever T ′ < m, is a very general theme. We use this
trick also below for the two other models, i.e., the ZRP and
the TIDSI.

We see now why we consider the maximum PDF instead
of the maximum CDF. The delta function of the maximum
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PDF depends on T − m. We set now T ′ = T − m and apply
Eq. (15) to Eq. (12) under the assumption of the second half
T/2 < m < T , we obtain exactly

fN (m; T )

= ϕ(m)QN−1(T − m) + ψ (m)(N − 1)PN−1(T − m). (16)

Here we introduced two quantities well known from renewal
theory [35]. The first quantity is the distribution QN−1(t ) =
〈δ(t − ‖τ‖1)〉 of having the N th renewal event exactly at time
t . It can be written as the iteration equation

QN−1(t ) = (QN−2 ∗ ψ )(t ) (17)

with Q0(t ) = δ(t ). The second quantity PN−1(t ) is the proba-
bility of finding N − 1 renewal events up to time t . Both are
connected with the survival probability via

PN−1(t ) = (QN−1 ∗ ϕ)(t ). (18)

In case of a single event process N = 1, we get from Eq. (16)
that

f1(m; T ) = ϕ(m)δ(T − m), (19)

which describes the delta peak of the maximum PDF f (m; T )
at m = T .

The first term of Eq. (16) means that the last waiting time
τB is maximum and the second term describes the N − 1
other cases where the maximum ended before T . When the
last waiting time is maximum then at time T − m exactly
N events have happened, which gives QN−1(T − m). This is
multiplied with the probability of not having an event during
m, namely ϕ(M ). Hence we have the first term. Now the
second term consists of ψ (m), i.e., the maximum ended before
T , and (N − 1)PN−1(T − m). It simply means that we had
N − 1 events in the remaining time T − m. Note that any of
the N − 1 waiting times excluding the backward recurrence
time might be the largest, so the second term is multiplied by
N − 1. Hence we have the second term.

Summing up all number of events in Eq. (16) yields the
main result of this section, namely the maximum PDF when
T/2 < m < T exactly given by

f (m; T ) = ϕ(m)R(T − m) + ψ (m)〈N (T − m)〉. (20)

Thus, we derived Eq. (10). The first term contains the rate
function

R(T − m) =
∞∑

N=1

QN−1(T − m), (21)

which is the probability of finding some event exactly at
time T − M, [35]. The delta function δ(T − M ) from N = 1
does not contribute since m < T , and further we have already
pointed out the behavior of the solution when the maximum
is equal to the observation time, Eq. (19). The second term in
Eq. (20) contains the mean number of renewal events,

〈N (T − m)〉 =
∞∑

N=1

NPN (T − M ). (22)

It is related to the rate function via the definite integral

〈N (T − M )〉 =
∫ T −M

0
R(t )dt . (23)

Note that if T is large but we limit ourselves to rare events
when also m is large, such that T − m is small, Eq. (20)
states that all we need to evaluate is the short-time behavior R
and 〈N〉.

Although R and 〈N〉 are well investigated observables
within renewal theory, still an exact and explicit analysis of
Eq. (20) is difficult due to the convolutions. As is well known,
it is beneficial to analyze such problems in Laplace space. The
Laplace transform of some function h(t ) is defined by

ĥ(s) = Lt→s{h(t )} =
∫ ∞

0
h(t )e−st dt . (24)

The Laplace transform of Eq. (20) with respect to the obser-
vation time T is

f̂ (m; s) = ϕ(m)
e−sm

1 − ψ̂ (s)
+ ψ (m)

e−sm

s[1 − ψ̂ (s)]
, (25)

which is easy to prove with the convolution theorem of
Laplace transforms. In detail, we used Q̂N (s) = ψ̂N (s) and
P̂N (s) = ψ̂N−1(s)[1 − ψ̂ (s)]/s and the geometric series. Note
that Eq. (25) is only valid for inverse Laplace transforms L−1

s→T
when T/2 < m < T .

E. Maximum CDF in the second half

From normalization, the maximum CDF at m = T is
clearly F (T ; T ) = 1. The CDF is discontinuous due to
samples with the only renewal at t1 = 0. We separate the con-
tribution from these realizations with single renewal events,
described by Eq. (19), and the remaining processes where we
had at least two renewals. Therefore we have

lim
m→T

F (m; T ) + ϕ(T ) = 1, (26)

where F (T ; T ) = ϕ(T ) is the probability of m = T . With this
boundary condition, we may integrate the PDF f (m; T ) and
then get the maximum CDF for T/2 < m < T as

F (m; T ) = 1 − ϕ(m)〈N (T − m)〉. (27)

Thus, we derived Eq. (11). In Fig. 3 we simulate both sides
of this formula and find perfect matching in the second half.
Especially the estimation of the right hand side, i.e., the es-
timation of 〈N〉 and putting this into 1 − ϕ(m)〈N (T − m)〉,
demonstrates how our theory can be used empirically to find
the extreme value statistics in an indirect way.

In principle, the same can be done for f .
Specifically the probability of finding the maximum τmax

in the first half time m < T/2 is

F (T/2; T ) = 1 − ϕ(T/2)〈N (T/2)〉, (28)

which is valid for all waiting time PDFs ψ (τ ).

F. Gap height of the maximum PDF at the midpoint

The nonanalytical behavior at T/2 arises from double event
processes with N = 2 renewals. The set of waiting times is
(τ1, τB). The maximum of this set is always larger than T/2,
i.e., the probability of m < T/2 is zero. We can quantify this
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FIG. 3. Comparison of two approaches to estimate the CDF
F (m; T ) with T = 2 for exponential ψ (τ ) = exp(−τ ): first by di-
rect estimation (blue circles) and second by estimation of 〈N〉 and
using Eq. (27) (black crosses). The number of simulations is 104.
As predicted by Eq. (27), both curves match for the second half
T/2 < m < T . At m = T the discontinuity is also captured by both
curves because 〈N (0)〉 = 0. Equation (27) can also be calculated
analytically as 1 − exp(T − m + 1).

with

f2(M; T ) =
⎧⎨⎩0 if m < T/2,

ϕ(m)ψ (T − m)
+ψ (m)φ(T − m) if m > T/2,

(29)

which is derived from Eq. (12). Thus the height of the gap
between the first and second half time expressions of f (M; T )
at T/2 is

f ((T/2)+; T ) − f ((T/2)−; T ) = 2ψ (T/2)ϕ(T/2). (30)

Here (T/2)± means we approach T/2 from left/right. When
T → ∞ the gap closes, i.e., tends to zero. This prediction is
later verified for the simulations presented in Fig. 5. Similarly,
for N � 3 the maximum has to be larger than T/N . So the
PDF f (m; T ) is nonanalytical at points T/N which all are in
the first half time m < T/2; see [27].

G. Long-time limits for fractal renewal processes

We calculate the long-time limit T → ∞ of f (m; T ) in
the second half T/2 < m < T , i.e., Eq. (20), for power law
waiting time PDFs

ψ (τ ) ∼ bατ−1−α (31)

with α ∈ (0, 1) or α ∈ (1, 2). The second half implies that we
are dealing with large values of m. Therefore we consider the
linear order m = O(T ) when the maximum is of the order
of the observation time. Then the second half shows rich
behavior for f (m; T ) for the power law waiting time PDF (31)
as described now.

Since R(T − m) and 〈N (T − m)〉 depend on the remaining
time T − m, we have to specify how the remaining time T −
m behaves. We first consider linear order T − m = O(T ); see
Fig. 4. Hence we have to calculate the long-time limit of R
and 〈N〉. This is equivalent to calculating the small s behavior
of Eq. (25). The small s behavior of the waiting time PDF is

ψ̂ (s) ∼
{

1 − bα|�(−α)|sα for α ∈ (0, 1),
1 − 〈τ 〉s for α ∈ (1, 2) (32)

FIG. 4. Presentation of the two scaling regimes in the second
half T/2 < m < T , which we apply for power law waiting time
PDFs with α ∈ (0, 1) (black line) and α ∈ (1, 2) (dashed line). When
the remaining time scales linearly, T − m = O(T ), both processes
B and NB contribute. We obtain the scaling function G(m/T ) in
Eq. (34) for α ∈ (0, 1) and I(m/T ) in Eq. (36) for α ∈ (1, 2). When
T − m = O(1) then only B contributes, which is related to the rate
function; see Eq. (38). For α ∈ (0, 1), there is a matching between G
and the T − m = O(1) regime but not between the first half time and
G because f (m; T/2) is not differentiable. For α ∈ (1, 2), there is a
matching between Fréchet’s law and I and also between I and the
T − m = O(1) regime. For a detailed analysis of small m we refer to
[27].

with the mean waiting time 〈τ 〉 = ∫ ∞
0 τψ (τ )dτ .

In case of α ∈ (0, 1) we obtain from the small s behavior
of Eq. (25) the scaling law of the second half maximum PDF
as

f (m; T ) ∼ 1

T
G
(m

T

)
(33)

with

G(ξ ) = sin(πα)

π
ξ−α (1 − ξ )α−1 + sin(πα)

π
ξ−α−1(1 − ξ )α.

(34)

The rescaled variable is ξ = m/T . The first term repre-
sents processes B and the second term NB. Of course
one can sum both terms and get the right-hand side as
sin(πα)/πξ−1−α (1 − ξ )α−1 which was already found in
[27,45]. This function is valid for 1/2 < ξ < 1 due to the
restriction on the second half. The midpoint ξ = 1/2 is nonan-
alytical, as can be seen by the kink in Fig. 5 where we compare
the theory with Monte Carlo simulations. Note that for ξ → 1
the function blows up to infinity. In reality, for any finite
observation time the maximum PDF does not diverge. Hence
later we cure this problem by considering constant remaining
time T − m = O(1); see also Fig. 4. That analysis will show
how a second scaling law describes rare events.

In the case of α ∈ (1, 2) we obtain from the small s behav-
ior of Eq. (25) the scaling law of the second half maximum
PDF as

f (m; T ) ∼ 1

T α
I
(m

T

)
(35)

with

I (ξ ) = bα

〈τ 〉ξ
−1−α (1 − ξ ) + bα

α〈τ 〉ξ
−α. (36)
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FIG. 5. Rescaled histogram from simulations (blue circles) for
the Pareto waiting time PDF with (a) α = 1/2 and (b) α = 3/2
compared with the theory (black line), i.e., (a) G of Eq. (34) and
(b) I of Eq. (36). In the latter, we also plotted Fréchet’s law, Eq. (37)
(dashed line). The number of realizations is 5 × 107. The observation
times are (a) T = 5000 and (b) T = 1000. Note that when T → ∞
the discontinuity for α ∈ (0, 1) is with respect to the derivation of
f1(m; T ) at T/2, while for finite time T we observe a gap disconti-
nuity of the maximum PDF itself; see Fig. 2.

The rescaled variable is ξ = m/T . The first term represents
processes B and the second term NB. This formula was
already found in the context of the big jump principle in
physical modeling for the two-state Lévy walk [8,28,46,47].
The important point of this scaling law is that it cures the
nonphysical diverging second moment of Fréchet’s law as
pointed out by [28]. Simply put, most values of the random
variable τmax are found for values below m < T/2 when T is
large. These typical events follow Fréchet’s law,

f (m; T ) ∼ 1

(T/〈τ 〉)1/α
bαξ−1−α exp

(
−bαξ−α

α

)
(37)

with ξ = m(T/〈τ 〉)−1/α , i.e., m = O(T 1/α ). See [27] for a
rigorous derivation. But Fréchet’s law predicts the divergence
of the variance of τmax, which is nonphysical since m � T .
The scaling law (37) matches with Fréchet’s law: The small m
behavior of Eq. (35) equals the large m behavior of Fréchet’s
law (37), namely bαT m−1−α/〈τ 〉. Hence both scaling regimes,
i.e., Fréchet and the far tail, are complementary. In Fig. 5 we
compare Eq. (35) with numerical simulations and Fréchet’s
law (37). We see that the gap at the midpoint vanishes. Fur-
thermore, as explained in [8,28,34], the function I of Eq. (36)
is an infinite covariant density because it is non-normalizable.
However, it describes the second moment of f (m; T ).

In summary, although the limit laws (33) and (35) are
known, we showed that they arise from the second half dis-
tribution, Eq. (20). It is not surprising for α ∈ (0, 1) but it is
for α ∈ (1, 2) because of the different behavior of the nonana-
lytical midpoint in the thermodynamic limit. We now present
a result unraveled by our approach.

H. Long-time limits for fractal renewal processes
with constant remaining time

Here we calculate the long-time limit of f (m; T ) in the
second half time T/2 < m < T , i.e., Eq. (20), also with

m = O(T ) but now we consider constant remaining time
T − m = O(1); see Fig. 4. Hence the rate function R(T − m)
and the mean number of events 〈N (T − m)〉 stay constant
in Eq. (20). So we only have to compare their prefactors
ϕ(m) ∼ bαm−α/α and ψ (m) ∼ bαm−1−α . The first one is
dominant and scales as bαT −α/α. The second term can be
neglected. Therefore we find the scaling law

f (m; T ) ∼ 1

T α

bα

α
R(T − m), (38)

which is valid for both cases α ∈ (0, 1) and α ∈ (1, 2). This
formula means that the maximum waiting time is always
the last one; i.e., this long-time limit comes solely from the
process B. If a waiting time is the maximum but not the last
one then it has to end exactly in such a way that the remaining
time T − m is of order 1. But as T increases this probability
becomes zero so that only B contributes. Furthermore, the
remaining time can be a small value and therefore the full
form of the waiting time PDF ψ (τ ) [and consequently the
full form of R(T − m)] is required. This is in contrast to
the previous study of T − m = O(T ) where the asymptotic
behavior of ψ (τ ) fully describes the scaling of the maximum
PDF in the second half.

The scaling function bαR(T − M )/α is obviously non-
normalizable because

T α

∫ T

0
f (m; T )dm ∼ bα

α

∫ ∞

0
R(ε)dε → ∞ (39)

with ε = T − m. Technically, the integral over m shown here
is only correct for m > T/2, but this does not change the
divergence. However, bαR(T − m)/α matches with integrable
scaling PDFs: For α ∈ (0, 1) it matches with G and for α ∈
(1, 2) it matches with I which matches itself with Fréchet’s
law. The small T − m limit of f (m; T ) with T − m = O(T ) is
the same as the large T − m limit of f (m; T ) with T − m =
O(1). For α ∈ (0, 1) this is

f (m; T ) ∼ sin(πα)

π
T −α (T − m)α−1 (40)

and for α ∈ (1, 2) this is

f (m; T ) ∼ bα

α〈τ 〉T −α. (41)

In Fig. 6 we simulate f (m; T ) for two different values of α and
compare T α f (m; T ) plotted over T − m with bα/αR(T − m)
of Eq. (38) and also with the matching functions of Eqs. (40)
and (41). We find that simulation and theory match. The
difference between Eq. (38) and the matching functions of
Eq. (40) and Eq. (41) is easy to see only when T − m is
relatively small. So the analysis of the T − m = O(1) regime
is suitable to describe rare events very close to T .

III. ZERO RANGE PROCESS

A. Basics

Zero range processes in equilibrium describe a system with
a fixed number K of interacting particles. These particles are
located in well separated traps where transition times between
the traps are very fast. We have N such traps, and in each trap
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FIG. 6. Rescaled histogram from simulations (red squares and
blue circles) compared with the theory bα/αR(T − m) of Eq. (38)
(black line) and the matching functions of (a) Eq. (40) and
(b) Eq. (41) (dotted lines). The simulations were performed for two
different times in each figure: (a) T = 10 (red squares) and T = 1000
(blue circles), and (b) T = 100 (red squares) and T = 1000 (blue
circles). The number of realizations is (a) 108 and (b) 5 × 107. Note
that we used τ0 = 3 and not τ0 = 1 in (b) to reduce computation time.

i ∈ [1, N] we have κi � 0 particles. Clearly the constraint is

K =
N∑

i=1

κi; (42)

see Fig. 1 and Table I. Here ψ (κ ) is the probability of finding
κi particles in the trap i. In thermal equilibrium, ψ (κ ) is the
Boltzmann factor, though more generally it depends on the
microscopical description of the transitions [23,24]. In this
model the number of traps N is fixed, unlike the random
number of renewals in the previous model. A well-studied
phenomenon in this model is condensation [18–22]. When
the density of the system K/N crosses a critical value, a
macroscopic number of particles may occupy one trap. It is
then natural to wonder what is the distribution f (m; K ) of
the maximum κmax = max(κ1, . . . , κN ) with value m since
that describes the statistical properties of the condensation
[5,19,30].

B. Extreme value statistics in the second half

We investigate the statistics of the maximum particle num-
ber [5,19,30]

κmax = max(κ1, κ2, . . . , κN ). (43)

The maximum probability mass function (PMF) is defined by
fN (m; K ) = FN (m; K ) − FN (m − 1; K ). The maximum CDF
was derived in [30] and is given by

FN (m; K ) = 1

ZN (K )

m∑
κ=0

N∏
i=1

ψ (κi )δK,‖κ‖1 . (44)

Similar to Eq. (8) (but there for integrals) we just wrote the
N-multiple sums in short form as

∑m
κ=0 = ∑m

κ1=0 · · ·∑m
κ1=0

with the N-vector τ = (τ1, . . . , τN )T. The partition function is
the N-fold convolution

ZN (K ) = (ψ ∗ · · · ∗ ψ )(N )(K ); (45)

see [30]. The twofold convolution for discrete functions is
(ψ ∗ ψ )(2)(K ) = ∑K

κ1=0 ψ (κ1)ψ (K − κ1) and higher orders

0 5 10 15 20
0
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0.15

0.2

FIG. 7. Histogram of the maximum PMF fN (m; K ) of ZRP from
Monte Carlo simulations (blue circles) compared with the theory
of Eq. (47) (black crosses) for zeta ψ (κ ) = 1/ζ (1 + α)(κ + 1)−1−α

with α = 1/2, K = 20, and N = 5. The simulations were performed
with 107 realizations. The analytical expression of the PMF of the
sum of IID random variables �N−1(K − m) [as well as ZN (K )] is
obtained via inverse z transform. The kink at the midpoint K/2 is
visible although the random variables are discrete.

are defined successively. Equation (44) is easy to interpret, the
set of particle numbers {κ1, . . . , κN } are all less than or equal
to m, and the Kronecker delta is the constraint.

Similarly to the RP we can calculate the maximum PMF
for the second half K/2 < m < K with the almost identical
analysis. The maximum PMF is generally derived from
Eq. (44) as

fN (m; K ) = Nψ (m)

ZN (K )

m∑
κ=0

N−1∏
i=1

ψ (κi)δK−m,‖κ‖1 . (46)

Here κ = (κ1, . . . , κN−1)T. This formula is similar Eq. (12),
i.e., the maximum PDF for RP in the second half, but the in-
tegrals are replaced by sums and the delta function is replaced
by the Kronecker delta. Also the ZRP formula has only one
term because there exists no B. In Appendix A we show that
the sums in Eq. (46) are identical to the N-fold convolution in
the range K/2 < m < K . This means that the maximum PMF
in the second half is

fN (m; K ) = 1

ZN (K )
Nψ (m)�N−1(K − m). (47)

Here, we introduced

�N−1(K − m) = (ψ ∗ · · · ∗ ψ )(N−1)(K − m), (48)

which is the PMF with value K − m of the sum of N − 1
discrete IID random variables whose common PMF is ψ (κ ).
So Eq. (47) relates extreme statistics with one of the most
well-studied problems in stochastic theory: the sum of IID
random variables; in physics this is simply the problem of an
N − 1 step random walk. In addition, we see here a useful
modification of the classical EVT case Eq. (1). The CDF
�N−1(m) is replaced by �N−1(K − m) which is also divided
by ZN (K ). When the maximum particle number κmax is m,
all other particle numbers add up to the remaining number
K − m due to the constraint. In Fig. 7 we compare theory and
simulation.
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C. Relationship to condensation

From the joint PMF of the particle numbers,

pN (κ; K ) = 1

ZN (K )
ψ (κ1) · · · ψ (κN )δK,‖κ‖1 , (49)

we obtain the well-studied single trap distribution of the par-
ticle number,

ρN (m; K ) = 1

ZN (K )
ψ (m)�N−1(K − m), (50)

by summing over N − 1 random variables; see [30]. Compar-
ing with Eq. (47) yields

fN (m; K ) = NρN (m; K ) (51)

for the second half K/2 < m < K . This is a modification of
Eq. (1) when we set �(m) = 1 due to the constraint. This re-
sult was obtained in [19] as a limiting law in the condensation
phase of the model. Our result shows that it is exactly valid
close to and far from the thermodynamic limit, regardless of
the occurrence of condensation. It is independent of the struc-
ture of ψ (κ ). Hence, our result provides a general connection
between EVT and the single trap distribution of the particle
number. We refer to [5,19,30] where the thermodynamic limit
of ρN (m; K ) was studied.

Finally, the main interest of our result on the ZRP is to
demonstrate how the decoupling trick of Eq. (15) used for
the RP can easily be applied also here. The model differences
summarized in Table I do not alter the general theme. The
same is true for the last studied model.

IV. TRUNCATED INVERSE DISTANCE SQUARED
ISING MODEL

A. Basics

The TIDSI describes a one-dimensional system of spin
domains with each domain having spins +1 or −1; see Fig. 1.
There is an inverse squared long-range interaction between
spins within the same domain. Let N be the random number
of domains i ∈ [1, N] with each of domain length λi � 1. The
constraint is the fixed total length of the system

L =
N∑

i=1

λi; (52)

see Fig. 1 and Table I. The domain i of length λi is associated
with the weight ψ (λ) ∝ λ−γ , where the domain length decays
with the parameter γ � 1 which is the product of the inverse
temperature 1/(kBT ) and the long-range interaction [31]. The
relevance of TIDSI is that it exhibits a mixed order phase
transition, i.e., it shows features of phase transitions of first
and of second kind. Depending on the temperature, there is
either a ferromagnetic phase with a large number of domains
or a paramagnetic phase with one domain of order L. Thus the
analysis of the extreme domain size λmax = max(λ1, . . . , λN )
is important [5,31].

B. Extreme value statistics in the second half

We investigate the statistics of the maximum domain length
[31]

λmax = max(λ1, λ2, . . . , λN ). (53)

Since the number of events N is random it is instructive to
consider

f (m; L) =
∞∑

N=1

fN (m; L) (54)

with fN (m; L) = FN (m; L) − FN (m − 1; L) being the maxi-
mum PDF with exactly N renewal events. In this context the
value of N is a sampled value. The maximum CDF with given
N were derived in [31] and is given by

FN (m; L) = 1

Z (L)

m∑
λ=0

N∏
i=1

ψ (λi )δL,‖λ‖1 . (55)

This formula is almost identical to Eq. (44) for ZRP but the
partition function is here

Z (L) =
∞∑

N=1

(ψ ∗ · · · ∗ ψ )(N )(L). (56)

The maximum PMF with given N is

fN (m; L) = Nψ (m)

Z (L)

m∑
λ=0

N−1∏
i=1

ψ (λi)δL−m,‖λ‖1 . (57)

Again, we use that in the second half L/2 < m < L this
formula is identical to the convolution. The second half max-
imum PMF with given N is

fN (m; L) = Nψ (m)PN−1(L − m). (58)

Here, the probability of having N − 1 spin domains is

PN−1(L − m) = 1

Z (L)
〈δL−m,‖λ‖1〉

= 1

Z (L)
(ψ ∗ · · · ∗ ψ )(N−1)(L − m) (59)

where the average 〈◦〉 is performed over all possible domain
lengths. Finally, averaging over all N yields the second half
maximum PMF

f (m; L) = ψ (m)
Z (L − m)

Z (L)
[〈N (L − m)〉 + 1] (60)

with L/2 < m < L. The mean number of domains is

〈N (L − m)〉 =
∞∑

N=1

NPN (L − m). (61)

One could write Eq. (60) also as

fN (m; L) = 1

Z (L)
ψ (m)

∞∑
N=1

N�N−1(L − m). (62)

in order to emphasize the relationship to the random walk
picture, similarly to what we did for the ZRP. When the
maximum spin domain length λmax is m, all other lengths add
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FIG. 8. Histogram of the maximum PMF f (m; L) of TIDSI from
Monte Carlo simulations (blue circles) compared with the theory of
Eq. (60) (black line) for zeta ψ (λ) = 1/ζ (1 + α)λ−1−α with α =
0.2 and K = 20. The simulations were performed with 106 real-
izations. The analytical expression of the mean number of domains
〈N (L − m)〉 [as well as Z (L − m) and Z (L)] is obtained via inverse
z transform. The kink at the midpoint L/2 is visible although the
random variables are discrete.

up to the remaining length L − m due to the constraint. In
Fig. 8 we compare theory and simulation.

C. Limiting law in the critical phase

We consider the large total length limit L → ∞ of f (m; L)
in the second half L/2 < m < L, i.e., Eq. (60) or (62), for
the critical phase between ferromagnetic and paramagnetic
phases [31]. Then the calculations can be transferred almost
effortlessly from the above RP techniques. For the limiting
laws in the ferromagnetic and paramagnetic phases we refer
to [31]. The weight is generally

ψ (λ) = e−β�

λ1+α
(63)

with the inverse temperature β = 1/(kBT ), the chemical po-
tential �, and 1 + α = βJ � 1, where J is the strength of the
inverse squared long-range interaction within a single spin
domain; see [31]. In the critical phase the marginal domain
size decays algebraically. Then the weight is

ψ (λ) = 1

ζ (1 + α)λ1+α
(64)

with the Riemann zeta function ζ (1 + α) = ∑∞
N=1 N−1−α ,

i.e.; the fugacity is e−β� = 1/ζ (1 + α). It was shown in [31]
that there are two regimes in the critical phase for α ∈ (0, 1)
and α > 1. We restrict the latter to α ∈ (1, 2) in order to
compare it to RP. As explained in [31] the analysis using z
transform can be replaced by Laplace transforms in the critical
phase, which we use now.

The z transform of the weight is

ψ (λ) � �ψ̂ (z) =
∞∑

L=1

ψ (L)zL, (65)

the z-transform of the denominator of Eq. (60) is
∞∑

N=1

N�N−1(L − m) � �

∞∑
N=1

Nzmψ̂N−1(z) = zm

[1 − ψ̂ (z)]2

(66)

and the z transform of the numerator of Eq. (60) is
∞∑

N=1

�N (L) � �=
∞∑

N=1

ψ̂n(z) = ψ̂ (z)

1 − ψ̂ (z)
. (67)

The symbol � �means we perform the z transform as de-
fined in Eq. (65).

We study here the scaling m = O(L) and L − m = O(L).
Hence, we need the large L limit of both the denominator
and numerator. We set z = exp(−s) and consider the small
s behavior of the weights,

ψ̂ (s) ∼
{

1 − |�(−α)|
ζ (1+α) sα for 0 < α < 1,

1 − 〈λ〉s for 1 < α < 2.
(68)

This is equivalent to the asymptotic behavior of ψ̂ (z) ∼ 1 −
|�(−α)|/ζ (1 + α)(1 − z)α − ζ (α)/ζ (α)(1 − z) at the branch
point z = 1; see [31].

For α ∈ (0, 1) we get from the inverse Laplace transform
the scaling law

f (m; L) ∼ 1

L
G
(m

L

)
(69)

with

G(ξ ) = �(α)

|�(−α)|�(2α)
ξ−1−α (1 − ξ )2α−1 (70)

with the rescaled variable ξ = m/L. The same limiting law
has been derived in [32]. It has also been derived in [31]
but with a different expression depending on hypergeometric
functions. The results are identical; see Appendix B. Equation
(69) is valid for 1/2 < ξ < 1 due to the restriction on the sec-
ond half. The midpoint ξ = 1/2 is nonanalytical as reported
in [31,32]. Note that at ξ → 1 the function blows up to infin-
ity. In reality, for any finite observation time, the maximum
PMF does not diverge. Below we cure this problem again by
considering constant remaining length L − m = O(1). This
describes the rare events where the scaling law (69) is not
valid anymore.

For α ∈ (1, 2) we get

f (m; L) ∼ 1

Lα
I
(m

L

)
(71)

with

I (ξ ) = 1

ζ (1 + α)〈λ〉ξ
−1−α (1 − ξ ). (72)

The rescaled variable is ξ = m/L. The important point of this
scaling law is that it cures the unphysical diverging second
moment of Fréchet’s law describing typical events,

f (m; L) ∼ 1

(L/〈λ〉)1/α
bαξ−1−α exp

(
−bαξ−α

α

)
(73)

with bα = 1/ζ (1 + α) and the rescaled variable ξ =
m(L/〈λ〉)−1/α , i.e., m = O(L1/α ). The mean length is 〈λ〉 =
ζ (α)/ζ (1 + α). See [31] for a rigorous derivation. But
Fréchet’s law predicts the divergence of the variance of
λmax which is unphysical since m � T . The scaling law
Eq. (71) matches with Fréchet’s law: The small m behavior
of Eq. (71) equals the large m behavior of Fréchet’s law,
namely bαLm−1−α/〈λ〉. Hence the two scaling regimes are
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FIG. 9. Rescaled histogram of the maximum PMF f (m; L) for
TIDSI (blue circles) for L = 200 compared with the limiting law
of Eq. (71) (solid line) and Fréchet’s law of Eq. (73) (dashed line).
The simulations were performed with 106 realizations and α = 3/2.
Clearly, Eq. (71) works relatively well already for not too large L
provided that m > L/2.

complementary. In Fig. 9 we compare Eq. (71) with numerical
simulations and Fréchet’s law (73).

The function of Eq. (36) is non-normalizable:

Lα

∫ L

0
f (m; L)dm∼ 1

ζ (1 + α)〈λ〉
∫ 1

0
ξ−1−α (1 − ξ )dξ → ∞.

(74)

Similar to the RP, this limiting function describing rare events
cures the infinite variance problem of Fréchet’s law.

D. Limiting law in the critical phase with constant
remaining length

Here, we calculate the long-time limit of f (m; L) in the
second half time L/2 < m < L, i.e., Eq. (60), also with m =
O(L), but now we consider constant remaining total length
L − m = O(1). Hence the Z (L − m) and the mean number of
domains 〈N (L − m)〉 stay constant in Eq. (60). So we only
have to consider ψ (m) ∼ ψ (L) and the large L behavior of
Z (L). Therefore we find the scaling law

f (m; L) ∼ ψ (L)

Z (L)
Z (L − m)[〈N (L − m)〉 + 1]

= Z (L − m)[〈N (L − m)〉 + 1]

×
⎧⎨⎩

|�(−α)|�(α)
ζ 2(1+α) L−2α for α ∈ (0, 1),

〈λ〉
ζ (1+α) L

−1−α for α ∈ (1, 2).
(75)

In particular, for Z (L) we used the small z behavior of
Eq. (67) and calculated the inverse Laplace transform with
z = exp(−s).

The meaning of this scaling law is similar to the RP lim-
iting law in Sec. II H: it describes the rare events of m very
close to the constraint L. In Fig. 10(a) we show Monte Carlo
simulations for a system size L = 200. The figure illustrates
that the exact expression for f (m; L = 200) in the second half
equation (60) works well as expected. The region near L is
well described by the asymptotic theory, Eq. (75), while the
law, Eq. (69), is not performing well. The latter observation
is to be expected as we are dealing with rare events. Then
in Fig. 10(b) we consider a larger system, L = 5000. Here,
Monte Carlo simulations do not converge in a reasonable time.
We can, however, explore this regime with our exact solution,
Eq. (60), again a solution valid in the domain m > L/2. This
points out to the fact that the exact solution can be exploited to
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FIG. 10. (a) Comparison of the maximum PMF f (m; L) for TIDSI with L = 200 and α = 0.55 [see Eq. (64)] of Monte Carlo simulations
(red circles), the exact half time distribution (60) (red solid line), the m/L → const. scaling law (69) for typical fluctuations (dashed line), and
the L − m = O(1) scaling law of Eq. (75) describing rare events (black solid line). The simulation is performed for 108 realizations. (b) The
maximum PMF with L = 5000 of the exact half time distribution (60) (blue circles), the m/L → const. scaling law (69) (dashed line), and the
L − m = O(1) scaling law of Eq. (75) (solid line). (c) Rescaled maximum PMF plotted over L − m of the exact maximum distribution (60)
with L = 5000 and L = 105 compared with the L − m = O(1) scaling law (75) and the matching function with the L − m = O(L) scaling
law (76).
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FIG. 11. Right tails of f (m; L) for TIDSI with L = 104 described
by the L − m = O(1) limiting law of Eq. (75) (solid line) and the
matching function to the L − m = O(L) limiting law (76) (dotted
line). Three different values of α ∈ (0, 1) have been chosen. There is
a significant change of the behavior of the matching function when
α passes 1/2 while the exact behavior always increases for m → L.

investigate rare fluctuations where sampling of rare events, at
least with straightforward simulations, is difficult or impos-
sible. Further, the exact theory also matches the asymptotic
theory where it should, namely on the far right-hand side of
the figure. We are able to plot the exact behavior of f (m; L)
near L for any large value of L. The detailed procedure
is explained as follows. First, we replace Z (L) by its large
L behavior ζ (1 + α)/[|�(−α)|�(α)]L−1+α in Eq. (60). Sec-
ond, the denominator Z (L − m)[〈N (L − m)〉 + 1] is exactly
obtained via Taylor series of its z transform. And here it
is important that the expression Z (L − m)[〈N (L − m)〉 + 1]
only depends on L − m. Since we are only interested in
small L − m � 200 we are able to derive the Taylor se-
ries for any value of L with Mathematica. Thus, we obtain
the exact expression of f (m; L) near L. Finally, we com-
pare this replacement of the data with the scaling laws in
Fig. 10.

The matching between the two scaling laws with L − m =
O(L) of Eq. (69) and L − m = O(1) of Eq. (75) can be an-
alytically calculated with an argumentation identical to the
previous RP comparison between the two regimes with T −
m = O(T ) and T − m = O(1) in Sec. II H. The small L − m
limit of f (m; L) with L − m = O(L) is equal to the large
L − m limit of f (m; L) with T − m = O(1). For α ∈ (0, 1)
this is

f (m; L) ∼ �(α)

|�(−α)|�(2α)
L−2α (L − m)2α−1; (76)

see Fig. 10. For α ∈ (1, 2) the matching function is

f (m; L) ∼ 1

ζ (1 + α)〈λ〉L−1−α (L − m). (77)

An interesting observation is that this matching function for
different values of α ∈ (0, 1) behaves totally differently than
the exact solution when m → L, In Fig. 11, we compare
for α = 0.45, 0.5, and 0.55 the matching function (76) with
Eq. (75). Although both solutions match for small m, the L −
m = O(1) law (75) diverges at m → L while the matching
solution (76) [and therefore also the L − m = O(L) scaling
law] changes its behavior at α = 1/2. This behavior shows

that the rare event behavior is correctly described by assuming
L − m = O(1).

V. SUMMARY

We have analyzed EVT of the longest waiting time τmax

of the RP, the largest particle number per site κmax of the
ZRP, and the largest spin domain size λmax of the TIDSI.
These three models share the global constraint for the sum
of the random variables, i.e., the waiting times, the particle
numbers per site, and the spin domain lengths. The exact
details of the models differ from each other. While the number
of sites in the ZRP is fixed, the number of waiting times
(spin domains) is random in the RP (TIDSI). Furthermore,
the last waiting time for the RP is cut off to the backward
recurrence time. However, we found that despite these differ-
ences the common trait of the global constraint enabled us
to decouple the problem when the extreme value is larger
than half of the constraint. One of our main results is the
revelation of the deep connection between two different fields:
constrained EVT and well-known quantifiers of stochastic
dynamics. The latter are the mean number of renewal events,
Eq. (10), the sum of independent and identically distributed
random variables, Eq. (51), and the mean number of spin
domains, Eq. (60). Our results are in perfect accordance in
the second half of the support as presented in Fig. 2 for
the RP, in Fig. 7 for the ZRP, and in Fig. 8 for the TIDSI.
In these figures the practical calculation of the theory relies
on Laplace transforms (or z transforms). Since our theory
relates two fields, namely EVT and underlying stochastic dy-
namics, we demonstrated exemplarily for RP in Fig. 3 that
one can also obtain the EVT indirectly: The estimation of
the mean number of renewals 〈N〉 is sufficient to obtain the
maximum CDF by using Eq. (11). Another advantage of our
theory is that we can plot the extreme value statistics for
cases when Monte Carlo sampling demands huge compu-
tational resources. This was demonstrated for the TIDSI in
Fig. 10.

After this general result of the second half maximum dis-
tribution, we considered different asymptotic limits for RP
with power law waiting times with exponent α ∈ (0, 1) and
α ∈ (1, 2). For TIDSI we have chosen to study the asymptotic
limit in the critical phase between ferromagnetic and para-
magnetic phases because the behavior is comparable to the
RP behavior. We recapped known results and also found new
limiting laws when the global constraint diverges C → ∞,
i.e., we have diverging observation time C = T for the RP
and diverging total domain length C = L for the TIDSI. The
limiting behavior of the maximum distribution f (m;C) is
summarized as

(a) When C → ∞ and m/C is fixed, the second half max-
imum distribution for α ∈ (0, 1) describes typical events. For
the RP we found Eq. (34) and explained previous results
[27,45] by identifying contributions from B and NB, i.e., both
processes with the maximum being the last waiting time or
not. For the TIDSI we found Eq. (69), which was derived in
[31,32].

(b) When C → ∞ and m/C is fixed, the second half
maximum distribution for α ∈ (1, 2) complements the typi-
cal events described by Fréchet’s law. For the RP we found
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TABLE II. Collection of limiting laws of f (m;C) for RP with C = T and TIDSI with C = L in the critical phase. The random variables
(waiting times and spin domains lengths) are fat-tail distributed with exponent α. For the study on the first half m ∈ (0,C/2) we refer for RP
to [27] and for TIDSI to [31], in particular for α ∈ (0, 1) the first half shows a different scaling law than Fréchet’s law. In the second half, i.e.,
C/2 < m < C, the scaling m = O(C) is applied. The rescaled variable is ξ = m/C. We find again the laws of (a) [27,45], (b) [28], and (c) [32].
Another expression of (c) has been derived in [31] using other methods; they express the law as a sum of two hypergeometric functions while
the expression in the table is simpler; see Appendix B. Note that we present the expressions in this table without prefactors.

Second half: m ∈ (C/2,C)

Model α ∈ First half: m ∈ (0,C/2) Remaining constraint C − m = O(C) Remaining constraint C − m = O(1)

RP (0,1) Beyond Fréchet’s law (a) T f (m; T ) ∼ ξ−1−α (1 − ξ )α−1 (e) T α f (m; T ) ∼ R(T − m)
(1,2) Fréchet’s law (b) T α f (m; T ) ∼ ξ−1−α[1 − (1/α − 1)ξ ] (f) T α f (m; T ) ∼ R(T − m)

TIDSI (0,1) Beyond Fréchet’s law (c) L f (m; L) ∼ ξ−1−α (1 − ξ )2α−1 (g) L2α f (m; L) ∼ Z (L − m)[〈N (L − m) + 1]〉
(1,2) Fréchet’s law (d) Lα f (m; L) ∼ ξ−1−α (1 − ξ ) (h) L1+α f (m; L) ∼ Z (L − m)[〈N (L − m) + 1]〉

Eq. (36) which was derived in [28]. For the TIDSI we found
Eq. (71). Both limiting laws are infinite densities.

(c) We find the rare events of the statistics of the maximum
for α ∈ (0, 1). Especially for the RP this is relevant because
it cures the divergent behavior of the typical events near
the observation time. The scaling of the rare events assumes
T − m is fixed while T → ∞. Equation (38) shows that only
the process B is important. Here the rate function, of the
mean number of renewals, is a useful tool in the analysis
of the large deviations. Of course while this rate function
describes rare events, it is very different from the rate function
of standard large deviation theory [48]. Finally, the presented
results are used in [49] where we established the so-called
big jump principle [28] for the ballistic Lévy walk model. In
summary, there we show the usefulness of the approach, in the
sense that the statistics of τmax might be used to predict the
large deviations of a widely applicable model of anomalous
transport. In addition, we found the same scaling behavior to
describe the rare event near L for the TIDSI in the critical
phase in Eq. (75). However, there is obviously no distinction
between B and NB.

We collect the just described limiting laws in Table II
together with the behavior in the first half 0 < m < T/2.
While for classical EVT the limiting behavior is described
by Fréchet’s law, the global constraint yields rich limiting
behavior with different scaling laws for which our theory
provides a helpful tool to derive them as presented in the main
text.

Note added. Recently C. Godrèche published related re-
sults [50]. We also thank him for pointing out Refs. [32,33].
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APPENDIX A: INTEGRALS IDENTICAL
TO THE CONVOLUTION

We first consider the RP and later summarize the results
also for the ZRP and the TIDSI. In Eq. (14) we have integrals

of the form

IN (m, T ′) =
∫ m

0
dτ1 · · ·

∫ m

0
dτN

N∏
i=1

gi(τi )δ

(
T ′ −

N∑
j=1

τ j

)
.

(A1)

Note that in Eq. (14) there are (N − 1)-multiple integrals but
we consider now N-multiple integrals. The functions gi(τi )
in Eq. (14) are the waiting time PDFs ψ (τi) or the survival
probability ϕ(τi ). Furthermore the parameter T ′ in Eq. (14) is
the remaining time T − m. Here we discuss general functions
which must be positive gi(τi) � 0 with positive arguments
τi � 0. And we consider an arbitrary constraint T ′ > 0. The
main result of this section is that the integral IN (m, T ′) is
identical to the convolution

IN (m, T ′) = (g1 ∗ · · · ∗ gN )(N )(T ′) (A2)

when the condition m > T ′ is fulfilled. This condition will
lead to the range of the second half T/2 < m < T when
T ′ = T − m. The twofold convolution is (g1 ∗ g2)(2)(T ′) =∫ T ′

0 dτ1g1(τ1)g2(T ′ − τ1) and higher orders are defined
successively.

We derive Eq. (A2) with a proof by induction. Let us start
with N = 2, i.e., we show now that

I2(m, T ′) = (g1 ∗ g2)(2)(T ′) (A3)

when m > T ′. By definition we have

I2(m, T ′) =
∫ m

0
dτ1

∫ m

0
dτ2g1(τ1)g2(τ2)δ(T ′ − τ1 − τ2).

(A4)

For the inner integral we take both limits to infinity while
putting two Heaviside functions into the integrand∫ m

0
dτ2g2(τ2)δ(T ′ − τ1 − τ2)

=
∫ +∞

−∞
dτ2g2(τ2)�(τ2)�(m − τ2)δ(T ′ − τ1 − τ2)

= g2(T ′ − τ1)�(T ′ − τ1)�(m − [T ′ − τ1]). (A5)

Hence this inner integral is only nonzero under the condition

T ′ − m < τ1 < T ′. (A6)

The further analysis of the outer integral of Eq. (A4) depends
on this condition (A6) and the relationship between T ′ and m.
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(a) (b) (c)

FIG. 12. Areas of integration of I2(m; T ′) for three different
regimes depending on the relationship between the maximum m to
some parameter T ′; see Eq. (A7). The most relevant integration is
(a). Our claim is that in this case we may restrict the integration in
Eq. (A1) to m = T ′, since the constraint limits the relevant domain
of the integration variables.

We may consider the three regimes

(a) 0 < T ′ < m,

(b) m < T ′ < 2m,

(c) 2m < T ′. (A7)

Both conditions of Eq. (A6) and Eq. (A7) lead to

I2(m, T ′) =

⎧⎪⎨⎪⎩
∫ T ′

0 dτ1g1(τ1)g2(T ′ − τ1) for (a),∫ m
T ′−m dτ1g1(τ1)g2(T ′ − τ1) for (b),

0 for (c).

(A8)

See also Fig. 12 for three different areas of integration. We
are only interested in the first regime when 0 < T ′ < m. Then
the double integral is the convolution and hence Eq. (A3) is
shown for N = 2.

In order to finish the proof of Eq. (A2) we show it for N + 1
while assuming that the statement is true for N . We write again
the definition of the integral

IN+1(m, T ′)

=
∫ m

0
dτ1 · · ·

∫ m

0
dτN+1

N+1∏
i=1

gi(τi )δ

(
T ′ −

N+1∑
j=1

τ j

)
.

(A9)

We rearrange the order of integration and separate −τN + 1 in
the delta function:

IN+1(m, T ′) =
∫ m

0
dτN+1gN+1(τN+1)

[∫ m

0
dτ1 · · ·

∫ m

0
dτN

N∏
i=1

gi(τi )δ

(
T ′ − τN+1 −

N∑
j=1

τ j

)]
. (A10)

Now we consider T ′ < m, which corresponds to regime (a)
from Eq. (A7). From this obviously T ′ − τN+1 < m because
T ′ − τN+1 < T ′. This inequality T ′ − τN+1 < m is exactly the
condition for which the N-multiple integral inside the square
brackets of Eq. (A10) is the N-fold convolution

IN+1(m, T ′) =
∫ m

0
dτN+1gN+1(τN+1)

× [(g1 ∗ · · · ∗ gN )(N )(T ′ − τN+1)] (A11)

according to the assumption of the induction proof. The
remaining integral over τN+1 is zero from T ′ to m. The dif-
ference T ′ − τN+1 = ∑N

i=1 τi is positive because all τi are
positive. So when τN+1 > T ′ we cannot fulfill the constrain.
This property is controlled by the convolution in the integrand
of Eq. (A11) which is zero for negative arguments. So we get

IN+1(m, T ′) =
∫ T ′

0
gN+1(τN+1)

× dτN+1[(g1 ∗ · · · ∗ gN )(N )(T ′ − yN+1)]
(A12)

and this is the convolution. Remember that we assumed T ′ <

m in Eq. (A11). Therefore we showed Eq. (A2).
With the same arguments, Eq. (A2) can also be stated

for discrete random variables with some arbitrary constraint

C′ > 0. It is equivalently

m∑
y1=0

· · ·
m∑

yN =0

N∏
i=1

gi(yi )δC′,
∑N

j=1 y j
= (g1 ∗ · · · ∗ gN )(N )(C′)

(A13)

for m > C′. For ZRP it is yi = κi and C′ = K − m and for
TIDSI it is yi = λi and C′ = L − m. For ZRP and TIDSI the
functions are gi = ψ for all i.

APPENDIX B: TYPICAL FLUCTUATIONS OF TIDSI
FOR THE PARAMETER α ∈ (0, 1)

In [31] the typical fluctuations of f (m; L) in the second half
L/2 < m < L were calculated as

L f (m; L) ∼ 1

ξ 2

d

du
H (u)|u=1/ξ (B1)

with the function

H (u) = �(α)

�(2α + 1)|�(−α)|u1−α (u − 1)2α

× 2F1(1, 1 + α, 1 + 2α, 1 − u). (B2)
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The hypergeometric function defined as

2F1(a, b, c, z) =
∞∑
j=0

(a) j (b) j

(c) j

z j

j!
(B3)

with the Pochhammer symbol (a) j = �(a + j)/�(a).
We show now that Eq. (B1) is identical to our result from

Eq. (69). For that let us first take the derivative of the right-
hand side of Eq. (B1) while u = 1/ξ :

u2 d

du
H (u)

= u2 �(α)

�(2α + 1)|�(−α)|

×
[

[(1 − α)u−α (u − 1)2α + 2αu1−α (u − 1)2α−1]

× 2F1(1, 1 + α, 2α + 1, 1 − u)

− 1 + α

1 + 2α
u1−α (u − 1)2α

× 2F1(2, 2 + α, 2α + 2, 1 − u)

]
, (B4)

where we used d/dz2F1(a, b, c, z) = ab/c2F1(1 + a, 1 +
b, 1 + c, z). Now we take out the term u−α (u − 1)2α−1 so that

u2 d

du
H (u) = �(α)

�(2α + 1)|�(−α)|u2−α (u − 1)2α−1

×
[
[(1 − α)(u − 1) + 2αu]

× 2F1(1, 1 + α, 2α + 1, 1 − u)

− 1 + α

1 + 2α
u(u − 1)

× 2F1(2, 2 + α, 2α + 2, 1 − u)
]
. (B5)

To show the identity to Eq. (69) we have to show that the ex-
pression inside the big square brackets of Eq. (B5) is identical
to 2α. Let us write this question in shorter form as

f (u)F (1, 1 − u) + g(u)F (2, 1 − u) = 2α; (B6)

i.e., is this statement true? Here f (u) = (1 − α)(u − 1) +
2αu, g(u) = −(1 + α)/(1 + 2α)u(u − 1), and F (i, 1 − u) =
2F1(i + 1, i + 1 + α, i + 1 + 2α, 1 − u).

Since the hypergeometric function depends on 1 − u we
consider the series expansion at u = 1 of the inner brackets. In
principle any other point could be considered but the problem
becomes simpler at u = 1. The Taylor series of Eq. (B6) is

f (u)F (1, 1 − u) + g(u)F (2, 1 − u)

=
∞∑
j=0

( f (u)F (1, 1 − u) + g(u)F (2, 1 − u))( j)|u=1

× (u − 1) j

j!
. (B7)

We apply the general Leibniz rule of derivation,

f (u)F (1, 1 − u) + g(u)F (2, 1 − u)

=
∞∑
j=0

(
j∑

k1=0

(
j

k1

)
F ( j−k1 )(1, 1 − u) f (k1 )(u)|u=1

+
j∑

k2=0

(
j

k2

)
F ( j−k2 )(2, 1 − u)g(k2 )(u)|u=1

)
(u − 1) j

j!
.

(B8)

The derivatives of f and g are

f (k1 )(u)|u=1 =
⎧⎨⎩2α for k1 = 0,

1 + α for k1 = 1,

0 for k1 � 2,

g(k2 )(u)|u=1 =

⎧⎪⎪⎨⎪⎪⎩
0 for k2 = 0,

− 1+α
1+2α

for k2 = 1,

−2 1+α
1+2α

for k2 = 2,

0 for k2 � 3.

(B9)

The two sums in Eq. (B8) are only nonzero for k1 = 0, 1 and
k2 = 2, 3. Thus we can write

f (u)F (1, 1 − u) + g(u)F (2, 1 − u)

=
∞∑
j=0

(
1∑

k1=0

(
j

k1

)
F ( j−k1 )(1, 1 − u) f (k1 )(u)|u=1

+
2∑

k2=1

(
j

k2

)
F ( j−k2 )(2, 1 − u)g(k2 )(u)|u=1

)
(u − 1) j

j!
.

(B10)

The binomial is zero when k1 > j and k2 > j so this expres-
sion is valid for all j. Now we express the hypergeometric
function F (2, 1 − u) by F (1, 1 − u) via the relationship of
their derivatives. The jth derivative of the hypergeometric
function at u = 1 is

F ( j)(1, 1 − u)|u=1 = (−1) j (1) j (1 + α) j

(1 + 2α) j
, (B11)

thus

F ( j)(2, 1 − u)|u=1 = −1 + 2α

1 + α
F ( j+1)(1, 1 − u). (B12)

So we can write

f (u)F (1, 1 − u) + g(u)F (2, 1 − u)

=
∞∑
j=0

(
1∑

k1=0

(
j

k1

)
F ( j−k1 )(1, 1 − u) f (k1 )(u)|u=1

− 1 + 2α

1 + α

×
2∑

k2=1

(
j

k2

)
F ( j−k2+1)(1, 1 − u)g(k2 )(u)|u=1

)
(u − 1) j

j!
.

(B13)
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We order according to the hypergeometric functions:

f (u)F (1, 1 − u) + g(u)F (2, 1 − u)

=
∞∑
j=0

(
F ( j)(1, 1 − u)

×
[(

j

0

)
f (0)(u) − 1 + 2α

1 + α

(
j

1

)
g(1)(u)

]∣∣∣∣∣
u=1

+ F ( j−1)(1, 1 − u)

×
[(

j

1

)
f (1)(u) − 1 + 2α

1 + α

(
j

2

)
g(2)(u)

]∣∣∣∣∣
u=1

)
(u − 1) j

j!
.

(B14)

With Eq. (B9) we get

f (u)F (1, 1 − u) + g(u)F (2, 1 − u)

=
∞∑
j=0

((2α + j)F ( j)(1, 1 − u)|u=1

+ j(α + j)F ( j−1)(1, 1 − u)|u=1)
(u − 1) j

j!
. (B15)

Now we split the summation over j for j = 0 and all other j �
1. For the latter we use the relationship between successive
orders of the derivative for the hypergeometric function,

F ( j)(1, 1 − u)|u=1 = − j(α + j)

2α + j
F ( j−1)(1, 1 − u)|u=1,

(B16)

valid for j � 1. This gives zero for all terms with j � 1
in Eq. (B15) and only the term with j = 0 remains. With
F (0)(1, 1 − u)|u=1 = 1 we obtain

f (u)F (1, 1 − u) + g(u)F (2, 1 − u) = 2α. (B17)

Thus we finally showed that indeed

u2 d

du
H (u) = �(α)

�(2α)|�(−α)|u2−α (u − 1)2α−1. (B18)

Hence Eq. (B1) is identical to our result from Eq. (69).
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