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Critical patch size reduction by heterogeneous diffusion
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Population survival depends on a large set of factors and on how they are distributed in space. Due to landscape
heterogeneity, species can occupy particular regions that provide the ideal scenario for development, working as a
refuge from harmful environmental conditions. Survival occurs if population growth overcomes the losses caused
by adventurous individuals that cross the patch edge. In this work, we consider a single species dynamics in a
patch with a space-dependent diffusion coefficient. We show analytically, within the Stratonovich framework,
that heterogeneous diffusion reduces the minimal patch size for population survival when contrasted with the
homogeneous case with the same average diffusivity. Furthermore, this result is robust regardless of the particular
choice of the diffusion coefficient profile. We also discuss how this picture changes beyond the Stratonovich
framework. Particularly, the Itô case, which is nonanticipative, can promote the opposite effect, while Hänggi-
Klimontovich interpretation reinforces the reduction effect.

DOI: 10.1103/PhysRevE.102.042139

I. INTRODUCTION

Species typically experience a patchy landscape, where
only within certain regions individuals can find resources,
shelter, and other key ingredients for survival [1]. The land-
scape spatial structure shapes diverse macroscopic ecological
patterns, affecting, for instance, the stability and diversity of
ecosystems [2,3]. Particularly, the fragmentation and degrada-
tion of the habitats, accelerated by human activities, have been
producing significant impacts on ecosystems, leading many
species to extinction [4,5]. Thus, it is, more than ever, a matter
of interest to understand the role that habitat spatial features
exert on species survival.

Focusing on a single patch, a central problem is to deter-
mine the critical patch size for species survival. Typically,
there exists a minimum size Lc that separates the extinction
and survival regimes. Then, if the patch size L is bigger than
Lc, the population can grow, achieving a stationary profile at
long time, while it goes extinct otherwise. The specific value
of Lc depends on the details of the environment and population
dynamics.

Pioneer investigations have addressed species survival
assuming a time-independent bounded habitat and that indi-
viduals diffuse and reproduce with constant rates [6–8]. More
recently, theoretical developments have been made to include
demographic fluctuations, which arise from the stochastic
character of the birth-death process [9], and experimental
realization using specific strains of bacteria was performed to
check the validity of the theory [10]. Beyond this classical
case, previous works have discussed the effect of the spa-
tiotemporal structure of the environment [11–15], advection
[16,17], chemotaxis [18], and nonlinear response [19]. These

features can affect the value of Lc, as they substantially mod-
ify the flux of individuals through the habitat edge [20,21].
Furthermore, it has been shown that the common sense that
larger patches favor species survival breaks down if a strong
nonlinearity is present [19]. Similarly, in the multispecies
context, it has been shown that small patches can have high
conservation value [22,23].

Despite previous works have already tackled the critical
patch size problem from many different perspectives, the
effect of the space-dependent diffusion coefficient has not
been sufficiently addressed. Several mechanisms can make
the diffusion coefficient depend on the particular location
inside the patch. For instance, the composition and structure
of the medium through which individuals move can change,
facilitating, or hindering, their mobility. This is characteristic
of transition zones (ecotones) between habitat and nonhabitat
regions which can distort animal movement [24,25]. Also,
behavioral responses can affect mobility, as when individuals
perceive at a distance [26] the drastic change in the envi-
ronmental conditions near the edge of the habitat [21,27–
30]. Regardless of the mechanisms that regulate the spatially
dependent diffusion coefficient, heterogeneity would affect
the residence time of the organisms in the patch [31], thus
impacting the critical patch size.

The role of space-dependent diffusion on the critical
patch size has been studied before in simplified settings,
assuming an abrupt change close to the edge of the patch
[32,33]. In this work, we extend this investigation for the case
where the diffusion coefficient within the patch has a general
form.

We consider a single species that grows and moves in a
bounded domain, with diffusivity that varies in space. At the
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microscopic level, each individual performs a random walk
that in the overdamped limit, in one dimension, is described
by

ẋ =
√

2D(x) η(t ), (1)

where x(t ) is the position of the walker at time t , D is
the spatially varying diffusion coefficient, and η is a zero-
mean noise. Equation (1) constitutes a minimal model for
environment-dependent mobility, assuming that the percep-
tion is local and individuals are memoryless. Thus, we are
neglecting directional movement that can arise when indi-
viduals take decisions either by integrating information over
long distances [26,34] or by using memory, as in the case of
chemotaxis [35,36].

Animal tracking data from bacteria to mammals [37–40]
reveal that movement fluctuations, represented by η in Eq. (1),
have a probability density function that can range from
Gaussian to heavy tailed depending on the species and en-
vironmental conditions. Furthermore, temporal correlations
are ubiquitous in the trajectories of the organisms, introduced
by their behavior or by the environment (e.g., plankton in a
turbulent flow [37]). For the sake of mathematical tractability
of the problem, without disregarding the biological origins
of the noise in Eq. (1), we first assume that η is a zero-
mean Gaussian noise with arbitrarily small (but non-null)
correlation time. Independently of how the correlation decays
in time, the limit of small correlation time leads us to the
Stratonovich perspective of Eq. (1), where η is now a Gaus-
sian white noise [41,42]. The corresponding equation for the
diffusion process in terms of the population density ρ(x, t ) is
given by ∂tρ = ∂x

√
D(x)∂x

√
D(x)ρ, which has been derived

and studied in the literature [43–47].
To complete the continuous-field description, accounting

for the birth-death process, we include a term f (ρ), which
is only required to admit a Taylor expansion around the null
population state. Then, the evolution equation for our problem
reads as

∂

∂t
ρ(x, t ) = ∂

∂x

√
D(x)

∂

∂x

√
D(x)ρ(x, t ) + f (ρ(x, t )), (2)

with x ∈ [−L/2, L/2], where L is the size of the patch, and
subject to Dirichlet bound boundary conditions. The zero-
density boundary condition ρ(x = ±L/2, t ) = 0 mimics the
harmful effects of the surroundings, which impose strong
death rates, immediately killing the individuals that leave
the patch. Although apparently drastic, this simplification has
been useful in the context of homogeneous diffusion, and
allows a first approach to the problem.

In Sec. II we derive an analytical expression to predict
the critical patch size for the problem described by Eq. (2)
and provide illustrative examples for specific forms of D(x).
By comparing these results with the scenario in which the
diffusion coefficient takes the average value inside the patch,
D̃ = 1

L

∫ L/2
−L/2 D(x)dx, we show that heterogeneous diffusion

has a nontrivial effect on population survival. We demonstrate
that, under the Stratonovich interpretation, heterogeneous dif-
fusion promotes the reduction of the critical patch size when
contrasted to the averaged case, where D(x) = D̃. Moreover,
this holds for any kind of diffusivity profile within the patch.
For particular cases, including the stochastic, rectangular,

sinusoidal, and power-law diffusivity profiles, we provide the
explicit expression for the critical patch size. A mechanistic
perspective on how heterogeneous diffusion can emerge due
to behavioral responses to the patch edge is also presented.
At last, we discuss in detail the influence of the different
stochastic interpretations of Eq. (1) and their applicability, in
Sec. III. Section IV contains final remarks about the result.

II. CRITICAL PATCH SIZE UNDER
SPACE-DEPENDENT DIFFUSION

The standard approach to obtain the critical patch size is
based on the linear stability of the dynamics close to the ex-
tinction state ρ(x, t ) = 0. In this regime, we Taylor expand the
growth term in Eq. (2) up to first order. Noting that f (0) = 0,
the remaining term is given by f (ρ) � rρ, where r = f ′(0).
Then, Eq. (2) becomes

∂

∂t
ρ(x, t ) = ∂

∂x

√
D(x)

∂

∂x

√
D(x)ρ(x, t ) + rρ(x, t ), (3)

where x ∈ [−L/2, L/2], with absorbing boundaries.
To circumvent the spatial dependency on D, we define [48]

y(x) =
∫ x

dx′ 1√
D(x′)

, (4)

which allows us to rewrite Eq. (3) as

∂

∂t
ρ(y, t ) = ∂2

∂y2
ρ(y, t ) + rρ(y, t ), (5)

where ρ(y, t ) = √
D(x)ρ(x, t ), and the new absorbing bound-

ary condition is ρ(y(±L/2), t ) = 0. Thus, in the new variable
y, the problem reduces to that of the homogeneous diffusion
treated in classical works [6–8,49], where individuals perform
a standard state-independent Brownian motion.

The population survives in the long time if the extinc-
tion state is unstable, and the initial condition is non-null.
Solving Eq. (5) by the method of separation of variables
or through Fourier series, the contribution of each mode
is ρn(y, t ) = eλnt cos(nπy/Y ), where Y = y(L/2) − y(−L/2)
and λn = r − (nπ/Y )2, with n = 1, 2, . . . . The population
will grow in time if there is at least one mode n with λn > 0.
Noting that λ1 is the maximal rate, then it is clear that the
condition for population survival is given by λ1 > 0. Other-
wise, all other modes have negative growth rate. Therefore,
the critical condition λ1 = 0 leads to

Yc =
∫ Lc/2

−Lc/2

1√
D(x)

dx = π√
r
. (6)

For a homogeneous environment with constant D(x) = D̃, the
known expression L̃c ≡ π

√
D̃
r is recovered [49]. The criti-

cal patch size arises from the balance between the flux that
crosses the boundary and the growth inside the patch, as a
consequence, it increases with D̃ but decreases with r.

For the general heterogeneous case, let us consider the
discretized version of the integral in Eq. (6), i.e., Yc �
Lc
N

∑N
i=1[D(xi )]−1/2. First notice that Yc remains the same by

shuffling the values of D(xi ) within the integration interval.
In other words, different profiles with the same distribution of
values (see example in Fig. 1) yield the same result in Eq. (6).
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FIG. 1. Diffusion coefficient profile and corresponding distribu-
tion. (a) Diffusion coefficient (purple solid line) for a power-law
profile, Eq. (15) with α = 0.3, and its rearranged versions: mirrored
halves (orange solid line) and randomly shuffled (gray solid line).
The dashed horizontal line highlights the average level. (b) Distribu-
tion of the deviation from the average p(ξ ), which is the same in both
cases, thus generating identical result in Eq. (6). Gray bars are from
the numerical shuffling of D(x) and the solid line the analytical result
obtained from Eq. (11) (see Sec. II D).

Mathematically, this is due to the fact that the integrand is a
function of D(x) only, which is a consequence of the linearity
of the birth-death process contemplated in Eq. (3).

Furthermore, it is useful to write D(x) = D̃[1 + ξ (x)], such
that 〈ξ 〉 = 0 and ξ > −1 for the positivity of D, putting into
evidence the variations ξ around a reference level. We use this
form into the discretized version of Eq. (6), namely,

Lc

N

N∑
i=1

(1 + ξi )
−1/2 � L̃c , (7)

and search the extreme values of h({ξi}) = ∑N
i=1(1 +

ξi )−1/2/N , under the constraint g({ξi}) = ∑N
i ξi/N = 0.

Through the method of Lagrange multipliers, we impose
∂ξi (g − λh) = 0, obtaining ξi = 0 for all i. From the analy-
sis of the bordered Hessian, this corresponds to a minimum,
with value h = 1. Then, from Eq. (7), in the continuum limit
(N → ∞), we get Lc < L̃c.

Therefore, heterogeneous diffusion has the remarkable fea-
ture of typically producing a critical patch size smaller than
in the corresponding averaged case, as we will see in the
examples discussed in the following sections.

Noting that the distribution of the values of the diffusion
coefficient is the key feature, we focus on heterogeneities with
distribution preserved under changes of the size L. In terms of
D(x), this happens when the diffusivity depends on the posi-
tion through the scaling x/L, that is D(x) = D̃[1 + ξ (2x/L)].
In this case, Eq. (6) becomes

Lc = L̃c

1
2

∫ 1

−1
[1 + ξ (z)]−

1
2 dz

� L̃c. (8)

Performing a power-series expansion of the integrand around
ξ = 0, and taking into consideration that 〈ξ 〉 = ∫ 1

−1 ξ (z)dz =
0, at the lowest order, we obtain

Lc = L̃c

1 + 3
16

∫ 1

−1
[ξ (z)]2dz

� L̃c, (9)

with equality holding in the case of homogeneous diffusion,
which clearly indicates that, for small variations, the critical
patch size is smaller than that produced by the homogeneous
environment with the same average diffusivity, and this devi-
ation increases with the variability of D.

A. Stochastic perspective

Since the main object that characterizes the heterogeneity
and determines the value of the critical patch is the distri-
bution p(ξ ), it is natural to develop a stochastic view of the
diffusion profile, instead of thinking about the shape of D(x).
The following results provide a connection between these
two perspectives, which will help to understand the particular
cases tackled next.

We can interpret the deviation ξ as a stochastic variable
that assumes values in the interval (−1,∞) with a certain
probability density function (PDF) p(ξ ), which must verify
〈ξ 〉 = ∫ ∞

−1 ξ p(ξ ) dξ = 0. Following this idea, Eq. (8) can be
rewritten as

Lc = L̃c∫ ∞

−1
[1 + ξ ]−

1
2 p(ξ )dξ

, (10)

allowing us to discuss the impact of heterogeneity in terms of
the PDF p(ξ ).

This PDF can be obtained from a given profile of the
diffusivity. In fact, ξ = D(z)/D̃ − 1 ≡ φ(z), where z = 2x/L
can be interpreted as a random variable that is uniform in the
interval [−1, 1], i.e., its PDF is q(z) = 1

2 for |z| � 1. Then,
p(ξ ) is obtained from q(z), through a change of variables,
namely,

p(ξ ) = 1

2

N (ξ )∑
i=1

|dφ−1
i (ξ )/dξ | , (11)

where the index i counts, for each value of ξ , the N (ξ ) solu-
tions of φ(z) = ξ , where the derivatives are computed.

B. Rectangular profile

Perhaps the simplest nonhomogeneous case occurs when
D(x) assumes two values inside the patch of size L instead
of the single one in the homogeneous case. Let us say a
region of length βL < L with coefficient D0(1 + d ), while the
coefficient is D0 otherwise, as illustrated in Fig. 2(a). It can be
defined through the Heaviside step function H as

D(x) = D0

[
1 + d H

(
β − 2|x|

L

)]
, (12)

where D0 is related to the mean value through D̃ = D0(1 +
dβ ), 0 < β < 1 and dβ > −1 for positivity. The associated
PDF is p(ξ ) = [1 − β]δ(ξ + dβ

1+dβ
) + βδ(ξ − d (1−β )

1+dβ
), a sum

of two Dirac delta functions [see Fig. 2(b)].
From Eq. (8), we obtain the explicit expression for the

critical size [see Fig. 2(c)]

Lc/L̃c =
√

1 + d√
1 + βd[(1 − β )

√
1 + d + β[

� 1 . (13)
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FIG. 2. Rectangular. Space-dependent diffusion coefficient
scaled by its mean value D(x)/D̃ = 1 + ξ (a), probability density
function p(ξ ) (b), critical patch size ratio Lc/L̃c vs β (c), given by
Eq. (13), such that βL is the width of the central nucleus. In (b) the
arrows represent Dirac delta functions.

It does not depend on the localization of the nucleus, which
can be shifted from the origin, or even fragmented in many
nuclei, of total size βL. It only depends on the proportion of
the patch β adopting either of the two values.

When d → −1, the denominator of Eq. (6) diverges, such
that Lc must vanish. Conversely, in the opposite limit, when
d → ∞, Lc diverges. The homogeneous case occurs when
d = 0, or β = 0 or 1, and it requires the maximal patch size
for survival. Moreover, we can see in Fig. 2(c) that there is an
optimal value of β that minimizes Lc/L̃c. Also note the high
contrast between heterogeneous and homogeneous diffusion,
when d � 1 or d � −1, yielding a reduction of 75% of the
critical size in the cases shown.

C. Sinusoidal profile

Another important case is when the variation around
the mean value of the diffusion coefficient is sinusoidal
[Fig. 3(a)], that is

D(x) = D0

[
1 + a cos

(
2kπx

L
+ φ

)]
. (14)

When an integer number of periods fits the patch (i.e., k ∈ Z),
D̃ = D0, and the result for the ratio Lc/L̃c depends neither on
the phase constant φ nor in the periodicity given by k, because
the distribution of values remains unchanged. In fact, Eq. (11)
yields p(ξ ) = 1/(π

√
a2 − ξ 2) for |ξ | < a < 1, which only

depends on the amplitude a [see Fig. 3(b)]. Differently, when
k is noninteger, D̃ = D0[1 + a cos φ sin(kπ )/(kπ )] and the
ratio of critical sizes depends on k as well as on the phase φ

[see Fig. 3(c)]. In particular, for integer k and small amplitude,
Eq. (9) predicts Lc/L̃c � 1/[1 + (3/16)a2].
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FIG. 3. Sinusoidal. Same as in Fig. 2 for the sinusoidal diffu-
sivity, with φ = 0. In (b), the PDF corresponds to any integer k. In
(c) the symbols highlight that the critical ratio remains invariant for
integer values of k, even if it were φ �= 0.

D. Power-law profile

Let us consider the power-law function

D(x) = D0

(
1 − d

∣∣∣∣2x

L

∣∣∣∣
α)

, (15)

where D0 = D̃(α + 1)/(α + 1 − d ). It leads to the ratio of
critical sizes

Lc/L̃c =
[√

1 − d

α + 1
2F1

(
1

2
,

1

α
, 1 + 1

α
, d

)]−1

� 1,

(16)
which goes to one in the limit α → ∞.

For the particular case d = 1, D(x) vanishes at the
boundaries. In this case, ξ (z) = [1 − (α + 1)|z|α]/α, with
probability p(ξ ) = (1 − αξ )1/α−1/(α + 1)1/α in [−1, 1/α].
When α = 1 (triangular profile), it corresponds to the uniform
distribution in [−1, 1]. The limit α → 0 yields the anomalous
case D(x) = −D̃ ln |2x/L|, corresponding to the exponential
p(ξ ) = exp(−ξ − 1). However, for d �= 1, in the limit α → 0,
we also recover the homogeneous case, as in the limit α →
∞. In Fig. 4, we plot the ratio of critical sizes vs α, for a
concave power-law profile d = 0.96 > 0 (solid line).

E. Edge-response profile

When modeling the mechanisms responsible for triggering
the spatial dependency on individuals’ mobility, the scaling
dependence [i.e., D(x) = D(x/L)] might not be suitable. In
these cases, the use of the explicit expression (8) becomes
compromised. But, note that, directly from Eq. (6), we can
address a much broader scenario. Then, to spark possible
ideas in this sense, let us discuss the case where mobility
is a function of the distance from the patch edge. This can
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FIG. 4. Critical size ratio for the power-law case defined in
Eq. (15), with d = 0.96 (solid line), following Eq. (16). Symbols
correspond to numerical simulations for different values of the pre-
scription parameter A, defined in Eq. (17), which will be introduced
later in Sec. III. In the limits α → 0 and α → ∞, we have L̃c/Lc →
1 in all cases because D(x) → D̃. The horizontal dotted line high-
lights the unity ratio.

reflect changes in the landscape structure and composition
during the transition from the habitat and nonhabitat regions
known as ecotone. Alternatively, it can mimic the behavioral
changes when individuals perceive the patch boundary (e.g.,
by sensing signals released by the patch [26]).

Assuming that individuals’ mobility is reduced near the
boundary, independently of the mechanisms behind this re-
sponse, the diffusion coefficient takes the form of D(x) =
D0[1 − γ (|x − L/2|)] where γ is a function verifying γ (0) =
1 and vanishing far from the boundary, such that the diffusion
coefficient attains its maximum value D0.

A simple case that suits this scenario is given by D(x) =
D0{1 − exp[(|x| − L/2)/]}, where  is the characteristic
scale of the response to the edge. This diffusive profile is
depicted in Fig. 5(a) and the critical patch size as a function
of the response scale  in Fig. 5(b). Note that the profile
shape is not preserved as the patch size increases [Fig. 5(a)].
Hence, Eq. (8) cannot be applied, but Eq. (6) yields the closed
form Lc = 4 ln{cosh[π

√
D0/r/(4)]} [Fig. 5(b)]. In the limit

 → 0, the profile converges to the homogeneous case, which
produces Lc = L̃c. As  increases, Lc decreases, vanishing at
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FIG. 5. Diffusion coefficient (a) and critical patch size (b) for an
edge distance-dependent mechanism with the form D(x) = D0{1 −
exp[(|x| − L/2)/]} with D0 = 5.0 and  = 0.5. In (b), for r = 1,
the orange and lilac regions correspond to the extinction and survival
phases, respectively. The dashed line represents L̃c. Greenish circles
correspond to the cases in (a).

 → ∞. In the examples of Fig. 5(a) (with  = 0.5), Lc �
5.64, as a consequence, for L = 2 and 5, the population goes
extinct, while for L = 8 it survives, as indicated by the dots
with correspondent colors in Fig. 5(b). Although the critical
patch size for the average value of D, L̃c, has no closed form,
we numerically checked that the statement L/L̃c � 1 remains
valid [dotted line in Fig. 5(b)].

III. OTHER INTERPRETATIONS OF
THE SPACE-DEPENDENT DIFFUSION

The derivation of the macroscopic term for the diffusion
processes from the stochastic individual level is not unique.
There are different versions of a space-dependent diffusion
equation [43,50–53] and all of these forms converge to the
standard case when the diffusion coefficient is a constant in
space and time. For all versions, the probability density ρ(x, t )
depends on the particular form of D(x). A general class of
heterogeneous-diffusion equations is

∂

∂t
ρ(x, t ) = ∂

∂x

{
D(x)1− A

2
∂

∂x
[D(x)

A
2 ρ(x, t )]

}
, (17)

in which A is, in principle, a positive real number
(A = 1 in our case). For A ∈ {0, 1, 2}, it defines the heteroge-
neous diffusion equation accordingly to different well-known
prescriptions: Hänggi-Klimontovich (A = 0), Stratonovich
(A = 1), and Itô (A = 2) formalisms. A possible underly-
ing stochastic dynamics associated to Eq. (17) is given by
Eq. (1), with η being a zero-mean Gaussian white noise,
accompanied by the interpretation associated to the value of
A. Alternatively, we can adopt, for instance, the Stratonovich
prescription, and modify the stochastic equation adding a
drift term associated to the chosen value of A, yielding ẋ =
(1 − A)D′(x)/2 + √

2D(x)η(t ).
This general form can be used to access the consequences

of each interpretation in relevant macroscopic outcomes. For
instance, recently, the general class of diffusive process in
Eq. (17) has been used to investigate the impact of each pre-
scription in the normalization of the probability distribution
of a particle diffusing in a heterogeneous environment with
D(x) ∝ |x|β [54]. In this section, we address the role of the
different interpretations of Eq. (1) on the critical patch size.

Rather than entering the interpretation dilemma, it may
be more valuable to understand the origins and dynamics
responsible for the noise in question, which will naturally
lead to the appropriate interpretation. In our case, we have
adopted the Stratonovich interpretation (A = 1), as mentioned
in the Introduction, implicitly assuming that the noise η in
Eq. (1) has a vanishing temporal correlation but still much
longer than the relaxation time promoted by the inertia of
the particles (individuals) [55]. Note that this consideration
precedes Eq. (1), for which the overdamped limit has already
been taken. More generally, depending on the microscopic
details of the walk performed by the individuals, different val-
ues of A, even fractional ones [56], might be appropriate. For
instance, when the particle dynamics relaxation time and the
noise temporal correlation vanish, with the former surpassing
the latter one, the Itô interpretation (A = 2) is the one that
naturally emerges [55].
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In Fig. 4, we compare the outcomes for different values of
A. In order to do this, we numerically integrated Eq. (2) using
the generalized diffusion term in Eq. (17) starting from the
null homogeneous state plus a positive small random noise.
We applied a standard forward-time-centered-space scheme
which is fourth-order Runge-Kutta in time and second order in
space, with discrete-time step �t = 10−5 and cell size �x =
0.01.

We observe that the ratio Lc/L̃c has significantly different
values that increase with A. These results can be understood
in light of results on the mean first passage time under hetero-
geneous diffusion. To do that, first recall that the critical patch
size is achieved from the balance between diffusive losses at
the borders and growth in the habitat. In other words, this
occurs when the individuals’ habitat residence time τh equals
the reproduction interevent time τr , i.e., individuals reproduce
exactly once before hitting the boundary and dying. For the
homogeneous diffusion case, in which all interpretations pro-
duce identical values, τh ∼ L2/D and τr ∼ 1/r, which leads to
Lc ∼ √

D/r [10]. Under heterogeneous diffusion, it has been
shown that τh is significantly affected by A [31]. In the case
discussed here, τh increases with A, leading to a larger critical
patch size as A increases. This picture, however, can change
depending on the particular problem treated [31].

Lastly, note the result obtained from Eq. (7), that Lc/L̃c �
1 for any D(x), was derived for the diffusion equation associ-
ated to A = 1 and it is not expected to apply for any A. In fact,
for the Itô case, A = 2, in Fig. 4, Lc/L̃c > 1.

IV. FINAL REMARKS

We have shown that space-dependent diffusion, which ap-
pears as prescribed by Stratonovich interpretation, typically
favors survival by reducing the critical patch size in the popu-
lation dynamics described by Eq. (3).

We noted that Eq. (6) is not affected by shuffling the values
of D(x), which allowed the analysis from the perspective of
the distribution of values around the mean p(ξ ). However, it
is important to comment that the presence of any correlation
between population growth and diffusion, such as a density-
dependent diffusion coefficient [19], would change the form
of Eq. (6) in such a way that the specific location and values
of D would matter.

Assuming that the type of heterogeneity present, charac-
terized by p(ξ ), is kept invariant, we investigated the cases in
which the profile of the diffusion coefficient scales with the
habitat size. This allowed us to extract simple expressions to
show how heterogeneous diffusion affects the critical habitat
size in comparison to the average level. We also provided an
illustration of the nonscaling case, which similarly reduces the
critical size, in accord with Eq. (7).

Furthermore, despite we argue that the Stratonovich in-
terpretation is the suitable one for our biological context,
we also discuss the impact of other interpretations in our
results. In the studied case of Fig 4, we observed that, while
Stratonovich (A = 1) interpretation reduces the critical patch
size, the Hänggi-Klimontovich (A = 0) interpretation rein-
forces that effect. That is, the more anticipative is the noise,

the stronger is the reduction. Contrarily, the Itô (A = 2) pre-
scription, which is nonanticipative, promotes the opposite
effect.

All of these results highlight that the details of how in-
dividual behavior and spatial structure of the environment
change inside patch boundaries should be taken into account
in ecological management and natural reserve (refuge) design
[32]. This adds to the point that neglecting the internal vari-
ability can lead to incorrect predictions about the macroscopic
behavior of the system, a fact that has already been remarked
in other ecological contexts [57,58].

The extent of the validity of our results may be limited
by some simplifications in our model. In this paragraph, we
discuss their possible impact and realistic features that would
be worth to include in future extensions of our work. (i) In
the present model, we adopted a continuous-field description
of the population dynamics which neglects the stochasticity
inherent to the birth-death processes. This is reasonable when
the density of particles is large, which is more common in
microorganisms’ population [10]. In cases where the density
is low, stochastic fluctuations dominate the dynamics lead-
ing to population extinction in finite time, regardless of the
patch size [9,28]. Nevertheless, previous results show that
the critical size Lc given by Eq. (2) with D(x) = D0 remains
a good indicator for the separation between the regimes of
short and long extinction times [9]. (ii) With regard to di-
mensionality, it would be interesting to extend our study,
performed for one-dimensional settings, particularly for two
dimensions. Recent studies on the individual’s residence time
in higher dimensions [31,59,60] might provide useful tools
to overcome the analytical challenges involved in this task.
(iii) The discrepancy between the results under Stratonovich
and Itô interpretations suggest that temporal correlations may
play a crucial role, then it would be interesting to address our
problem in the presence of different types of colored noise.
(iv) A density-dependent growth, e.g., with a power-law de-
pendence which is nonlinearizable [19], or with a birth-death
process which is also spatially dependent [30] would break
down the shuffling statement (Fig. 1) bringing the shape of
the profile to the spotlight. (v) Finally, let us comment that
alternatively to our partial differential equation approach, it
would be interesting to perform agent-based simulations of a
finite population [61,62]. This may help to address the impact,
on the critical habitat size, of dimensionality, correlations,
and other realistic features of the behavior at the individual
level [36].
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